
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF”���

 ���
Linked Lists	
 	

Implementing Lisp lists	

•  We have already seen the importance of

separating implementation from application of an
abstract data type	

•  We have seen Lisp lists as an abstract data type,
defined precisely by how the head, tail, cons,
empty and isEmpty operations work	

•  We need to consider what could go inside a Lisp
list object to make these methods work correctly	

	

An Array Representation	

•  We could have inside a Lisp list object, an

array in which the items of the Lisp list are
stored in the same order in the array	

! !class LispList<E>!
! !{!

 ! ! private E[] array;!
!
 ! ! private LispList(E[] a)!
 ! ! {!
 ! ! array = a;!
 ! ! }!
 …

Private constructor	

•  There is a private constructor for the class

which takes the data structure representation and
returns a new object with this data structure inside
it - needed for constructive change	

•  The public methods which return new LispList
objects construct the new data structure for the
new object, then use the private constructor to
create the new object which is returned	

•  Keeping the constructor private ensures the
application code does not have access to the inside
of Lisp lists, so they cannot be changed in
unexpected ways	

Lisp List methods in array implementation	

 public E head() {!
 return array[0];!
 }!
!
 public LispList<E> tail() {!
 E[] a = (E[]) new Object[array.length-1];!
 for(int i=1; i<array.length; i++)!
 a[i-1]=array[i];!
 return new LispList<E>(a);!
 }!
!
 public LispList<E> cons(E obj) {!
 E[] a = (E[]) new Object[array.length+1];!
 a[0]=obj;!
 for(int i=0; i<array.length; i++)!
 a[i+1]=array[i];!
 return new LispList<E>(a);!
 }

Generic Typing	

•  Lisp lists need a element type, but the class
is generic, hence the type variable E	

•  The methods cons and tail return a new
Lisp list of the same element type of the list
they are called on	

•  LispList.<Thing>empty() creates a
new Lisp list with element type Thing!

	

Type variables in generic class	

•  In class LispList<E> the methods use
the type variable E, meaning the element
type of the Lisp list object they are called on	

•  Static method empty has its own type
variable, as it is not called on an object:	

	

 public static <T> LispList<T> empty()!
 {!
 return new LispList<T>((T[]) new Object[0]);!
 }

Linked Lists	

•  Linked lists are a data structure which

resembles the Lisp list abstract data type	

! !class Cell<T>!
! !{!
! ! T first;!
! ! Cell<T> rest;!

!
 ! ! Cell(T h, Cell<T> t)!
 ! ! {!
! ! first=h;!
! ! rest=t;!
! ! }!
! !}

Class Cell	

•  A generic class	

•  Breaks the rule that variables inside a class should

be private or protected	

•  Recursive - a Cell object contains a reference to

a Cell object	

•  But the reference can be set to null	

•  A simple use of Java techniques for illustration,

not a built-in part of Java	

Data structure v. ADT	

•  An Abstract Data Type is seen only in terms of the

methods it has, they define it completely	

•  A linked list is a data structure, because we

consider it in terms of actual variables, first
and rest which can be accessed directly	

•  A linked list consists of a data item (first) and a
further linked list (rest)	

•  This corresponds closely to the head and tail of a
Lisp list	

Implementing Lisp list���
 with linked list	

•  Use the same principle as previously	

– A variable holding the data structure	

– A private constructor which takes a data

structure argument and returns a new object	

– The methods work by creating a new data

structure representing the object required, then
using the private constructor to create the object
required	

 ���
	
class LispList<E>!

{!
 private Cell<E> myList;!
!
 private LispList(Cell<E> list)!
 {!
 myList=list;!
 }!
!
...

Nested class Cell	

•  A nested class is a class declared inside another

class	

•  Declaring Cell as a private nested class in
LispList is a way of making it for the internal
use of LispList methods only	

•  As only internal code can access it, unprotected
access to a Cell object’s variables is acceptable	

•  As Cell is declared as static it is self-
contained (non-static nested classes are known as
“inner classes” and raise further issues not
considered here)	

Cell representation of Lisp lists	

•  Represent an empty Lisp list by a LispList<T>

object whose myList variable is set to null!
•  Otherwise, represent a Lisp list by a
LispList<T> object whose myList variable
refers to a Cell<T> object whose first
variable is the Lisp list’s head, and whose rest
variable is the linked list data structure for its tail	

•  Keep remembering the distinction between
LispList (abstract data type) and Cell used to
make data structures inside a LispList object	

Example	

•  We think of a particular LispList<Integer>

object as representing [7,5,3] - a Lisp list whose
head is 7 and whose tail is the Lisp list [5,3]	

•  The text representation of this is the String
"[7,5,3]"	

•  We don’t know what is actually inside the
LispList object, could be an array, could be a
linked list structure	

•  So long as LispList is properly implemented, it
does not matter what is inside, and it cannot affect
how the application code works logically	

ls1!

myList	

first!

rest	

first	

rest!

first	

rest	

7	
 5	
 3	

ls1!

myList	

first!

rest	

first	

rest!

first	

rest	

7	
 5	
 3	

myList	

ls2	

ls2=ls1.tail();	

ls1!

myList	

first!

rest	

first	

rest!

first	

rest	

7	
 5	
 3	

myList	

ls2	

ls2=ls1.tail();!
ls3=ls1.cons(6);	

6	

ls3!

first	

rest!

myList	

ls1!

first!

rest	

first	

rest!

first	

rest	

7	
 5	
 3	

myList	

ls2	

ls2=ls1.tail();!
ls3=ls1.cons(6);!
ls1=ls2;	

6	

ls3!

first	

rest!

myList	

ls1!

myList	

ls2	

ls3!

myList	

6	
 7	
 5	
 3	

 	

 public E head() {!
 return myList.first;!
 }!
!
 public LispList<E> tail() {!
 return new LispList<E>(myList.rest);!
 }!
!
 public LispList<E> cons(E item) {!
 return new LispList<E>(new Cell<E>(item,myList));!
 }!
!
 public static <T> LispList<T> empty() {!
 return new LispList<T>(null);!
 }!
!
 public boolean isEmpty() {!
 return myList==null;!
 }

Immutable objects 	

•  Remember, Lisp lists as we have defined them are
immutable	

•  That means there is no method you can call on a
LispList object which changes it	

•  That is why they can be implemented using shared
cells - there is no method you can call on a Lisp
list object which would change the value of a cell
it shares with another Lisp list object.	

ArrayList���
 implemented with a linked list	

•  The linked list data structure can be used to make
a class of objects which behave like ArrayList
objects (the code uses next instead of rest, but
that’s just a name change)	

•  The operations on the data structure to implement
the ArrayList behaviour are more complex	

•  They include operations which change the data
structure destructively	

•  The only constructor creates a new object
representing an empty list 	

 ���
	
class MyArrayList<E>!

{!
 private Cell<E> myList;!
!
 public MyArrayList()!
 {!
 myList=null;!
 }!
!
...!

 Some example methods	

 !
 public E get(int pos)!
 {!
 Cell<E> ptr=myList;!
 for(int count=0; count<pos&&ptr!=null; ptr=ptr.next, count++)

{}!
 if(ptr==null)!
 throw new IndexOutOfBoundsException();!
 return ptr.first;!
 }!
!
 public void set(int pos,E item)!
 {!
 Cell<E> ptr=myList;!
 for(int count=0; count<pos&&ptr!=null; ptr=ptr.next, count++)

{}!
 if(ptr==null)!
 throw new IndexOutOfBoundsException();!
 ptr.first=item;!
 }

Moving pointer down a list	

•  Common way of manipulating linked lists	

•  Have variable of type Cell, often named
ptr!

•  ptr=list sets ptr to first cell of list	

•  ptr=ptr.next moves ptr to next cell

of list 	

•  For diagrams, we will assume the element

type is Integer	

6	
 5	
 7	
 3	

myList	

Cell<Integer> ptr; <!
ptr=myList;!
ptr=ptr.next;!
ptr=ptr.next;!
int n=ptr.first;!
ptr.first=8;!

ptr	

6	
 5	
 7	
 3	

myList	

Cell<Integer> ptr;!
ptr=myList; <!
ptr=ptr.next;!
ptr=ptr.next;!
int n=ptr.first;!
ptr.first=8;!

ptr	

6	
 5	
 7	
 3	

myList	

Cell<Integer> ptr;!
ptr=myList;!
ptr=ptr.next; <!
ptr=ptr.next;!
int n=ptr.first;!
ptr.first=8;!
!

ptr	

6	
 5	
 7	
 3	

myList	

Cell<Integer> ptr;!
ptr=myList;!
ptr=ptr.next;!
ptr=ptr.next; <!
int n=ptr.first;!
ptr.first=8;!

ptr	

6	
 5	
 7	
 3	

myList	

Cell<Integer> ptr;!
ptr=myList;!
ptr=ptr.next;!
ptr=ptr.next;!
int n=ptr.first; <!
ptr.first=8;!

ptr	
 n	
 7	

6	
 5	
 8	
 3	

myList	

Cell<Integer> ptr;!
ptr=myList;!
ptr=ptr.next;!
ptr=ptr.next;!
int n=ptr.first;!
ptr.first=8; <!

ptr	
 n	
 7	

Cell and Pointer loops	

•  for(ptr=ls; ptr!=null; ptr=ptr.next) 	

	
moves ptr all through list (assuming body has no breaks)	

•  for(int count=0, ptr=ls; !
 count<pos&&ptr!=null; !
 ptr=ptr.next, count++)!
!moves ptr down list pos times, but ends with ptr set to null if
pos is more than the number of cells ls has	

•  for(ptr=ls; !
 ptr!=null&&!ptr.first.equals(n); !
 ptr=ptr.next) !
 moves ptr until it points to a cell containing n, or it has gone through	

 all cells, in which case loop ends with ptr set to null!

	
	

Aliasing in linked lists	

•  If ptr is of type Cell<E>, then ptr refers to an object

which contains a variable first of type E, and a variable
next of type Cell<E>	

•  The object may be aliased, so after ptr=ls is executed
ptr.first and ls.first are two names for the same
variable, and ptr.next and ls.next are two names
for the same variable	

•  But ptr and ls are two separate variables referring to the
same object	

8	
 3 5	

ls	
 ptr!

Pointing to a Cell in a structure	

•  Executing ptr=ls.next means ptr and
ls.next are two separate variables referring to
the same object	

•  Then also ptr.first is the same variable as
ls.next.first and ptr.next is the same
variable as ls.next.next 	

ls	
 ptr!

7 5	
 2	
 3	

Destructive change in linked lists	

•  ptr.first=n changes the value of the first variable

of the Cell object it refers to	

•  ptr.next=ls changes the value of the next variable

of the Cell object it refers to (remember object
assignment is aliasing)	

•  If ptr refers to a Cell object which is in a linked list
structure, the structure will be changed destructively	

•  This works because first and next are variables	

•  Compare with LispList, where the first item is accessed

by the method call head() and the rest by the method call
tail()	

•  You cannot assign to a method call lsp.head()=8 ✗	

	

ls1	

ls2	

ptr1	
 ptr2	

10	
 20	
 30	

5 6	
 7	
 8	
 9	

ptr1.next=ls2;!
ptr1.next.first=40;!
ptr2=ptr2.next;!
ls2=new Cell(4,ls1);!
ls1=ptr2; !

ls1	

ls2	

ptr1	
 ptr2	

10	
 20	
 30	

5 6	
 7	
 8	
 9	

ptr1.next=ls2; <!
ptr1.next.first=40;!
ptr2=ptr2.next;!
ls2=new Cell(4,ls1);!
ls1=ptr2;!

ls1	

ls2	

ptr1	
 ptr2	

40	
 20	
 30	

5 6	
 7	
 8	
 9	

ptr1.next=ls2; !
ptr1.next.first=40; <!
ptr2=ptr2.next;!
ls2=new Cell(4,ls1);!
ls1=ptr2;!

ls1	

ls2	

ptr1	
 ptr2	

40	
 20	
 30	

5 6	
 7	
 9	

ptr1.next=ls2;!
ptr1.next.first=40; !
ptr2=ptr2.next; <!
ls2=new Cell(4,ls1);!
ls1=ptr2;!

ls1	

ls2	

ptr1	
 ptr2	

40	
 20	
 30	

5 6	
 7	
 9	

ptr1.next=ls2; !
ptr1.next.first=40;!
ptr2=ptr2.next; !
ls2=new Cell(4,ls1); <!
ls1=ptr2;!

4	

ls1	

ls2	

ptr1	
 ptr2	

40	
 20	
 30	

5 6	
 7	
 9	

ptr1.next=ls2; !
ptr1.next.first=40;!
ptr2=ptr2.next; !
ls2=new Cell(4,ls1); !
ls1=ptr2; <!

4	

Adding a new cell into a linked list	

•  If ptr points to a cell in a linked list,
ptr.next=new Cell(n,ptr.next)
will add a new cell containing n after it	

ls!

ptr	

3	
 4	
 6	
5	

Adding a new cell into a linked list	

•  If ptr points to a cell in a linked list,
ptr.next=new Cell(n,ptr.next)
will add a new cell containing n after it	

ls!

ptr	

3	
 4	
 6	
5	

n!

Deleting a cell from a linked list	

•  If ptr points to a cell in a linked list,
ptr.next=ptr.next.next will delete
the following cell from the list	

ls!

ptr	

3	
 4	
 6	
5	

Deleting a cell from a linked list	

•  If ptr points to a cell in a linked list,
ptr.next=ptr.next.next will delete
the following cell from the list	

ls!

ptr	

3	
 4	
 6	
5	

Deleting a cell from a linked list	

•  If ptr points to a cell in a linked list,
ptr.next=ptr.next.next will delete
the following cell from the list	

ls!

ptr	

3	
 4	
 6	

Adding an item to the end of ���
a linked list	

for(ptr=ls; ptr.next!=null; ptr=ptr.next)
{}	

will set ptr to the last cell	

ls!

ptr	

3	
 4	
 6	
5	

Adding an item to the end of ���
a linked list	

for(ptr=ls; ptr.next!=null; ptr=ptr.next)
{}	

will set ptr to the last cell, then	

ptr.next = new Cell(n,null);!
adds n to the end	

ls!

ptr	

3	
 4	
 6	
5	

n!

Special case for empty list	

for(ptr=ls; ptr.next!=null; ptr=ptr.next)
{}!

What happens if ls is null?!

Special case for empty list	

for(ptr=ls; ptr.next!=null; ptr=ptr.next)
{}!

What happens if ls is null?	

for loop does initialisation, then test, if test

succeeds then does body and update and repeats!

Special case for empty list	

for(ptr=ls; ptr.next!=null; ptr=ptr.next)
{}!

What happens if ls is null?	

for loop does initialisation, then test, if test succeeds

then does body and update and repeats	

So ptr becomes null, then trying to use ptr.next

causes a NullPointerException to be thrown -
not the same as false in the test	

 ���
	
	

 public void add(E item)!
 {!
 if(myList==null)!
 myList = new Cell<E>(item,null);!
 else!
 {!
 Cell<E> ptr=myList;!
 for(; ptr.next!=null; ptr=ptr.next) {}!
 ptr.next = new Cell<E>(item,null);!
 }!
 }	

Basic code to delete item ���
from linked list	

•  for(ptr=ls; !
 ptr.next!=null&&!item.equals(ptr.next.first);!
 ptr=ptr.next) {}!
 ptr.next=ptr.next.next;!
•  Needs special case for ls==null 	

•  Needs special case for
item.equals(ls.first)	

•  Needs special case for loop ends with
ptr.next==null	

 	

 public boolean remove(E item)!
 {!
 if(myList==null)!
 return false;!
 else if(item.equals(myList.first))!
 {!
 myList=myList.next;!
 return true;!
 }!
 else!
 {!
 Cell<E> ptr=myList;!
 for(; ptr.next!=null&&!item.equals(ptr.next.first); ptr=ptr.next)!
 {}!
 if(ptr.next==null)!
 return false;!
 else!
 {!
 ptr.next = ptr.next.next;!
 return true;!
 }!
 }!
 }

Programming with linked
structures	

•  Linked structure code can get quite complex	

•  Code to deal with special cases can dominate,

missing it leads to NullPointerExceptions	

•  Destructive change combined with shared cells

could lead to hard to find errors	

•  So limit use of linked structures to implement

carefully designed abstract data types	

Circular linked lists	

•  It is possible to create a linked list in which
a link refers to a cell already referred to by
another link	

ls	
 5	
 6	
 7	
 8	

 	

•  The possibility of circular lists is an additional

special case to check for if writing code which
directly manipulates linked lists	

•  But we know none of our code inside our
ArrayList and LispList implementations can create
a circular linked list, so it’s not a problem that
code has to deal with	

•  If we did have that problem, code which deals
with linked lists with loops relies on alias
checking: ptr1==ptr2 is true if ptr1 and
ptr2 point to the same cell, false otherwise	

Code which checks for loop in
linked list	

static boolean containsLoop(Cell<E> ls)!
{!
int count1=0;!
for(Cell<E> ptr1=ls; ptr1!=null; ptr1=ptr1.next,count1++)!
 { !
 int count2=0;!
 for(Cell<E> ptr2=ls; count2<count1; count2++,ptr2=ptr2.next)!
 if(ptr2==ptr1)!
 return true;!
 }!
return false;!
}!

More efficient code to check for
loop in linked list	

static boolean containsLoop(Cell<E> ls)!
{!
 if(ls==null)!
 return false;!
 for(Cell<E> ptr1=ls, ptr2=ls.next; ptr1!=ptr2; ptr1=ptr1.next)!
 { !
 if(ptr2==null || ptr2.next==null)!
 return false;!
 ptr2=ptr2.next.next;!
 }!
 return true;!
}!

The equals method	

•  The definition of many built-in methods, such as
remove in ArrayList, relies on the equals
method	

•  How equals works depends on how it is defined
for the actual objects being tested	

•  Default is that a class inherits Object’s equals	

•  which means t1.equals(t2) gives the same

as t1==t2	

Defining our own equals	

•  We might want equals to be more than an alias

test	

•  Consider LispList<Integer> ls1,ls2!
	
we would want ls1.equals(ls2) to return
true if they are separate objects which contain
the same integers in the same order	

•  So in class LispList we could write our own
equals method to override Object’s	

•  Doing this makes sense for immutable objects	

•  Defining our own toString is good as well	

equals for LispList<E>	

 public boolean equals(Object other)!
 {!
 if(!other instanceof LispList)!
 return false;!
 LispList<E> otherList = (LispList) other;!
 if(this.isEmpty())!
 return otherList.isEmpty();!
 else if(otherList.isEmpty())!
 return false;!
 else!
 return this.head().equals(otherList.head()) &&!
 this.tail().equals(otherList.tail());!
 }

equals for LispList<E>  
using internal representation	

 public boolean equals(Object other)!
 {!
 if(!(other instanceof LispList))!
 return false;!
 Cell<E> ptr1 = this.myList;!
 Cell<E> ptr2 = ((LispList) other).myList;!
 for(;ptr1!=null&&ptr2!=null;!
 ptr1=ptr1.rest,ptr2=ptr2.rest) !
 {!
 if(!ptr1.first.equals(ptr2.first))!
 return false;!
 }!
 return (ptr1==null&&ptr2==null);!
 }

equals for LispList<E>  
using shared cells	

 public boolean equals(Object other)!
 {!
 if(!(other instanceof LispList))!
 return false;!
 Cell<E> ptr1 = this.myList;!
 Cell<E> ptr2 = ((LispList) other).myList;!
 for(;ptr1!=ptr2&&ptr1!=null&&ptr2!=null; !
 ptr1=ptr1.rest,ptr2=ptr2.rest)!
 if(!ptr1.first.equals(ptr2.first))!
 return false;!
 return (ptr1==ptr2);!
 }!

ArrayList implementation using
linked list with size variable	

class MyArrayList<E>!
{!
 private Cell<E> myList;!
 private int mySize;!
!
 private MyArrayList()!
 {!
 myList=null;!
 mySize=0;!
 }!
!
...!

Why?	

•  We can work out the size of an ArrayList

represented by a linked list by sending the pointer
down the linked list and counting the number of
times we do a ptr=ptr.next until ptr
becomes null	

•  This is inefficient	

•  A separate size variable, updated in any method

which changes the size of the ArrayList, is
redundant in terms of necessity, but valuable in
terms of efficiency	

 	
•  Used to implement size()	

 ! !public int size()!
 ! !{!
 ! ! return mySize;!
 ! !}

•  Used to prevent unnecessary list traversal when an
IndexOutOfBoundsException should be
thrown	

 ! !public E get(int pos)!
 ! !{!
 ! ! Cell<E> ptr=myList;!
 ! ! if(pos>=mySize)!
 ! !throw new IndexOutOfBoundsException();!
 ! ! for(int count=0; count<pos; ptr=ptr.next, count++) {}!
 ! ! return ptr.first;!
 ! !}	

ArrayList implementation with
back pointer	

class MyArrayList<E>!
{!
 private Cell<E> myList,back;!
 private int mySize;!
!
 private MyArrayList()!
 {!
 myList=null;!
 back=null;!
 mySize=0;!
 }!
!
...!

myList	
 back	
 mySize	

a	

4	

10	
 20	
 30	
 40	

Why?	

•  The method add(n) is commonly called on
ArrayList objects	

•  With a pointer to the back cell, we do not have to
traverse all the cells to add a new item to the end	

•  This means that a.add(n) takes the same
amount of time, no matter what the size of the
ArrayList referred to by a	

 ���
	

 public void add(E item)!
 {!
 if(myList==null)!
 {!
 myList = new Cell<E>(item,null);!
 back = myList;!
 }!
 else!
 {!
 back.next = new Cell<E>(item,null);!
 back = back.next;!
 }!
 mySize=mySize+1;!
 }

myList	
 back	
 mySize	

a	

4	

10	
 20	
 30	
 40	

myList	
 back	
 mySize	

a	

4	

10	
 20	
 30	
 40	

a.add(50);	

myList	
 back	
 mySize	

this	

4	

10	
 20	
 30	
 40	

a.add(50);	

item!

50	

a!

myList	
 back	
 mySize	

this	

4	

10	
 20	
 30	
 40	

a.add(50);	

item!

50	

a!

back.next = new Cell<E>(item,null);!

50	

myList	
 back	
 mySize	

this	

4	

10	
 20	
 30	
 40	

a.add(50);	

item!

50	

a!

back.next = new Cell<E>(item,null);!
back = back.next;!

50	

myList	
 back	
 mySize	

this	

5	

10	
 20	
 30	
 40	

a.add(50);	

item!

50	

a!

back.next = new Cell<E>(item,null);!
back = back.next;!
mySize=mySize+1;!

50	

myList	
 back	
 mySize	

 a	

5	

10	
 20	
 30	
 40	
 50	

Doubly Linked lists	

•  A linked list structure where each cell has two cell

variables	

•  The two cell variables, called next and prev,

have to be set so that the following always holds
after each method call for ptr pointing to any
cell:	

! !ptr.next.prev==ptr unless ptr.next==null	

! !ptr.prev.next==ptr unless ptr.prev==null!

•  The result is a list in which the next links point
forward and the prev links point backwards	

 ���
	
 private static class DCell <T>!

 {!
 T data;!
 DCell<T> next,prev;!
!
 DCell(T d,DCell<T> n,DCell<T> p)!
 {!
 data=d;!
 next=n;!
 prev=p;!
 }!
 }

Binary trees	

•  A structure consisting of cells each of which has

two variables linking to further cells is called a
“binary tree” if the following holds:	

–  One cell (the “root”) has no other cells pointing to it	

–  All other cells have exactly one cell pointing to them	

–  So as cell variables may be set to null, each cell

stores a data item and links to 0, 1 or 2 further cells	

•  This is an important data structure, but we do not

have time to cover it in this module	

 ���
	

class MyArrayList <E>!
{!
 private DCell<E> front,back;!
 private int mySize;!
!
 …!

Implementing ArrayList with
doubly-linked list	

data	

next!

prev!

data! data! data!

next	
 next	
 next	

prev! prev! prev	

10	
 20	
 30	
 40	

front!back	
 mySize	

4	

front! back! mySize	

10	
 20	
 30	
 40	

4	
a!

 ���
	

 public void add(int pos,E item) {!
 if(pos>mySize)!
 throw new IndexOutOfBoundsException();!
 if(pos==0) {!
 front = new DCell<E>(item,front,null);!
 if(mySize==0)!
 back=front;!
 else!
 front.next.prev=front;!
 }!
 else {!
 DCell<E> ptr=front;!
 for(int count=1; count<pos; ptr=ptr.next,count++) {}!
 ptr.next = new Cell<E>(item,ptr.next,ptr);!
 if(ptr==back)!
 back=ptr.next;!
 else!
 ptr.next.next.prev=ptr.next;!
 }!
 mySize=mySize+1;!
 }

Why?	

•  Efficient for adding and removing new items at
either end of the list	

•  For items inside, we can start at the closest end	

•  But this is not as efficient access as an array

implementation (one step for any position)	

•  However, it avoids the “moving up/down” when

items are added/removed from inside the list 	

Java’s List and LinkedList	

•  Java has an interface type List<E>	

•  ArrayList<E> implements List<E> using

array and count	

•  LinkedList<E> implements List<E> using

doubly-linked list	

•  Rather than use ArrayList<E>, use List<E>	

•  Use ArrayList<E> or LinkedList<E> only

when constructing new objects	

Why?	

•  A List<E> variable can refer to an
ArrayList<E> object or a LinkedList<E>
object, so your code is generalised	

•  When creating a new List<E> object, you can
use whichever implementation will be more
efficient for the purposes you want to use it for	

•  LinkedList<E> provides extra methods for
accessing the ends of a list	

•  ArrayList<E> provides extra methods for
fine-tuning the array underneath	

Implementation and Application	

•  A clear distinction between implementation and
application hides complex data structure code	

•  It ensures data structures are not manipulated into
unacceptable formats by outside code	

•  It enables us to pick and choose between different
implementations for efficiency reasons	

•  It enables us to write generalised code which is
not dependent on any particular implementation	

