ECS510

Algorithms and Data Structures in an

Object Oriented Framework
“ADSOOF”

Implementing Objects

Return to DrinksMachine
and
Building our own ArrayLists

Using Objects

Objects 1n Java are defined by classes

But we have used objects without knowing their
classes

We do need to know their public methods and
constructors

plus a specification we know the code underneath
will work to

It 1s important to think in these terms for large-
scale programming

Large-scale programming

Realistic programs too large for one person
to know every part of their code

Better to think 1n terms of components

Components may use objects defined by
others

Components may define objects for others
to use

Components may be re-used

Application and Implementation

* Application - the code which uses objects of
some class

* Implementation - the code inside the class
which makes the objects work

e Specification - the link between the two

Specification

A precise definition of how objects of a
class will work 1n the application code

The writer of the application code will be
confident they work this way

The writer of the implementation code has
to make sure they work this way

Otherwise, they do not need to know about
each other’s code

Specitying Lisp List (axioms)

e If 1s 1s the result of calling 1s1.cons (h)
— ls.head() isequalto h
— 1s.tail() isequalto 1lsl
— ls.isEmpty() 1s false
e If 1s 1s the result of calling LispList.empty ()
— 1s.head () will throw an exception
— 1s.tail () will throw an exception
— ls.isEmpty/() 1s true

e As Lisp lists are immutable, we do not need to take
account of them changing

Some specification for ArrayList

e Thecalla.set(1i,t) throws an exception if 1<0
or iza.size()

e After a.set (1i,t) butbefore any other mutating
operation on a
—a.get(i)isequaltot
— a.get(Jj) where j#1i 1s equal to previous a.get (J)
e After a.add(t) but before any other mutating
operation on a
— a.size() i1s one greater than previous a.size()
—a.get(a.size()-1)i1sequaltot

— a.get (1) 1s equal to previous a.get (1) when 1 1s
nota.size()-1

e Thecall a.add(p, t) throws an exception if
p<0 orp>a.size()

e After a.add(p,t) but before any other
mutating operation on a
— a.size() i1s one greater than previous a.size()
—a.get(p)isequaltot
— a.get (1) 1s equal to previous a.get (1) when
1<p, and 1s equal to previous a.get (i-1) when i>p

Specification Language

Formal specification could use logic-like
language, this aids automatic proof

Formal specification in terms of pre-conditions
and post-conditions 1s good, but may get complex

In practice specification 1s more likely to be in
formal English

Specification 1s a major i1ssue which could be
covered 1in much more detail in a more formal
module

But getting used to precise explanations in English
1s an important part of this module

Static and 1nstance methods

Static methods are self-contained, work 1n their
own environments

Non-static methods (instance methods) are called
“on an object” and work 1n an environment which
contains the method’s variables plus the object’s
variables

As with static methods, the method’s variables are
new for each call

The object’s variables remain 1n existence for as
long as the object, and instance method calls alter
them permanently

Self-reference

In the code for an instance method the keyword
this refers to the object the method call 1s made on

If an instance method 1s called not attached to any
object, it 1s assumed to be attached to this

A constructor 1s like an instance method, but this
refers to the new object it 1s constructing

The call this (...)as the first statement in a
constructor 1s a separate thing (means use another
constructor 1n the same class)

Object Variables

Object variables are declared inside a class but
outside methods in the class, and are not static

Each object created by the class’s constructor has
its own object variables of the name given by the
object variable declaration

When an instance method uses an object variable
name, it means the variable of that name of the
object the method is called on

But it can use the object variables of another
object of the same class by attaching the name to
reference to the other object

Example - DrinksMachine

class DrinksMachine

{
private ArrayList<Can> cokes, fantas;
private int price,balance,cash;

means every object of type DrinksMachine has its own
variables called cokes, fantas, price,balance and
cash

e The private means they cannot be used in methods in
other classes, only indirectly through calls to
DrinkMachine’s methods

e Object variables are usually declared as private so that
objects have control over their own state

Example method

public void insert(int n)

{

balance=balance+n;

}
e In amethod callml.insert(sum),nis alocal
variable, assigned as if n=sum

 and balance is an object variable, inside the
object referred to by m1

e Inm2.1insert(sum),balance is an object
variable 1nside the object referred to by m2

* So the two balances are separate variables
unless m1 and m2 are aliases

Other objects’ private variables

e We could write a method inside class
DrinksMachine:

boolean cheaperThan(DrinkMachine m)

{

return price<m.price;

)
e Then we can call e.g m1.cheaperThan (m2)

e Then price is the price variable in m1, and
m.price 1s the price variable in m2

How objects work

e So the variables cokes, fantas, price,balance
and cash represent the internal mechanism of a

drinks machine

r

* The changes in the values of these variables and
the objects they refer to when methods are called
represent the changes to the machine when it 1s
used

e The user of the machine does not know e.g. that
there are two ArrayLists inside

Users

The user of a program 1s typically a human being
who interacts with its state through a Graphical
User Interface

The user of a class 1s code 1in another class which
interacts with 1t by calling its methods

Do not confuse these two, a human user doesn’t
know about the programming code which makes it
work

This module 1s about components, so does not
cover 1ssues of human-computer interaction

Throwing exceptions

A method may throw an exception

If 1t’s a checked exception, it has to be given in the
signature, uses keyword throws

An exception 1s an object, it has to be created
through a constructor

The statement throw followed by a reference to
an exception causes the method call to halt and
throw an exception

Once a method call is halted through throw, as
through return, it is never returned to

Implementing ArrayList

e This 1s an exercise, in practice there’s usually no
point 1n not using the class Java gives us

e What we need to do

— Consider an internal representation, and how that
relates to what we think of as an “ArrayList”

— Consider code for the methods which use this internal
representation to respond according to the method
specification

ArrayList represented by Array

* An ArrayList 1s a numerically indexed
collection of items of the same type

* An array 1s a numerically indexed collection
of items of the same type

* So represent ArrayList by an internal array?

MyArrayList of String

class MyArrayList
{

private String[] arr;

public void set(int i,String str)
{
arr[i]=str;

}

public String get(int 1)
{

return arr[i];

}

Generic MyArrayList

class MyArrayList <T>
{

private T[] arr;

public void set(int i,T item)
{
arr[i]=str;

}

public T get(int i)
{

return arr[i];

}

Constructor

public MyArrayList(int n)

{
arr = (T[]) new Object[n];
}

e Java doesn’tlet us donew T[n], thisis how to
get round 1t (will cause a compiler warning)

e But this doesn’t fit in with the way ArrayLists
work - they are not fixed size like arrays

* Also this does not correspond with Java’s
ArrayList<T> constructor

Implementing size change

public MyArrayList()

{

arr = (T[]) new Object[0];
}

public void add(T item)
{
T[] arrl = (T[]) new Object[arr.length+l];
for(int i1=0; i<arr.length; i++)
arrl[i]=arr[i];
arrl[arr.length]=item;
arr=arrl;

}

Array and Count Representation

* Replacing the array each time the ArrayList size
changes 1s inefficient

e Array and count representation:

— Have array of maximum size needed, and count giving
current portion of array in use

— Throw exception if attempting to use index beyond
current count value

— For methods which change ArrayList size, change
count and move items in array as necessary

class MyArrayList <T>

{

private T[] arr;

private int count;

private static int MAX SIZE=100;

public MyArrayList()

{

count=0;

arr = (T[]) new Object[MAX SIZE];
}

public int size()

{

return count;

}

public T get(int 1i)
{
if(i>=count)
throw new IndexOutOfBoundsException();
return arr[i];

}

public void set(int i,T item)
{
if (i>=count)
throw new IndexOutOfBoundsException();
arr[i]=item;

}

public void add(T item)
{

arr[count++]=item;

}

public void add(int pos,T item)
{
if (pos>count) throw new IndexOutOfBoundsException();
for(int i=count; i>pos; i--)
arr[i]=arr[i-1];
arr[pos]=item;
count++;

}

public T remove(int pos)

{

if (pos>=count) throw new IndexOutOfBoundsException();
T removed = array[pos];

for(int i=pos+l; i<count; i++)

arr[i-l]=arr[i];
count--;
return removed;

}

Abstract Data Type

 An Abstract Data Type 1s considered only in terms
of the operations we can do on it and their
specifications, so a class seen in terms of its public
methods can be considered an ADT

e A data structure is a collection of values which
have a particular pattern. The variables inside an
object of class, and the rules which keep them to
particular values, may be considered a data
structure

Information Hiding

Keep variables in one part of a program so they
can’t be accessed directly from another part

Only interaction between program parts 1s calling
public methods

If program parts can only interact in a few well-
defined ways, there 1s less chance of errors
occurring

We can change the private parts (to a more
efficient implementation?) so long as the public
parts interact in the same way, without that
causing problems to any other code

Implementation of ADT

* So an ArrayList 1s an Abstract Data Type,
and we have seen so far two data structures
which may implement it:

— Array
— Array and count

Writing your own classes

Programming in an object-oriented language like
Java 1s mainly about writing your own classes

Classes define objects

Code 1n other classes manipulates objects by
calling their public methods

As far as possible we should write the code for a
class 1n a self-contained way, which means it
should only need to know the public methods of
other classes, and other classes should only need
to know its public methods

Object Oriented Design

e Object oriented design 1s about designing a
system 1n terms of what objects it has and
how they interact with each other

e Itis covered in more detail in modules like
Software Engineering and Systems Analysis

 In ADSOOF we are concerned with
implementing the classes that define objects
by writing code for them

Top down and bottom up
programming

e A “top-down” software engineering approach will
consider first those objects which relate directly to
the real world situation the system 1s working with

e Component programming 1s about building classes
which describe objects whose purpose 1s general,
so they will be re-used in many different systems

e Algorithms and data structures is primarily about
component programming which 1s a “bottom up”
approach

Component Programming

Components must be general so they can be taken and
used 1n a variety of situations

A general storage component like Java’s
ArrayList<E> is a good example

A method which performs an algorithm like sorting,
but coded in a general way so we can use the code
whenever we need to sort a collection 1s another

Commonly used components like these are available
as the APIs of your programming language

You may have to program your own more specialist
components

Java’s API

As exercise work and to help understand the principles of
algorithms and data structures, in ADSOOF we often write

code which implements components already in the Java
API

ADSOOF 1s not a module on “further Java” so we do not
cover any of Java’s API except what 1s necessary to cover
the principles

That 1s why exercise solutions involving use of Java API
code which has not been covered in the module are
missing the point

In “real life” programming, however, you should use what
the API provides you where possible

Algorithms and Data Structures 1n an
Object Oriented Framework

We have covered how to define your own classes - this should
have been revision material

We have emphasised the importance of having a good
specification and keeping to it

Program components which can be relied on to interact only
through a well-defined specification can be constructed and used
independently

This division of programs into components is a key aspects in
developing realistic scale software

The algorithms and data structures aspect of ADSOOF is about
code which 1s used inside larger systems

Understanding the distinction between “abstract data type” and
“data structure” 1s a key part of developing the way of thinking
that 1s needed at this level of programming

