
���
ECS510���

Algorithms and Data Structures ���
in an���

Object Oriented Framework���
���

“ADSOOF”
	

Matthew Huntbach	

matthew.huntbach@qmul.ac.uk	

Big Title - What does it mean?	

•  Algorithms - ways of doing things	

•  Data Structures - ways of holding

collections of things	

•  Object Oriented - a way of structuring

programs, supported by languages like Java	

Algorithms and Data Structures	

•  Traditionally, the second core module of a
Computer Science degree – “CS2”	

•  Low level - close to actual representation on
hardware	

•  Assumption is you will program your own
algorithms and data structures	

Object Oriented Programming	

•  Introduces an additional layer of complexity
to computer programming languages	

•  The complexity helps us structure programs
better	

•  Emphasis on re-use - we are no longer
writing all our code from scratch	

•  Common algorithms and data structures
given in code libraries 	

So why study ADS?	

•  Still need to know what’s going on
underneath	

•  Good exercise and development of
programming skills	

•  Need to know basic principles of algorithms
and data structures in order to build more
complex ones	

•  Algorithms – “the spirit of computing”	

OOF	

•  The “OOF” part of this module is as important as

the ADS part	

•  The underlying idea is dividing a big program

into small parts each of which has a coherent and
logically separate identity	

•  Algorithms and data structures are very general	

•  An Object Oriented Framework means generalised

code for algorithms and data structures can be re-
used whenever we need it for whatever sort of
objects we are working with	

What’s new?	

•  Less encyclopedic approach	

•  Coverage of using code libraries for algorithms

and data structures (Java’s is just an example)	

•  Consideration of generalising code for re–use,

including “generics”	

•  Think in terms of building “components”: the

bottom-up approach of this fits in with top-down
approach of Software Engineering	

MOST IMPORTANT!	

•  You can use a piece of code (class, static method)
without knowing the code, so long as you know its
specification and it works according to its
specification	

•  You can write a piece of code (class, static
method) without knowing how it is going to be
used, so long as you know its specification and it
works according to its specification	

Abstraction	

•  Being able to think and reason in an abstract
way is, perhaps, the key skill for a
Computer Scientist	

•  It means being able to view a situation only
in terms of its essential aspects	

•  But you did this in primary school when
you learned 1+1=2 	

Primary school abstraction	

•  1 apple + 1 apple = 2 apples	

•  1 table + 1 table = 2 tables	

•  1 fire engine + 1 fire engine = 2 fire engines	

•  1 skjtyyrt + 1 skjtyyrt = 2 skjtyyrts	

…	

•  1 thing + 1 thing = 2 things	

…	

•  1 + 1 = 2	

Example: becoming more abstract in
sorting	

•  A method to sort an array of 100 integers from
lowest to highest	

•  A method to sort an array of any number of
integers from lowest to highest	

•  A method to sort an indexed collection of any
number of integers from lowest to highest	

•  A method to sort an indexed collection of any type
of objects which has its own order	

•  A method to sort an indexed collection of any type
of objects in any order given	

Modern programming	

•  Modern software systems are large and involve

gluing together a variety of different aspects:
databases, graphics, web links etc.	

•  Java provides code libraries (APIs) for doing this	

•  APIs (Application Programming Interfaces) are

based on the principles of object orientation	

•  ADSOOF will develop your understanding of

these principles if you work hard at it	

•  The same principles apply in other object-oriented

languages, though the details may differ	

Core Programming	

•  ADSOOF concentrates on the core aspects of

programming	

•  It moves from what the core of the language

provides you towards using it to perform
particular tasks	

•  It is fairly abstract, examples tend not to be “real
world”, whole point is to be general	

•  Other 2nd year modules move from core
programming to linking other aspects of a full IT
system	

“Remedial” Programming	

•  Some aspects of ADSOOF overlap with what you
covered in the 1st year	

•  If you are a confident programmer, don’t be
tempted to “slack off”, it’s easy to miss the point
where it takes you further	

•  If you are a less confident programmer, take the
opportunity to revise and gain a deeper
understanding of topics you were uncertain about
first time round	

Efficiency	

•  You may not care how a component works,
but you do care that it does its job quickly	

•  A specification may be met by more than
one algorithm or data structure	

•  Different algorithms and data structures for
the same specification may have big
differences in efficiency	

Two basic approaches to
algorithms (problem solving)	

•  Iterative - start with an initial state, and
keep on changing it till you get a solution
state.	

•  Recursive (divide and conquer) - break
problem into parts, solve each part, put
together to get a solution. If a part is a
version of the same problem, we can use the
same algorithm to solve it.	

Two basic approaches to ���
data structures	

•  Indexed - the structure is a collection of
items, each of which can be accessed in one
step from its position in the structure (array)	

•  Linked - the structure consists of an item
and links to further structures (linked list,
tree)	

 	

	

If I may be so brash, it has been my humble
experience that there are two things
traditionally taught in universities as a part
of a computer science curriculum which
many people just never really fully
comprehend: pointers and recursion.	

Joel Spolsky	

http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html	

Java	

•  All examples illustrated using Java	

•  Some use of Java APIs	

•  The principles are more important than the details,

you won’t be expected to memorise and know
large numbers of library classes and their methods	

•  This is a practical programming oriented module	

•  A more theoretical module would concentrate on

proof of correctness and efficiency of algorithms	

Programming Principles	

•  If this were a “Java course”, we would start with

the Java Collections Framework	

•  It is a course in programming principles which

uses Java for convenience	

•  Implementing what is found in the Collections

Framework will help you understand those
principles	

•  It covers aspects of programming which any
Computer Scientist ought to have some familiarity
with	

Learning v. Memorisation	

•  The idea that education is about memorising then

“re-gurgitating” in exams is common	

•  It doesn’t work in this subject	

•  If it has worked for you so far, now may be the

point where it stops working	

•  It is better to understand the principles and from

this reconstruct the details rather than try to
memorise the details without understanding the
principles	

Learning by Doing	

•  Many things are best learnt by doing them -

computer programming is a good example	

•  What seems complicated in theory often becomes

simpler once you have tried it in practice	

•  So reading, trying examples, asking questions,

going back to reading, trying more examples … is
how to learn this material	

•  Just reading, especially “revision”, is not a good
way to learn this material	

Code	

•  This module provides plenty of code examples	

•  Most code has a “front-end” to run/test it, be

careful to distinguish this from the code which
implements algorithms and data structures	

•  You aren’t expected to memorise code, you are
expected to understand it	

•  Experiment with code to see how it works, modify
it, test your understanding to see if what you think
should happen is what actually happens	

Learning another human language	

•  Tourist approach - memorise useful sentences and repeat

them in appropriate circumstances	

•  Traditional approach - memorise vocabulary lists and

grammar rules	

•  Theoretical approach - understand the principles behind

the grammar rules and vocabulary	

•  Practical approach - try using the language in practice	

•  Expert approach - having used the language in practice, go

back to the theory and see if the rules make sense from
what you have experienced	

•  Fluent speaker - the rules are so natural you don’t have to
think about them, sometimes you need to check them to
make sure you haven’t become a sloppy speaker	

Asking for help	

•  Don’t ask too soon - try to work it out for yourself

first	

•  Don’t ask too late - if you read and experiment,

but it’s still not working and you don’t know why,
there may be something simple you have missed,
and asking will get you through it	

•  Focus your question - try to work out exactly what
it is you don’t understand, a question with a short
answer is fine, a question where the answer would
be to repeat a whole lecture is not	

Where to ask for help	

•  Short focused questions on immediate issues in lectures	

•  More detailed questions with examples in on-line forum	

•  Don’t be afraid to ask in public - for every one who asks

there are often dozens who want to know the answer to the
same question, answering in public means all benefit	

•  Lab sessions - clarify what is wanted in exercises, ask
questions about your own code, ask questions about other
module material	

•  E-mail - good for detailed questions on complex code	

•  Personal consultation – “chalk and talk” sessions can help,

feel free to ask	

Debugging Code	

•  The problem is often not where or what you think it is	

•  Check the code you are looking at is the code you are

running	

•  It is highly unlikely the problem is with Java	

•  Insert print statements to narrow down on problem	

•  Or use debugging facilities of IDE	

•  Going away and thinking about can be a good strategy	

•  Random modification of code is a poor strategy	

•  “Over the shoulder” debugging sometimes works,

sometimes doesn’t - don’t expect an expert always to be
able to spot instantly where the problem is	

IDEs	

•  Interactive Development Environments provide

support for developing code: writing it, modifying
it, debugging it, storing it, understanding its
structure 	

•  Use of IDEs is essential for modern programming	

•  But an expert programmer needs to know how the

code works underneath	

•  ADSOOF examples are small, with a “front end”

to test them	

•  No IDE assumed or needed, BlueJ may help,

NetBeans may be too “heavy”	

Debugging People	

•  Much more difficult than debugging code	

•  Only you know what is inside your head, others may guess

by asking you questions or seeing what you do, and also
from previous experience	

•  Learning involves picking up new ideas, but it may also
involve “debugging” where you have misunderstood
something	

•  Teaching involves debugging students, but it requires
experience and it isn’t easy	

•  You can debug yourself by testing your hypotheses against
what works in practice, and by asking experts	

Difficulty	

•  The second level programming course is
traditionally “difficult”	

•  Why?	

Difficulty	

•  The second level programming course is
traditionally “difficult”	

•  Why?	

⇒  	

It is oriented towards the abstract rather

	

than applications	

⇒  	

Involves some concepts known to be 	

	

difficult (like pointers and recursion)	

•  But …	

Difficulty	

•  The second level programming course is
traditionally “difficult”	

•  Why?	

– Lecturer grumbles “these students haven’t

learnt to program yet” … “they are lazy”	

–  Students grumble “he’s going too fast, we can’t

keep up”	

Difficulty	

–  Lecturer grumbles “these students haven’t learnt to

program yet” … “they are lazy”	

–  Students grumble “he’s going too fast, we can’t keep

up”	

–  Lecturer wants students to learn lots of new and useful

stuff	

–  Students want to learn lots (?) of new and useful stuff	

Difficulty	

–  Lecturer grumbles “these students haven’t learnt to

program yet” … “they are lazy”	

–  Students grumble “he’s going too fast, we can’t keep

up”	

–  Lecturer wants students to learn lots of new and useful

stuff	

–  Students want to learn lots (?) of new and useful stuff	

–  Lecturer doesn’t want to fail people	

–  Students have competing life pressures	

Difficulty	

– Lecturer maybe finds this stuff easy, needs to

be told by students where it’s hard	

–  Students grumble to themselves …	

– Lecturer if s/he’s good, will have learnt where

students find things hard and will want to help
them through it	

–  Students can fall into the trap of thinking “I’m
the only one who finds this hard”	

Solutions: Good Learning Habits	

•  Learning is not memorisation (again)	

•  Programming is a “learning by doing” subject	

•  Regular study, keeping up with the pace of the

module, is much better than putting it off as
difficult and hoping to catch up later	

•  Divide your time evenly between modules
regardless of easiness/difficulty and different
pressures and deadlines	

•  Try other sources of information	

Solutions: Feedback	

•  Tests are not designed to catch you out, they are

designed to give feedback to the lecturer, and to
you when they are marked	

•  Marks for tests which contribute to final mark
mean you take them seriously	

•  Regular lab attendance gives feedback	

•  Willingness to ask questions, in lectures, labs, on-

line forum, email, tutorials gives feedback	

•  Make use of feedback, if you are getting

something wrong, learn from being told that (this
applies to the lecturer as well!)	

Solutions: Honesty	

•  If you are struggling, don’t “hide” or pretend you

have done the work at home	

•  Be honest with others about the amount of work

you are doing and how easy/difficult you are
finding it	

•  Don’t cheat in assessed work (or unassessed work)	

•  Working together is good, so long as it really does

mean that	

•  Don’t tell yourself “I will do it tomorrow … next

week … next month” when you know you won’t	

Summary	

•  This module covers core aspects of Computer

Science, you need to know this material	

•  It is presented in a way which emphasises and

develops practical programming skills	

•  You will need to work hard at it during term-time,

it is not something you can put aside to pick up
later in “revision”	

•  You are offered assistance in various ways with
picking up this module material, please make best
use of it	

