
ECS510
Algorithms and Data Structures

in an
Object Oriented Framework

Summary & Conclusion

Using Objects
•  Objects are created using a “constructor” (the

word new followed by the class name
followed by some arguments)

•  An object represents an entity in a situation
we are modelling

•  Variables refer to an object of their type or a
subtype

•  Variable assignment leads to aliasing

Calling methods on objects

•  A method which is not static has to be called
“on” an object

•  A method call must come from the type or a
supertype of the object reference it is called on

•  The types of the arguments to a method call
must match the types of parameters in the
method header

Effect of methods
•  A method call may return a value
•  A method call may change the state of the

object it is called on
•  A method call may change the state of

objects passed to it as arguments
•  A method call may have an external

(input/output) effect
•  If the state of an object is changed, a

method call may not have the same effect as
a previous identical method call

Immutable and mutable objects
•  An immutable object is one which has no

methods which can change its state
•  Aliasing means a state change to a mutable

object made through a call on one variable
is observed through any other variable
which aliases it

•  A parameter variable in a method aliases an
argument variable in a method call, this is
why methods can change arguments

Static methods and environments
•  A static method is not called attached to any

object
•  It executes in its own environment
•  That means it has its own set of variables, they are

not the same as variables in other environments
even if they have the same name

•  But they may alias objects referred to by variables
in other environments

•  When a method call finishes, execution returns to
the previous environment with the return value of
the method call replacing the call

Exceptions
•  Instead of returning normally, a method call may

throw an exception
•  An exception can be caught in a try...catch

statement
•  If an exception is not caught, the method where

the call was made which threw the exception
throws it also

•  Some exceptions are “checked”, meaning they
either have to be caught or the method which
throws them on has to indicate that using throws

Defining and throwing
your own exceptions

•  Exceptions are objects
•  You can, and should, define your own exception

types, that is how to handle method arguments or
other situations which cannot be handled normally

•  To define an exception type, extend the class
Exception

•  To throw an exception use throw followed by the
exception thrown

Arrays
•  Arrays are a data structure directly reflecting

computer store
•  An array type is made by joining [] to a type
•  An array is an object created by new followed by

a type name followed by a value of type int
within [and]

•  Array objects are fixed in length once created
•  Individual cells of an array can be accessed

through an array variable name followed by a
value of type int within [and]

Array notation
•  If arr refers to an array and exp is an expression

of type int, arr[exp] can be treated just like a
variable, but which variable it is changes as the
value of exp changes

•  No other structure in Java has special symbols for
accessing parts of it

•  Arrays are mutable objects and can be aliased, so
if arr1 and arr2 are two aliases to the same
array, arr1[exp] and arr2[exp] are the
same variable

Constructive and destructive operations
•  An operation on an array could involve changing

the values of an array (although its size can't be
changed), this is “destructive” because it destroys
the old value of the array

•  An alternative approach is to make the operation
“constructive” meaning instead of changing the
array, a new array with the desired changes is
constructed

•  A destructive method works by changing the array
passed to it as an argument, it does not return it

•  A constructive method returns the new array, it
should not change its argument array

Aliases and multiply-named variables
•  Assigning a variable which refers to one object to refer to a

newly created one is not the same as destructively
changing the original object because any aliases still refer
to the original object

•  So if an array or other object is passed as an argument to a
method and then the variable in the method header is
assigned to something else, the change does not pass to the
variable in the method call

•  A variable inside an object which is aliased has separate
names through the different aliases, but the aliases all share
if that variable gets changed

•  So if a variable inside an object which is passed to a
method gets changed, the change does pass to the object as
viewed by the argument to the method

ArrayLists
•  Java provides types for collections, ArrayList is an

example
•  Java collections types are generic, ArrayList has to be

accompanied by a “base type” to make the full type,
ArrayList<Integer> is an example, but the base type
can be any non-primitive type (including types which are
themselves generic)

•  An ArrayList object is manipulated by method calls,
not by special notation, the methods get and set are
directly equivalent to array access

Flexible size of ArrayLists
•  Unlike arrays, ArrayLists have method calls

which increase or decrease their size
•  The methods add and remove work by

inserting and deleting items, moving
following items up or down one position

•  Arrays are created of a fixed size from the
start, ArrayLists are created of initial size 0
and then expanded as items are added

Primitive Types
•  The numerical types int, double, char,
boolean and a few others are “primitive types”

•  Methods cannot be called on primitive type
values. So == has to be used for equality testing

•  For all other types, variables store references to
objects, so == means “alias testing”

•  So for non-primitive types, equality testing should
be done using equals

Strings
•  The type String is a class in Java which

represents lists of characters
•  String is not a primitive type
•  There are many useful methods in class String
•  String objects are immutable, there are no

methods which change them destructively
•  There is a special literal notation for String

objects, for example "hello world"
•  The + operator joins String objects

Some other built-in classes in Java
•  The class Scanner provides input from the command line

window, and from files, and can break text into words and
numbers

•  Objects of class Scanner must be created, linked to the
command line window or to files, the read methods are
called on them

•  The “wrapper classes” provide useful static methods for
primitive values, and are needed as type arguments to
generic types

•  The wrapper classes provide object equivalents of
primitive values

Lisp Lists
•  Lisp lists are not a standard part of Java
•  The type LispList<E> given to you shows we

can use non-standard types provided by someone
else

•  Objects of type LispList<E> are immutable
•  The type LispList<E> was provided to give a

simple introduction to recursion, as many operations
on them are best implemented with recursion

•  Lisp list objects can also be processed iteratively
using a “stack and reverse” approach

Sorting Lisp lists
•  Lisp lists enabled some sorting algorithms to be

introduced in a simple way
•  Insertion sort involves repeatedly inserting items

from an unsorted list into the correct position in a
sorted list

•  Quicksort involves dividing a list into two parts,
sorting each part, and joining the sorted parts
together

•  With quicksort, the division into two parts
involves comparison, the joining does not

Sorting indexed collections
•  Sorting algorithms with data structures like arrays

involve use of indexes
•  Sorting a mutable collection could be “in place”,

meaning destructive, done by swapping items
around, or constructive

•  Selection sort is a simple sort in place algorithm,
best explained iteratively

•  Bubble sort is another iterative destructive sort
algorithm

Recursive sort algorithms
•  Quicksort can be applied to indexed collections,

and can be constructive or destructive
•  Quicksort can described iteratively, but is best

described recursively
•  A recursive description may involve a shared array

with arguments giving the portion of the array
being considered

•  Merge sort is an algorithm similar to quicksort, but
the comparison is done when the sorted parts of
the initial list are joined

Algorithm efficiency
•  The algorithm is the main factor in how fast an

operation like sorting a collection is solved,
particularly for large amounts of data

•  We can analyse the number of “main steps” in
using an algorithm, for example the number of
comparisons in sorting

•  The “big O” notation is an estimate of the number
of steps, as a function of the size of the data,
considering only the most significant term and
ignoring constant multiplying factors

•  For some algorithms there is a best case and/or
worst case

Implementing Objects
•  A class is a “blueprint” for an object
•  A class gives the name of variables which every

object of that class has
•  A class gives constructors which say how object

variables are set when new objects are created
•  A class gives the code for methods which is

executed when a call is made on an object
•  Good practice is for the variables in an object to

be private, so it is seen by other code only in
terms of its public methods

Instance methods
•  A method which is not declared as static is an

instance method and has to be called on an object
•  An instance method works like a static method,

but its environment also includes the variables of
the object it is called on

•  In the code for an instance method, the word
this is used to mean “the object this method call
was made on”

Specification and Implementation
•  Code which uses an object views it in terms of how its

public methods work
•  The public methods of a class should be well defined, with

the definitions only given as the effects as a logical
relationship with the arguments and what we think the
object represents

•  The variables and code inside a class should be whatever
makes the public methods work correctly according to their
definitions

•  So there is a clear distinction between application (use of
objects of a class) and implementation (writing what goes
inside a class)

•  The definition or “specification” is the link between
application and implementation

Inheritance
•  Inheritance enables you to specify one class as a

specialised version (a subclass) of another (the
superclass)

•  A subclass may add extra methods and variables
to a superclass

•  A subclass may change (override) the behaviour of
a method from the superclass

•  Code in the subclass is only those aspects added or
changed from the superclass

Dynamic binding
•  A variable declared of the type of one class may be set to

refer to an object constructed from the constructor of one
of its subclasses

•  In this case, the “apparent type” is the type of the variable,
and the “actual type” is the class of the constructor

•  The only methods that can be called on a variable are those
from its apparent type (including those it inherits from a
superclass of that type)

•  But if a method is called on a variable which refers to an
object of a subclass and the subclass overrides that method,
the code used is from the subclass

•  This is called “dynamic binding”

The most general type
•  Any class which is not declared as extends another class

always implicitly extends the class called Object
•  This means all classes are subclasses, directly or indirectly,

of Object
•  So Object is called the “most general type”
•  Java provides the class Object with some methods in it,

for example equals and toString
•  When writing our own classes, we may decide to override

the implementations of the methods inherited from class
Object

Interface Types
•  An interface is like a class, but it contains only method

headers
•  The name of the interface provides a type name
•  A class can only extend one superclass, but it can

implement any number of interfaces
•  When a class implements an interface it must provide

code for its methods
•  An interface type is the type of all objects which have

the methods in that interface and which implement it,
it can be used for generalised programming

•  Dynamic binding means the code used when a method
is called on a variable of an interface type depends on
the actual class of the object it refers to

Inheritance in method arguments
•  The rule that a variable of one type can refer to an

object of a subtype applies to parameters in method
headers

•  So if a parameter is of an interface type, the matching
argument on a method call can be of any class which
implements that type

•  If a parameter is of a class type, the matching
arguments can be of any subclass of that class

•  This is one way of writing generalised methods

Casting and instanceof
•  The rule that methods called on a variable must come from

the type of the variable means when writing generalised
methods, if a parameter is of a superclass we cannot call
methods on it which are only in subclasses of it

•  In some cases, we may wish to test if an argument is
actually of a subclass, and in that case call a method on it
which comes only from that subclass

•  In that case, we can use instanceof to test if it comes
from the subclass, and casting to assign a variable of the
subclass to refer to it

•  Then we can call the method on that variable
•  If a method is in the superclass, no testing or casting is

needed, dynamic binding ensures the right code is used

Casting and instanceof: syntax
•  The test var instanceof Type returns true if and

only if variable var refers to an object whose actual type
is Type or a subclass of Type

•  The expression (Type) expr can be used as a value of
type Type when expr is a value of a supertype of Type

•  So a is a variable of type Alpha, and Beta is a subtype
of Alpha, and bmeth is a method in type Beta but not
type Alpha then
 if(a instanceof Beta)
 ((Beta) a).bmeth(…)
 calls bmeth on a if a refers to an object of type Beta

•  A method call has the type of the method’s return type, so
casting may be used to view the return value of a subtype if
it is actually of that subtype

Generic Types
•  We can define our own generic types by writing

classes and interfaces which have type variables
(declared in the class or interface header)

•  A type variable may be used as a type in the code, but
the only method we can call on an object whose type
is a type variable is one from Object

•  A class may implement a generic interface by
providing types for its type variables

•  A class may implement a generic interface and use the
same type variable, so it is itself generic

•  When an object of a generic class is constructed,
values for the type variables must be provided

Generic Methods
•  A generic method is one which takes an argument of a

generic type where it does not need the type argument of
the generic type to be set to a particular value

•  A generic method has its own type variables declared in its
header before its return type

•  A generic method can be used with an argument of a
generic type with its type variable set to anything, so it is a
way of writing generalised code

•  The type variable may be used as a type in the method
header and code, it is set when the method is called
depending on the method’s arguments

Bounded type variables
•  If we have Beta as a subtype of Alpha, and Gen<E> a

generic type, then though an Alpha variable may refer to
a Beta object, a Gen<Alpha> variable cannot refer to a
Gen<Beta> object

•  If we want to write generalised code which could take a
Gen<Alpha> or Gen<Beta> argument, we have to give
the parameter as Gen<T> with T a bounded type variable

•  A bounded type variable declared as
<T extends Alpha> could be set to Alpha or any
subtype of Alpha

•  Then if a variable is of type T, it is possible to call methods
from type Alpha on it

Generic argument wildcards
•  The type variable declaration <T extends Alpha>

occurs before the return type of the method header it is in.
After that T is used in the method like any type, the name of
the type is not <T>, the angled brackets are used when
declaring the type variable and when passing it as a type
argument, as in ArrayList<T>.

•  As an alternative, instead of declaring a bounded type
variable, we can use the “wildcard” notation, which would
mean the type written as ArrayList<T> is written
ArrayList<? extends Alpha>.

•  Now there is no name for the base type of the ArrayList
object, but elements from it can be referred to by variables
of type Alpha as it must be Alpha or a subtype of Alpha.

Inheritance and type variables for
generalised programming

•  Inheritance using interface types enables us to write and
use generalised methods which can take a variety of
different types of object when the method deals with
individual objects

•  Type variables with bounds enable us to write and use
generalised methods which can take a variety of different
types of object when the method deals with collections of
objects

•  Inheritance using extends on classes enables us to write
new classes which specialise existing classes, and methods
which take those existing classes still work with objects of
the specialised classes.

Design Patterns using interface types
•  A “design pattern” is a common way of putting code

together, having named patterns helps programmers
describe their code to each other, and gives ideas for
possible solutions to programming problems

•  Many design patterns make use of interface types
•  The design pattern “Decorator” has a class implements an

interface type and has within it an object of a class which
implements the same interface, the idea is that a method
call on the Decorator object is implemented by a call to the
same method on the object onside it, with some extra work
done “decorating” that method call

•  The design pattern “Adapter” adapts an object to fit in with
an interface

Factory method
•  A “factory method” is the design pattern name for a method

which works like a constructor, creating new objects
•  Unlike a constructor, the return type for a factory method

can be an interface type
•  The factory method will determine the actual class of the

object it returns
•  The code which calls the factory method may give it

arguments to tell it which actual class object to create, or
the factory method could use an actual class the calling
code does not know of

•  Simple factory methods are static, but we can also have
“factory objects” which provide factory methods

Method header
Consist of (in this order):
•  Modifiers (public/private, static etc) optional
•  Type variable declaration optional
•  Return type
•  Method name (
•  Parameter list)
•  Exceptions declaration throws optional
The parameter list consists of type/name pairs
The type variables are enclosed within < and >, separated by ,
 if there is more than one type variable
 Checked exceptions must be declared if the method can throw
 them

Class/Interface header
•  Can be class or interface (or enum)
•  An interface only has instance method headers
•  A class has field declarations, methods with code, static

methods, nested classes
•  A class can extend one other class
•  A class can implement any number of interfaces
•  An interface can extend any number of interfaces
•  Generic classes and interfaces are given by declaring type

variables after the class or interface name
•  A class can implement a generic interface with the

interface’s type variables given values

Using types
•  The return type of a method tells you where a call to the

method can be used
•  The class or interface the method header is in tells you on

what type of object references it can be called
•  The types of the parameters to the method tells you what

the types of the arguments to the call can be
•  A method call must allow a type variable which occurs

more than once in the header to be set consistently
•  The bounds on a type variable when it is declared tell you

the range of types it can be used for
•  Think of types as connectors which help you put code

together correctly

Abstract Data Types
•  Now we can see that an interface type describes a type just in

terms of the methods that can be called on objects which
implement that type

•  This is known as an “Abstract Data Type”
•  A class type gives code which implements the abstract data

type, variables which hold a “data structure” and methods
which manipulate that structure

•  We saw the array data structure and then array-and-count
used to implement ArrayList!

•  The type LispList can also be implemented with arrays
•  But a linked list structure is better for implementing
LispList

Linked lists
•  If a class has a variable in it of its own type, it forms a

linked structure, one object of that class links to another
and that links to another and so on

•  The links don't go on forever because the variable could be
set to null

•  Another possibility is a variable refers back to another
object creating a circle of links

•  A linked list has objects with just one recursive link

Linked list implementations

•  Linked lists can become complex with shared access to
objects in the structure

•  They are best used as a data structure inside another class
to implement well-defined operations

•  A linked list closely resembles a Lisp list, so it is a good
way of implementing the class LispList<E>

Difference between linked list
and Lisp list

•  Lisp lists can be manipulated only by the methods that can be
called on them, and these methods make them immutable

•  Linked lists are manipulated by direct access to the variables
in the objects linked together

•  So linked lists are mutable, and objects in them may be shared
•  A Lisp list could be implemented in some other way (such as

using an array), we can view it only in terms of the methods
that can be called on it

•  So Lisp list is an Abstract Data Type, linked list is a data
structure

Java’s Collection Framework
•  Java contains a range of classes and interfaces together

called the “Collections Framework”
•  The class ArrayList<E> is just one aspect of this

Collections Framework
•  The class ArrayList<E> implements an interface
List<E>

•  The class LinkedList<E> also implements the
interface List<E>

•  In different circumstances, one or the other
implementation is the more efficient

Coding to the interface
•  Writing code which uses the interface type List<E> means

it can be used for ArrayList<E> or LinkedList<E>
objects

•  So only use the implementation types when creating new
objects

•  The type Collection<E> is a supertype of List<E>
•  The type Set<E> is another subtype of Collection<E>
•  The type List<E> adds operations to deal with elements

being at indexed positions, the type Set<E> defines add and
remove operations to give mathematical set behaviour

Iterators
•  An object of type Iterator<E> can be obtained from any

object of a subtype of Collection<E>
•  It can be used to go through the collection by repeated calls

of next()
•  It goes through Set<E> collections even though they don't

have indexing
•  The class HashSet<E> implements Set<E> but also
TreeSet<E> implements Set<E>

•  With TreeSet<E> the Iterator<E> object returns the
items in sorted order

•  With HashSet<E> the Iterator<E> object returns the
items in random order, but access to items is more efficient

Defining order
•  The “natural order” of a class is as given by its
compareTo method

•  When we write a class, we can write our own compareTo
method to go in the class

•  We can define a different ordering by providing a
Comparator<E> object

•  We can give a Comparator<E> argument to a
TreeSet<E> constructor to make it order in a different
way

•  Java has built-in sort code, this can sort by natural order or
by an order given by a Comparator<E> argument

Interfaces for order
•  The type Comparator<E> is provided as a standard

interface type in Java
•  For example,
 class LengthComparer implements
Comparator<String>
 could be used to sort Strings by length

•  The interface Comparable<E> is also a standard
interface containing the method header for compareTo

•  For example,
 class Date implements Comparable<Date>
 means Date has a compareTo method enabling Date
objects to be compared with each other

Java’s built-in sorting
•  The various interfaces described form part of Java’s

Collections Framework
•  The class Collections in Java contains static methods

for various operations such as sorting
•  We do not have to write our own sort code, so long as our

class of objects Thing implements
 Comparable<? super Thing> or we provide for it

an object which implements
 Comparator<? super Thing> we can use Java’s
sort code to sort a collection of objects of class Thing

Maps
•  The interface Map<K,V> defines a collection of objects

accessible through keys
•  There are methods to give the set of keys and collection of

objects
•  It is implemented by HashMap<K,V> and
TreeMap<K,V>

•  A HashMap<K,V> is more efficient, but it stores the
objects in random order

•  A TreeMap<K,V> is less efficient, but the objects can be
obtained from it in order of key

Views
•  A view is a separate object which shares the underlying

data of another object
•  The sublist method on a List<E> object returns a

view, it is part of the original list, but as it is a view
changes to the original list change the sublist and vice
versa

•  Another view that may be obtained on a collection is an
“unmodifiable view”, which shares the underlying data,
but does not allow any mutating methods.

Conclusion
•  Java’s Collections Framework means for the most common

programming tasks we don’t need to write our own
algorithms and data structures, we can use what the code
library provides for us

•  The code library is written so that it is generalised, the
same code can be used in a variety of circumstances

•  This means it makes extensive use of generics and
interface types

•  We had to learn a lot about object oriented programming
and the idea of generalising in order to make effective use
of the Collections Framework

Algorithms and Data Structures
•  In some cases it helped to know the underlying

algorithms and data structures to pick the best
library code for our needs, and to know what goes
on underneath

•  In more specialist programming tasks we may
need to program our own algorithms and data
structures

•  This module could only give a very brief
introduction to this vast topic

Algorithms
•  For large amounts of data, the algorithm used makes a

huge difference, it is the biggest factor in efficiency
•  We saw how a very simple algorithm like “find the

biggest” could be generalised, so it works for any type of
data, and for any type of collection, and for any definition
of “biggest”

•  We looked at some algorithms for perhaps the most
common task done with computers, sorting

•  We saw that reasoned analysis of these algorithms showed
why some were more efficient than others

Data Structures
•  The crucial issue here was the difference between seeing

how an object performs in terms of its public methods
being called by code which uses it, and seeing how it
perform in terms of the code in the object’s class which
implements the methods

•  It is possible to change what is inside a class to something
completely different so long as the public methods interact
with outside code to give the same results as before

•  Good code design keeps this separation between
application and implementation

•  What is inside an object to implement its methods is the
“data structure”, the description of the object in terms of its
public methods only is an “Abstract Data Type”

Coding
•  The module gave more practical experience in coding
•  This is software development from the bottom up, building

small components which are executable which in a real
environment would just be part of a much larger system

•  Other modules you take emphasise the design of a system
from top down

•  Computer Science isn't all coding, but familiarity with
coding at this level is something every Computer Scientists
should have

•  There is much more to study for those who have a
particular interest in good quality coding!

Java
•  Although the programming language used was Java, you

should be able to see we were moving from seeing coding
just in terms of language syntax and semantics to seeing it
more in terms of performing useful tasks

•  What we have learnt in this module will transfer to other
common programming languages

•  Expert programming in Java involves knowing a lot of the
common APIs, but that wasn’t the emphasis in this module

•  The Collection Framework is perhaps the most basic and
abstract set of APIs

•  There is much more to study for those who have a
particular interest in practical Java programming!

