ECS510
Algorithms and Data Structures
In an
Object Oriented Framework

“ADSOOF”

Matthew Huntbach
matthew .huntbach@qgmul.ac.uk



Big Title - What does 1t mean?

e Algorithms - ways of doing things

e Data Structures - ways of holding
collections of things

* Object Oriented - a way of structuring
programs, supported by languages like Java



Algorithms and Data Structures

e Traditionally, the second core module of a
Computer Science degree — “CS2”

* Low level - close to actual representation on
hardware

e Assumption i1s you will program your own
algorithms and data structures



Object Oriented Programming

Introduces an additional layer of complexity
to computer programming languages

The complexity helps us structure programs
better

Emphasis on re-use - we are no longer
writing all our code from scratch

Common algorithms and data structures
given 1n code libraries



So why study ADS?

Still need to know what’s going on
underneath

Good exercise and development of
programming skills

Need to know basic principles of algorithms
and data structures in order to build more
complex ones

Algorithms — “the spirit of computing”™



OOF

The “OOF” part of this module 1s as important as
the ADS part

The underlying i1dea is dividing a big program
into small parts each of which has a coherent and
logically separate identity

Algorithms and data structures are very general

An Object Oriented Framework means generalised
code for algorithms and data structures can be re-
used whenever we need it for whatever sort of
objects we are working with



What’s new?

Less encyclopedic approach

Coverage of using code libraries for algorithms
and data structures (Java’s is just an example)

Consideration of generalising code for re—use,
including “generics”

Think 1n terms of building “components”: the
bottom-up approach of this fits in with top-down
approach of Software Engineering



MOST IMPORTANT!

* You can use a piece of code (class, static method)
without knowing the code, so long as you know 1its
specification and 1t works according to its
specification

* You can write a piece of code (class, static
method) without knowing how it 1s going to be
used, so long as you know 1its specification and it
works according to its specification



Abstraction

* Being able to think and reason in an abstract
way 1s, perhaps, the key skill for a
Computer Scientist

* It means being able to view a situation only
in terms of its essential aspects

e But you did this in primary school when
you learned 1+1=2



Primary school abstraction

1 apple + 1 apple = 2 apples
1 table + 1 table = 2 tables
1 fire engine + 1 fire engine = 2 fire engines

1 skjtyyrt + 1 skjtyyrt = 2 skjtyyrts

1 thing + 1 thing = 2 things

l+1=2



Example: becoming more abstract in
sorting

A method to sort an array of 100 integers from
lowest to highest

A method to sort an array of any number of
integers from lowest to highest

A method to sort an indexed collection of any
number of integers from lowest to highest

A method to sort an indexed collection of any type
of objects which has its own order

A method to sort an indexed collection of any type
of objects in any order given



Modern programming

Modern software systems are large and involve
gluing together a variety of different aspects:
databases, graphics, web links etc.

Java provides code libraries (APIs) for doing this

APIs (Application Programming Interfaces) are
based on the principles of object orientation

ADSOQF will develop your understanding of
these principles 1f you work hard at 1t

The same principles apply 1n other object-oriented
languages, though the details may differ



Core Programming

ADSOOF concentrates on the core aspects of
programming
It moves from what the core of the language

provides you towards using it to perform
particular tasks

It 1s fairly abstract, examples tend not to be “real
world”, whole point 1s to be general

Other 2nd year modules move from core
programming to linking other aspects of a full IT
system



“Remedial” Programming

* Some aspects of ADSOOF overlap with what you
covered 1n the 1st year

e If you are a confident programmer, don’t be
tempted to “slack off”, it’s easy to miss the point
where it takes you further

e If you are a less confident programmer, take the
opportunity to revise and gain a deeper
understanding of topics you were uncertain about
first titme round



Efficiency

* You may not care how a component works,
but you do care that 1t does 1ts job quickly

* A specification may be met by more than
one algorithm or data structure

e Different algorithms and data structures for
the same specification may have big
differences 1n efficiency



Two basic approaches to
algorithms (problem solving)

e [terative - start with an initial state, and
keep on changing it till you get a solution
state.

* Recursive (divide and conquer) - break
problem 1nto parts, solve each part, put
together to get a solution. If a part is a
version of the same problem, we can use the
same algorithm to solve it.



Two basic approaches to
data structures

 Indexed - the structure 1s a collection of
1tems, each of which can be accessed 1n one
step from 1ts position in the structure (array)

e Linked - the structure consists of an item
and links to further structures (linked list,
tree)



If I may be so brash, it has been my humble
experience that there are two things

traditionally taught in universities as a part
of a computer science curriculum which
many people just never really fully
comprehend: pointers and recursion.

Joel Spolsky

http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html



Java

All examples 1llustrated using Java
Some use of Java APIs

The principles are more important than the details,

you won’t be expected to memorise and know
large numbers of library classes and their methods

This 1s a practical programming oriented module

A more theoretical module would concentrate on
proof of correctness and efficiency of algorithms



Programming Principles

If this were a “Java course”, we would start with
the Java Collections Framework

It 1s a course 1n programming principles which
uses Java for convenience

Implementing what is found in the Collections
Framework will help you understand those
principles

It covers aspects of programming which any
Computer Scientist ought to have some familiarity
with



Learning v. Memorisation

The 1dea that education 1s about memorising then
“re-gurgitating” in exams 1S Common

It doesn't work in this subject

If 1t has worked for you so far, now may be the
point where 1t stops working

It 1s better to understand the principles and from
this reconstruct the details rather than try to
memorise the details without understanding the
principles



Learning by Doing

Many things are best learnt by doing them -
computer programming 1s a good example

What seems complicated in theory often becomes
simpler once you have tried it in practice

So reading, trying examples, asking questions,
going back to reading, trying more examples ... 1S
how to learn this material

Just reading, especially “revision”, 1s not a good
way to learn this material



Code

This module provides plenty of code examples

Most code has a “front-end” to run/test it, be
careful to distinguish this from the code which
implements algorithms and data structures

You aren’t expected to memorise code, you are
expected to understand it

Experiment with code to see how 1t works, modity
it, test your understanding to see if what you think
should happen 1s what actually happens



Learning another human language

Tourist approach - memorise useful sentences and repeat
them in appropriate circumstances

Traditional approach - memorise vocabulary lists and
grammar rules

Theoretical approach - understand the principles behind
the grammar rules and vocabulary

Practical approach - try using the language in practice

Expert approach - having used the language in practice, go
back to the theory and see if the rules make sense from
what you have experienced

Fluent speaker - the rules are so natural you don’t have to
think about them, sometimes you need to check them to
make sure you haven’t become a sloppy speaker



Asking for help

* Don’t ask too soon - try to work 1t out for yourself
first

 Don’t ask too late - if you read and experiment,
but it’s still not working and you don’t know why,
there may be something simple you have missed,
and asking will get you through 1t

e Focus your question - try to work out exactly what
it 1s you don’t understand, a question with a short
answer 1s fine, a question where the answer would
be to repeat a whole lecture 1s not



Where to ask tor help

Short focused questions on immediate issues in lectures
More detailed questions with examples in on-line forum

Don’t be afraid to ask in public - for every one who asks
there are often dozens who want to know the answer to the
same question, answering in public means all benefit

Lab sessions - clarify what is wanted in exercises, ask
questions about your own code, ask questions about other
module material

E-mail - good for detailed questions on complex code

Personal consultation — “chalk and talk” sessions can help,
feel free to ask



Debugging Code

The problem is often not where or what you think it 1s

Check the code you are looking at is the code you are
running

It 1s highly unlikely the problem is with Java

Insert print statements to narrow down on problem

Or use debugging facilities of IDE

Going away and thinking about can be a good strategy
Random modification of code is a poor strategy

“Over the shoulder” debugging sometimes works,
sometimes doesn’t - don’t expect an expert always to be
able to spot instantly where the problem is



IDEs

Interactive Development Environments provide
support for developing code: writing 1t, modifying
it, debugging it, storing it, understanding its
structure

Use of IDEs 1s essential for modern programming

But an expert programmer needs to know how the
code works underneath

ADSOOF examples are small, with a “front end”
to test them

No

E assumed or needed, Blue] may help,

NetBeans may be too “heavy”



Debugging People

Much more difficult than debugging code

Only you know what is inside your head, others may guess
by asking you questions or seeing what you do, and also
from previous experience

Learning involves picking up new ideas, but it may also
involve “debugging” where you have misunderstood
something

Teaching involves debugging students, but it requires
experience and it isn’t easy

You can debug yourself by testing your hypotheses against
what works 1n practice, and by asking experts



Difficulty

* The second level programming course 1s
traditionally “difficult”

* Why?



Difficulty

* The second level programming course 1s
traditionally “difficult”

* Why?
= [t 1s oriented towards the abstract rather
than applications

= Involves some concepts known to be
difficult (like pointers and recursion)

e But ...



Difficulty

* The second level programming course 1s
traditionally “difficult”

* Why?
— Lecturer grumbles “these students haven’t
learnt to program yet” ... “they are lazy”

— Students grumble “he’s going too fast, we can’t
keep up”



Difficulty

— Lecturer grumbles ‘“‘these students haven’t learnt to
program yet” ... “they are lazy”

— Students grumble “he’s going too fast, we can’t keep

29

up
— Lecturer wants students to learn lots of new and useful
stuff

— Students want to learn lots (?) of new and useful stuff



Difficulty

— Lecturer grumbles ‘“‘these students haven’t learnt to
program yet” ... “they are lazy~

— Students grumble “he’s going too fast, we can’t keep

7

up
— Lecturer wants students to learn lots of new and useful
stuff

— Students want to learn lots (?) of new and useful stuff
— Lecturer doesn’t want to fail people

— Students have competing life pressures



Difficulty

— Lecturer maybe finds this stuff easy, needs to
be told by students where it’s hard

— Students grumble to themselves ...

— Lecturer if s/he’s good, will have learnt where
students find things hard and will want to help
them through it

— Students can fall 1nto the trap of thinking “I’'m
the only one who finds this hard”



Solutions: Good Learning Habats

Learning 1s not

memorisation (again)

Programming 1s a “learning by doing” subject

Regular study, |

ceeping up with the pace of the

module, 1s much better than putting it off as

difficult and ho

ping to catch up later

Divide your time evenly between modules
regardless of easiness/difficulty and different
pressures and deadlines

Try other sources of information



Solutions: Feedback

Tests are not designed to catch you out, they are
designed to give feedback to the lecturer, and to
you when they are marked

Marks for tests which contribute to final mark
mean you take them seriously

Regular lab attendance gives feedback

Willingness to ask questions, in lectures, labs, on-
line forum, email, tutorials gives feedback

Make use of feedback, if you are getting
something wrong, learn from being told that (this
applies to the lecturer as well!)



Solutions: Honesty

If you are struggling, don’t “hide” or pretend you
have done the work at home

Be honest with others about the amount of work
you are doing and how easy/ditficult you are
finding 1t

Don’t cheat 1n assessed work (or unassessed work)

Working together 1s good, so long as it really does
mean that

Don’t tell yourself “I will do it tomorrow ... next
week ... next month” when you know you won’t



Summary

This module covers core aspects of Computer
Science, you need to know this material

It 1s presented in a way which emphasises and
develops practical programming skills

You will need to work hard at it during term-time,
1t 1s not something you can put aside to pick up
later 1in “revision”

You are offered assistance in various ways with
picking up this module material, please make best
use of it



