
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF” ���

���
Interface Types and Generics	

The PricedObject examples	

and the “Why a Duck?” examples	

Interface Types	

•  A Java interface type is given by using the

keyword interface instead of class!
•  It only contains method headers	

•  A class implements an interface	

•  While a class can only extend one other class, it

can implement any number of interfaces	

•  A class which implements an interface must

provide code for all its methods	

•  Interfaces are used to write generalised code	

PricedObject	

•  The interface	

! !interface PricedObject!
! !{!
! ! public int getPrice();!
! !}!

	

provides us with a type which can refer to any object
which has a getPrice() method (its class must be
declared as implements PricedObject)	

•  This means we can write generalised code, the same
code can be used for a variety of objects so long as
they have in common the method getPrice()	

	

Generalised code	

•  class DrinksMachine implements PricedObject!
•  class ScrabbleWord implements PricedObject!
•  Then we can have:	

	

 public static PricedObject !
 cheaper(PricedObject m1,PricedObject m2)!
 {!
 if(m1.getPrice()<m2.getPrice())!
 return m1;!
 else!
 return m2;!
 }!

•  Works on DrinksMachine and ScrabbleWord
objects!

A Problem	

•  A PricedObject variable (including a method

parameter) can refer to a DrinksMachine
object or a ScrabbleWord object	

•  So can an ArrayList<PricedObject>
variable refer to an
ArrayList<DrinksMachine> object or an
ArrayList<ScrabbleWord> object?	

•  No	

•  Why not?	

Baskets of Fruit	

•  Consider	

–  Apple implements Fruit!
–  Banana implements Fruit	

•  If we have a Basket<Fruit> object we can
add Apple or Banana objects to it	

•  If we have a Basket<Banana> object we can
only add Banana objects to it	

•  So a Basket<Fruit> variable should not refer
to a Basket<Banana> object, that prevents us
from writing code which wrongly adds Apple
objects to it	

Generalised Collection Methods	

•  What about	

 static PricedObject mostExpensive(ArrayList<PricedObject> a)!
 {!
 PricedObject highestSoFar = a.get(0);!
 for(int i=1; i<a.size(); i++)!
 {!
 PricedObject next = a.get(i);!
 if(highestSoFar.getPrice()<next.getPrice())!
 highestSoFar = next;!
 }!
 return highestSoFar;!
 }!

•  Isn’t this just the sort of generalised code we would like to write?
We want to be able to pass ArrayList<DrinksMachine> and
ArrayList<ScrabbleWord> arguments to it

Bounded Generic Types	

•  This is Java’s solution:	

 public static <T extends PricedObject> T mostExpensive(ArrayList<T> a)!
 {!
 T highestSoFar = a.get(0);!
 for(int i=1; i<a.size(); i++)!
 {!
 T next = a.get(i);!
 if(highestSoFar.getPrice()<next.getPrice())!
 highestSoFar = next;!
 }!
 return highestSoFar;!
 }!

•  A type variable declared as extends a type can be set to that type or any
subtype of it, and methods from that type can be called on variables of
the type of the type variable

Anonymous Bounded Variables	

•  Here is an alternative solution in Java:	

 public static PricedObject !
!mostExpensive(ArrayList<? extends PricedObject> a)!

 {!
 PricedObject highestSoFar = a.get(0);!
 for(int i=1; i<a.size(); i++)!
 {!
 PricedObject next = a.get(i);!
 if(highestSoFar.getPrice()<next.getPrice())!
 highestSoFar = next;!
 }!
 return highestSoFar;!
 }

•  This can be done when we don’t need a named typed variable. Instead of
declaring a type variable as previously, it says that the element type of the
ArrayList is either PricedObject or a subtype of PricedObject, and
refers to objects of its type through local variable of typed PricedObject!

Inferring Type Variable Values	

•  Using the idea of bounded type variables it is better to declare the method

cheaper as:	

 public static <T extends PricedObject> T cheaper(T m1,T m2)!
 {!
 if(m1.getPrice()<m2.getPrice())!
 return m1;!
 else!
 return m2;!
 }

•  Then when we have:	

 DrinksMachine mach3 = PricedObjectOps.cheaper(mach1,mach2);!

!T is inferred to be DrinksMachine 	

•  And when we have:	

 ScrabbleWord word3 = PricedObjectOps.cheaper(word1,word2);!

!T is inferred to be ScrabbleWord!
•  Without this, we would have to cast the return value to the specific type	

Comparable	

•  Java’s code library has the interface	

! !interface Comparable<T>!
! !{!

 ! ! public int compareTo(T item);!
! !}!

•  The type Comparable<T> is used in Java’s built-in sorting code etc	

•  So we must declare e.g.	

! !class ScrabbleWord implements Comparable<ScrabbleWord>	

	

in order for collections of objects of type ScrabbleWord to be
sorted by Java’s built-in code	

Generic interfaces	

•  If a class implements a non-generic interface, it has to have

methods with exactly the same headers as in the interface	

•  If a class implements a generic interface with the type

variable bound to a particular value, it has to have methods
with headers like those from the interface except the type
variable is replaced by the particular value	

•  So, for example, a class which implements
Comparable<Thing> must have within it a method
with header	

	

public int compareTo(Thing item)	

Writing our own compareTo	

•  The method compareTo should work so that
obj1.compareTo(obj2) returns	

»  A negative integer if obj1 is less than obj2	

»  A positive integer if obj1 is greater than obj2	

»  0 if obj1 and obj2 are equal	

	

in the ordering we want for objects of their type	

•  It is up to us to ensure it works consistently, for
example if obj1.compareTo(obj2) is
negative then obj2.compareTo(obj1)
should be positive	

class ScrabbleWord implements Comparable<ScrabbleWord>  
{  
 private String str;  
 private int score;  
 public static final int[] scores = ! ! !

!{1,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3,10,1,1,1,1,4,4,8,4,10};  
 
 public ScrabbleWord(String s)  
 {  
 str = s;  
 String str1 = str.toUpperCase();  
 score = 0;  
 for(int i=0; i<str1.length(); i++)  
 score+=scores[str1.charAt(i)-'A'];  
 }  
 
 public String getWord() { return str; }  
 
 public int getScore() { return score; }  
 
 public int compareTo(ScrabbleWord word)  
 {  
 return word.score-score;  
 }  
 
 public String toString() { return str+"("+score+")"; }  
}

Writing natural order code	

	

If we want to write our own code which is
generalised so it can be used for any class of
objects which have a natural order, we can
do so by writing the code in terms of a type
variable T, and then declaring the type
variable as 	

	

<T extends Comparable<T>>	

Example: Selection Sort	

 public static <T extends Comparable<T>> void sort(ArrayList<T> a) !
 {!
 for(int i=0; i<a.size()-1; i++) !
 {!
 int pos = findMinPos(a,i);!
 T temp = a.get(i);!
 a.set(i,a.get(pos));!
 a.set(pos,temp);!
 }!
 }!
!
 private static <T extends Comparable<T>> int findMinPos!
 (ArrayList<T> a, int pos) !
 {!
 for(int i=pos+1; i<a.size(); i++)!
 if(a.get(i).compareTo(a.get(pos))<0)!
 pos=i;!
 return pos;!
 }!

More bounded types	

•  <T extends Thing> means T can be Thing or any

subclass of Thing (upper bound)	

•  <T super Thing> means T can be Thing or any

supertype of Thing (lower bound)	

•  Strictly, generic natural order code needs to be written with

a type variable declared as:	

!<T extends Comparable<? super T>>!
	

to cover classes which inherit their compareTo method
from a superclass	

•  There much less need to use the super bound as opposed
to the extends bound in generic typing, for the purpose
of this module you will never be asked to write complex
generic type declarations	

Example	

!
static <T> void addTo(ArrayList<? extends T> source, ArrayList<T> sink)!
{!
 for(int i=0; i<source.size(); i++)!
!sink.add(source.get(i);!

}!
!!

or	

	

	

static <T> void addTo(ArrayList<T> source, ArrayList<? super T> sink)!
{!
 for(int i=0; i<source.size(); i++)!
!sink.add(source.get(i);!

}!

 	

class PositionedScrabbleWord extends ScrabbleWord!
{!
 private int x,y;!

 private boolean horizontal;!
 !
 public PositionedScrabbleWord(String s, int x, int y, boolean horiz)!
 {!
 super(s);!
 this.x=x;!

 this.y=y;!
 horizontal=horiz;!
 }!
!
 public int getX() { return x; }!
 public int getY() { return y; }!

 public boolean getHoriz() { return horizontal; }!
}!

	

PositionedScrabbleWord inherits compareTo from
ScrabbleWord, so it implements Comparable<ScrabbleWord> not
Comparable<PositionedScrabbleWord>	

Type Variables for Comparison code	

•  In order to be able to deal with cases like
PositionedScrabbleWord the type variable
declaration for a sort method using objects’ own
compareTo actually has to be !

!
public static <T extends Comparable<? super T>> !
void sort(ArrayList<T> a) !
{!
…	

Java Types	

•  The Java type system is more complex than a

separate type for each class of objects	

•  An object has several types, the class its

constructor is in, and any classes/interfaces that
class extends/implements, directly or indirectly	

•  The type of a variable tells us the methods that can
be called on that variable	

•  The Java interface mechanism enables us to define
a type in terms of methods, so we can write code
where all we care about is the methods that can be
called on objects	

Generic Types	

•  A generic type has to be combined with another

type (or more than one) to make a complete type:
GenType<BaseType>	

•  If we don’t care what the base type is, we can
write code where it is set to a type variable	

•  We can still use a type variable if we want to call
methods on objects of the base type, but it must be
given a bound of a type containing those methods	

	

<T extends SomeType> … GenType<T>	

Why a Duck?	

•  From a talk given by John Brewer where he

discussed the key aspects of object-oriented
programming, with an emphasis on
polymorphism.	

•  He defines polymorphism as using objects of
different classes interchangeably	

•  Interface types are how this is done in Java	

•  Brewer’s examples involve an interface type used

in some common design patterns	

Quackable	

interface Quackable !
{!
!void quack();!
}!
!
•  A type for anything which can quack	

•  A Duck can quack, a Duck Call can quack	

•  A Duck can quack(), a DuckCall can quack()	

•  Code where all we require from an object is that it can
quack() can be written referring to objects as of type
Quackable	

Duck	

public class Duck implements Quackable !
{!
!private String myName;!
!public Duck(String theName) !
!{!
! !myName = theName;!
!}!
!public void quack() !
!{!
! System.out.println(myName+": Quack!");!
!}!
}!

DuckCall	

public class DuckCall implements Quackable !
{!
!private String myName;!

!public DuckCall(String theName) !
 {!
! !myName = theName;!
!}!

!public void quack() !
 {!
! System.out.println(myName+": Fake Quack!");!
!}!

}!

Polymorphism	

!Quackable quacker;!
!
!quacker = new Duck("Donald");!
!quacker.quack();!
!
!quacker = new DuckCall("Duck Call");!
!quacker.quack();	

Factory methods	

•  A factory method is like a constructor, it
returns a new object	

•  A constructor must return a new object of
its actual type	

•  A factory method may return an object of a
subtype of its return type, the code which
calls it may not know its actual type	

Static factory method	

public class QuackFactory1 !
{!
 public static Quackable createQuacker(String nm) !
!{!
! !return new DuckCall(nm);!
!}!

}!

===============================	

Quackable quacker =

QuackFactory1.createQuacker("My Duck");!
quacker.quack();!

Decorator	

public class QuackDecorator implements Quackable!
{!
 private Quackable myQuackable;!
 public QuackDecorator(Quackable theQuackable) {!
! !myQuackable = theQuackable;!

 }!
 public void quack() {!
! !ourQuackCount++;!
! !myQuackable.quack();!

 }!
 private static int ourQuackCount = 0;!
 public static int getQuackCount() {!
! !return ourQuackCount;!

 }!
}	

Factory Method Revisited	

public class QuackFactory2 !
{!
 public static Quackable createDuck(String nm) !
 {!
!return new QuackDecorator(new Duck(nm));!

 }!
!!

 public static Quackable createDuckCall(String nm) !
 {!
! return new QuackDecorator(new DuckCall(nm));!

 }!
}	

Composite	

public class QuackComposite implements Quackable!
{!
 private ArrayList<Quackable> myQuackers = !
 new ArrayList<Quackable>();!
 public void addQuacker(Quackable quacker) !
 {!
 myQuackers.add(quacker);!
 }!

 public void quack() !
 {!
 for(int i=0; i<myQuackers.size(); i++)!
 myQuakers.get(i).quack();!
 }!
}	

Goose	

public class Goose !
{!
 private String myName;!

 public Goose(String name) !
 {!
!myName = name;!

 }!

 public void honk() !
 {!
!System.out.println(myName + ": Honk!");!

 }!

}!

Adapter	

public class GooseAdapter implements Quackable !
{!
 private Goose myGoose;!
!!

 public GooseAdapter(Goose aGoose) !
 {!
 myGoose = aGoose;!
 }!
!!

 public void quack() !
 {!
 myGoose.honk();!
 }!
}	

Factory Object	

public class QuackFactory3 !
{!
 private String surname;!
 public QuackFactory3(String theName)!
 {!
 surname=theName;!
 }!
 public void setName(String theName)!
 {!
 surname=theName;!
 }!
 public Quackable createDuck(boolean fake,String nm) !
 {!
 if(fake) return new DuckCall(nm+" "+surname);!
 else return new Duck(nm+" "+surname);!
 }!
}!

 	

QuackFactory3 factory = !
!new QuackFactory3("Smith");!

Quackable quacker1 =
factory.createDuck(false,"Donald");!

quacker1.quack();!
Quackable quacker2 =

factory.createDuck(true,"Artificial");!
quacker2.quack();!
factory.setName("Jones");!
Quackable quacker3 =

factory.createDuck(false,"Daisy");!
quacker3.quack();!
Quackable quacker4 =

factory.createDuck(false,"Daniel");!
quacker4.quack();	

Design Patterns	

•  Common ways of putting together code	

•  Provides a vocabulary for programmers	

•  Not always precisely defined	

•  Much of the power of design patterns comes

from the object-oriented concept of
polymorphism	

•  Using polymorphism can make your code
much more flexible	

