
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF”���

 ���
Implementing Objects	

Return to DrinksMachine	

and	

Building our own ArrayLists	

Using Objects	

•  Objects in Java are defined by classes	

•  But we have used objects without knowing their

classes	

•  We do need to know their public methods and

constructors	

•  plus a specification we know the code underneath

will work to	

•  It is important to think in these terms for large-

scale programming	

Large-scale programming	

•  Realistic programs too large for one person
to know every part of their code	

•  Better to think in terms of components	

•  Components may use objects defined by

others	

•  Components may define objects for others

to use	

•  Components may be re-used	

Application and Implementation	

•  Application - the code which uses objects of
some class	

•  Implementation - the code inside the class
which makes the objects work	

•  Specification - the link between the two	

Specification	

•  A precise definition of how objects of a
class will work in the application code	

•  The writer of the application code will be
confident they work this way	

•  The writer of the implementation code has
to make sure they work this way	

•  Otherwise, they do not need to know about
each other’s code	

Specifying Lisp List (axioms)	

•  If ls is the result of calling ls1.cons(h)	

–  ls.head() is equal to h	

–  ls.tail() is equal to ls1	

–  ls.isEmpty() is false	

•  If ls is the result of calling LispList.empty()	

–  ls.head() will throw an exception	

–  ls.tail() will throw an exception	

–  ls.isEmpty() is true!

•  As Lisp lists are immutable, we do not need to take
account of them changing!

Some specification for ArrayList	

•  The call a.set(i,t) throws an exception if i<0

or i≥a.size()	

•  After a.set(i,t) but before any other mutating

operation on a	

–  a.get(i) is equal to t!
–  a.get(j) where j≠i is equal to previous a.get(j) 	

•  After a.add(t) but before any other mutating
operation on a	

–  a.size() is one greater than previous a.size()	

–  a.get(a.size()-1) is equal to t	

–  a.get(i) is equal to previous a.get(i) when i is

not a.size()-1	

 	
	

•  The call a.add(p,t) throws an exception if
p<0 or p>a.size()!

•  After a.add(p,t) but before any other
mutating operation on a	

–  a.size() is one greater than previous a.size()	

–  a.get(p) is equal to t	

–  a.get(i) is equal to previous a.get(i) when
i<p, and is equal to previous a.get(i-1) when i>p	

Specification Language	

•  Formal specification could use logic-like

language, this aids automatic proof	

•  Formal specification in terms of pre-conditions

and post-conditions is good, but may get complex	

•  In practice specification is more likely to be in

formal English	

•  Specification is a major issue which could be

covered in much more detail in a more formal
module	

•  But getting used to precise explanations in English
is an important part of this module 	

Static and instance methods	

•  Static methods are self-contained, work in their

own environments	

•  Non-static methods (instance methods) are called

“on an object” and work in an environment which
contains the method’s variables plus the object’s
variables	

•  As with static methods, the method’s variables are
new for each call	

•  The object’s variables remain in existence for as
long as the object, and instance method calls alter
them permanently	

Self-reference	

•  In the code for an instance method the keyword
this refers to the object the method call is made on	

•  If an instance method is called not attached to any
object, it is assumed to be attached to this	

•  A constructor is like an instance method, but this
refers to the new object it is constructing	

•  The call this(…)as the first statement in a
constructor is a separate thing (means use another
constructor in the same class)	

Object Variables	

•  Object variables are declared inside a class but

outside methods in the class, and are not static	

•  Each object created by the class’s constructor has

its own object variables of the name given by the
object variable declaration	

•  When an instance method uses an object variable
name, it means the variable of that name of the
object the method is called on	

•  But it can use the object variables of another
object of the same class by attaching the name to
reference to the other object 	

Example - DrinksMachine	

class DrinksMachine!
{!
 private ArrayList<Can> cokes, fantas;!
 private int price,balance,cash;

	
means every object of type DrinksMachine has its own
variables called cokes, fantas, price, balance and
cash	

•  The private means they cannot be used in methods in
other classes, only indirectly through calls to
DrinkMachine’s methods	

•  Object variables are usually declared as private so that
objects have control over their own state	

Example method	

 public void insert(int n)!
 {!
 balance=balance+n;!
 }	

•  In a method call m1.insert(sum), n is a local
variable, assigned as if n=sum	

•  and balance is an object variable, inside the
object referred to by m1	

•  In m2.insert(sum), balance is an object
variable inside the object referred to by m2	

•  So the two balances are separate variables
unless m1 and m2 are aliases	

Other objects’ private variables	

•  We could write a method inside class
DrinksMachine:	

boolean cheaperThan(DrinkMachine m)!
{	

 return price<m.price;	

}	

•  Then we can call e.g m1.cheaperThan(m2)!
•  Then price is the price variable in m1, and
m.price is the price variable in m2	

How objects work	

•  So the variables cokes, fantas, price, balance

and cash represent the internal mechanism of a
drinks machine 	

•  The changes in the values of these variables and
the objects they refer to when methods are called
represent the changes to the machine when it is
used	

•  The user of the machine does not know e.g. that
there are two ArrayLists inside	

Users	

•  The user of a program is typically a human being

who interacts with its state through a Graphical
User Interface	

•  The user of a class is code in another class which
interacts with it by calling its methods	

•  Do not confuse these two, a human user doesn’t
know about the programming code which makes it
work	

•  This module is about components, so does not
cover issues of human-computer interaction	

Throwing exceptions	

•  A method may throw an exception	

•  If it’s a checked exception, it has to be given in the

signature, uses keyword throws	

•  An exception is an object, it has to be created

through a constructor	

•  The statement throw followed by a reference to

an exception causes the method call to halt and
throw an exception	

•  Once a method call is halted through throw, as
through return, it is never returned to	

Implementing ArrayList	

•  This is an exercise, in practice there’s usually no

point in not using the class Java gives us	

•  What we need to do	

–  Consider an internal representation, and how that
relates to what we think of as an “ArrayList”	

–  Consider code for the methods which use this internal
representation to respond according to the method
specification	

ArrayList represented by Array	

•  An ArrayList is a numerically indexed
collection of items of the same type	

•  An array is a numerically indexed collection
of items of the same type	

•  So represent ArrayList by an internal array?	

 MyArrayList of String	

class MyArrayList!
{!
 private String[] arr;!
 …!
 public void set(int i,String str)!
 {!
 arr[i]=str;!
 }!
!
 public String get(int i)!
 {!
 return arr[i];!
 }!
	

 	

 Generic MyArrayList	

class MyArrayList <T>!
{!
 private T[] arr;!
 …!
 public void set(int i,T item)!
 {!
 arr[i]=str;!
 }!
!
 public T get(int i)!
 {!
 return arr[i];!
 }!
	

 	

Constructor	

 public MyArrayList(int n)!
 {!
 arr = (T[]) new Object[n];!
 }

•  Java doesn’t let us do new T[n], this is how to
get round it (will cause a compiler warning)	

•  But this doesn’t fit in with the way ArrayLists
work - they are not fixed size like arrays	

•  Also this does not correspond with Java’s
ArrayList<T> constructor	

Implementing size change	

!
 public MyArrayList()!
 {!
 arr = (T[]) new Object[0];!
 }!
!
…!
!
 public void add(T item)!
 {!
 T[] arr1 = (T[]) new Object[arr.length+1];!
 for(int i=0; i<arr.length; i++)!
 arr1[i]=arr[i];!
 arr1[arr.length]=item;!
 arr=arr1;!
 }

Array and Count Representation	

•  Replacing the array each time the ArrayList size
changes is inefficient	

•  Array and count representation:	

–  Have array of maximum size needed, and count giving

current portion of array in use	

–  Throw exception if attempting to use index beyond

current count value	

–  For methods which change ArrayList size, change

count and move items in array as necessary 	

 	
class MyArrayList <T>!
{!
 private T[] arr;!
 private int count;!
 private static int MAX_SIZE=100;!
!
 public MyArrayList()!
 {!
 count=0;!
 arr = (T[]) new Object[MAX_SIZE];!
 }!
!
 public int size()!
 {!
 return count;!
 }!
!
 …

 	
 …

 public T get(int i)!
 {!
 if(i>=count)!
 throw new IndexOutOfBoundsException();!
 return arr[i];!
 }!
!
 public void set(int i,T item)!
 {!
 if(i>=count)!
 throw new IndexOutOfBoundsException();!
 arr[i]=item;!
 }!
!
 public void add(T item)!
 {!
 arr[count++]=item;!
 }!
!
 …!

 	
…!
 public void add(int pos,T item)!
 {!
 if(pos>count) throw new IndexOutOfBoundsException();!
 for(int i=count; i>pos; i--)!
 arr[i]=arr[i-1];!
 arr[pos]=item;!
 count++;!
 }!
!
 public T remove(int pos)!
 {!
 if(pos>=count) throw new IndexOutOfBoundsException();!
 T removed = array[pos];!
 for(int i=pos+1; i<count; i++)!
 arr[i-1]=arr[i];!
 count--;!
 return removed;!
 }!
…!

Abstract Data Type	

•  An Abstract Data Type is considered only in terms
of the operations we can do on it and their
specifications, so a class seen in terms of its public
methods can be considered an ADT	

•  A data structure is a collection of values which
have a particular pattern. The variables inside an
object of class, and the rules which keep them to
particular values, may be considered a data
structure	

Information Hiding	

•  Keep variables in one part of a program so they

can’t be accessed directly from another part	

•  Only interaction between program parts is calling

public methods	

•  If program parts can only interact in a few well-

defined ways, there is less chance of errors
occurring	

•  We can change the private parts (to a more
efficient implementation?) so long as the public
parts interact in the same way, without that
causing problems to any other code	

Implementation of ADT	

•  So an ArrayList is an Abstract Data Type,
and we have seen so far two data structures
which may implement it:	

– Array	

– Array and count	

Writing your own classes	

•  Programming in an object-oriented language like

Java is mainly about writing your own classes	

•  Classes define objects	

•  Code in other classes manipulates objects by

calling their public methods	

•  As far as possible we should write the code for a

class in a self-contained way, which means it
should only need to know the public methods of
other classes, and other classes should only need
to know its public methods	

Object Oriented Design	

•  Object oriented design is about designing a
system in terms of what objects it has and
how they interact with each other	

•  It is covered in more detail in modules like
Software Engineering and Systems Analysis	

•  In ADSOOF we are concerned with
implementing the classes that define objects
by writing code for them	

Top down and bottom up ���
programming	

•  A “top-down” software engineering approach will
consider first those objects which relate directly to
the real world situation the system is working with	

•  Component programming is about building classes
which describe objects whose purpose is general,
so they will be re-used in many different systems	

•  Algorithms and data structures is primarily about
component programming which is a “bottom up”
approach	

Component Programming	

•  Components must be general so they can be taken and

used in a variety of situations	

•  A general storage component like Java’s
ArrayList<E> is a good example	

•  A method which performs an algorithm like sorting,
but coded in a general way so we can use the code
whenever we need to sort a collection is another	

•  Commonly used components like these are available
as the APIs of your programming language	

•  You may have to program your own more specialist
components	

Java’s API	

•  As exercise work and to help understand the principles of

algorithms and data structures, in ADSOOF we often write
code which implements components already in the Java
API	

•  ADSOOF is not a module on “further Java” so we do not
cover any of Java’s API except what is necessary to cover
the principles	

•  That is why exercise solutions involving use of Java API
code which has not been covered in the module are
missing the point	

•  In “real life” programming, however, you should use what
the API provides you where possible	

Algorithms and Data Structures in an
Object Oriented Framework	

•  We have covered how to define your own classes - this should
have been revision material	

•  We have emphasised the importance of having a good
specification and keeping to it	

•  Program components which can be relied on to interact only
through a well-defined specification can be constructed and used
independently	

•  This division of programs into components is a key aspects in
developing realistic scale software	

•  The algorithms and data structures aspect of ADSOOF is about
code which is used inside larger systems	

•  Understanding the distinction between “abstract data type” and
“data structure” is a key part of developing the way of thinking
that is needed at this level of programming	

