
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF” ���

���
Inheritance	

 The extended DrinksMachine
examples	

Class extension	

class Beta extends Alpha means	

•  Objects of type Beta have all the variables and

methods of objects of type Alpha	

•  They may also have additional variables and

methods declared in class Beta	

•  An object of type Beta can be used anywhere

where an object of type Alpha is required	

•  We refer to Alpha as the “superclass” of Beta

and Beta as a “subclass” of Alpha	

ExtDrinksMachine1	

Example:!
class ExtDrinksMachine1 extends DrinksMachine!
{!
 private ArrayList<Can> sprites;	

•  means an object of type ExtDrinksMachine1 has

all the variables of an object of type
DrinksMachine plus an extra one, sprites	

•  It also has extra methods, representing a machine
with a “Sprite” button as well as a “Coke” and
“Fanta” button	

private and protected
variables	

With class Beta extends Alpha 	

•  Objects of type Beta have all the variables of

objects of type Alpha, but methods in class
Beta cannot access private variables from
class Alpha	

•  They can access protected variables	

•  In ExtDrinkMachine1 the extra method
pressSprite needs to access the variables
price, balance and cash, as well as
sprites, so these would have to be declared as
protected rather than private	

super in constructors	

•  In a constructor for a subclass, the first statement
super(…); means “use the code of the matching
constructor of the superclass”	

•  Example	

 public ExtDrinksMachine1(int p, int c, int f, int s)!
 {!
 super(p,c,f);!
 sprites = new ArrayList<Can>();!
 for(int i=0; i<s; i++)!
 loadSprite(new Can("sprite"));!
 }

Actual and apparent type	

With class Beta extends Alpha and 	

Alpha a;!
Beta b;	

•  We can have a=b;	

•  We cannot have b=a;!
•  So a variable of type Alpha can refer to an

object whose “actual” type is Beta	

•  Alpha is its “apparent” type	

Subclass arguments	

	
So with:	

 ! !public static DrinksMachine !
 !cheaper(DrinksMachine m1,DrinksMachine m2)!
 ! !{!
 ! ! if(m1.getPrice()<m2.getPrice())!
 ! !return m1;!
 ! ! else!
 ! !return m2;!
 ! !}
	
a call cheaper(mach1,mach2) could have
either or both of mach1 and mach2 variables of
type ExtDrinksMachine1

Casting	

With class Beta extends Alpha and 	

Alpha a;!
Beta b;	

•  We can have b = (Beta) a;!
•  This will throw an exception if a does not refer to

an object of actual type Beta	

•  We can use instanceof to test for actual type:	

! !if(a instanceof Beta) …!

Calling extra methods	

With class Beta extends Alpha 	

•  A method which is in class Beta but not
Alpha can only be called on a variable of
type Beta (or a subclass of Beta)	

•  This applies even if a variable of type
Alpha refers to an object of type Beta	

Calling pressSprite	

Example:	

Can c;!

if(m1 instanceof ExtDrinksMachine1)!
 {!
 ExtDrinksMachine1 em = (ExtDrinksMachine1) m1;!
 c = em.pressSprite();!
 }!
else !
 c = m1.pressFanta();	

	

Overriding	

•  With class Beta extends Alpha we can

also have full code for a method in Beta with the
same signature as a method in Alpha	

•  This is referred to as “overriding” the method	

•  It can be used to create a subclass of objects which

behave differently from normal objects of the
superclass	

•  But objects of the subclass can still be used
wherever objects of the superclass are expected	

Dynamic Binding	

•  Suppose method meth from class Alpha is

overridden in class Beta	

•  Now suppose	

! !Alpha a;!
! !Beta b;!
! !…!
! !a=b;!
! !…!
! !a.meth(…)	

•  Is the code used in this call the one in class
Alpha or the one in class Beta?	

•  Answer is - the code from class Beta	

ExtDrinksMachine2!

•  In this example, ExtDrinksMachine2
overrides the pressCoke and pressFanta
methods of DrinksMachine	

•  The idea is to represent a machine which contacts
a supplier when it runs out of a particular drink	

•  When we press the “Coke” or “Fanta” button on a
machine, we don’t know whether it is an ordinary
one or one which contacts a supplier, this is like
dynamic binding in code!

Inheritance	

•  A way of re-using code - extend an existing
class rather than write a completely new
class	

•  A way of generalising - code for a
superclass works for all subclasses	

•  Introduces some tricky concepts, in
particular where a variable of a superclass
refers to an object of a subclass	

Concerns over Inheritance:���
the Fragile Base Class issue	

•  Inheritance was considered one of the most
important aspects of object-oriented programming,
but now most experts suggests it should be used
cautiously	

•  The main issue of concern is that it creates a link
between different pieces of code, the superclass
and its subclasses, which can be hard to follow	

•  If the superclass is changed, this can have
unexpected effects on its subclasses (the “fragile
base class” issue).	

Unexpected effects of overridden methods	

•  Another issue with inheritance comes from dynamic binding: if

a method has a parameter of a particular class type, and is
passed an argument of a subclass of that class, method calls it
makes on the argument will use the code of the subclass if the
subclass overrides the method	

•  All that it is necessary to override a method is to have the same
header, but otherwise the code could perform a completely
different operation	

•  This could cause problems if the code that took the subclass
argument was written with expectations about how the methods
of the argument would perform which are not met by the
overriding code in the subclass	

•  It could even cause a breach in security, suppose the overriding
code sent messages to report when methods are called to a spy	

	

Overriding equals!
•  Dynamic binding is needed, for example when we call
obj1.equals(obj2) we would want the code used to
depend on the class of the object referred to by obj1!

•  However, we would expect the code used to perform in a way
that fits in with the general idea of the equals method	

•  It should be the case that obj2.equals(obj1) should
return the same as obj1.equals(obj2)	

•  It should be the case if obj1.equals(obj2) returns
true and obj2.equals(obj3) returns true then
obj2.equals(obj3) should return true as well	

•  There is nothing to stop us overriding equals with code that
does not perform this way	

The Liskov Substitution Principle	

•  The Liskov Substitution Principle (LSP) is named after Barbara

Liskov, who first identified the problem 	

•  The LSP says that methods should be overridden only by code

that does not conflict with the specifications of the method it is
overriding!

•  The LSP can be expressed in various ways, one is that an
overriding method “should not strengthen the preconditions or
weaken the postconditions”	

•  The preconditions of a method are any requirements on an
argument, for example that an integer argument must not be
negative or a list argument must not be empty	

•  The postconditions are the effects of a method call, what it
returns or what mutating effects it has	

Favour Composition over Inheritance	

•  Composition is when an object is made up of other objects	

•  A common piece of advice in programming is that you should

“favour composition over inheritance”!
•  This means that rather than have one class as a subclass of

another, you should consider whether it is better for it to have a
field of the other class	

•  That means	

	
class Beta { …!
! private Alpha myAlpha;!

rather than	

	
class Beta extends Alpha!

•  Another way of putting this is that Beta “has-a” Alpha rather
than Beta “is-a” Alpha!

Delegation	

•  If you use composition rather than inheritance, a call of a

method on a Beta object that requires action from the Alpha
aspects would have to make a call on the Alpha object it refers
to, this is called “delegation”	

•  If inheritance is used there is just a Beta object, no separate
Alpha object, but with composition there is a separate Alpha
and Beta object	

•  In some cases you might want there to be a single shared
Alpha object for all Beta objects, or for several Beta objects
to be able to share one Alpha object	

•  Aliasing like this is acceptable if it is an acknowledged aspect of
the code design	

•  Aliasing an immutable object can be a useful way of saving on
memory use (the “flyweight” design pattern)	

Advantages of Inheritance	

•  Concerns over problems with inheritance do not mean it should

never be used, but you need to be aware of the issues	

•  The problem of unexpected overriding can be removed by

declaring a method as final (meaning it cannot be overridden)
or a class as final (meaning no class can be declared as
extends it, that is it cannot have subclasses)	

•  An advantage of having class Beta extends Alpha is
that a Beta object can be passed to a method with an Alpha
parameter, but that also applies with class Beta
implements Alpha, where Alpha is an interface type (has
only method headers)	

•  When extends is used, the shared code in the superclass is
one way of meeting the “Don’t repeat yourself” principle	

	

