
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF” ���

���
Java’s Collections Framework	

 	

	

Java’s Collections Framework	

•  A “framework” is a group of classes and interfaces

designed to work together	

•  Java’s Collections Framework provides library

code for collections of data	

•  Using library code saves you programming effort	

•  It means you are using a common standard, others

will be familiar with that standard, and will more
easily understand your code 	

•  Your code will more easily link with other code
which uses the same standard	

ArrayList	

•  ArrayList<E> is just one class in the

Collections Framework	

•  It is an implementation of the interface List<E>	

•  List<E> is an extension of another interface,
Collection<E>	

•  List<E> is intended to define array-like
behaviour	

•  Unless you have particular need for “hands-on”
control, it’s best to program using these rather
than arrays directly	

Collection!

List! Set	

!
LinkedList!

	

ArrayList	

 HashSet	

SortedSet!

TreeSet!

Collection<E>	

Has methods which include:	

!boolean add(E e)!
!boolean remove(Object o)!
!boolean contains(Object o)!
!int size()	

Doesn’t fully define how they work	

	

	

Set<E>	

•  Defines s.add(e) to work as:	

–  If s.contains(e) was false, it becomes true,
method returns true, s.size() increased by 1	

–  If s.contains(e) was true, it remains true,
method returns false, s.size() unchanged	

•  Defines s.remove(e) to work as:	

–  If s.contains(e) was true, it becomes false,

method returns true, s.size() decreased by 1	

–  If s.contains(e) was false, it remains false,

method returns false, s.size() unchanged	

•  This is mathematical set behaviour	

List<E>	

•  Adds methods which work on items being in a

position in the collection: 	

–  E get(i)	

–  E set(i,e) (returns replaced element)	

–  int indexOf(e)	

•  Defines ls.add(e) to work by adding e to end
of list, returns true	

•  Defines ls.remove(e) to work by removing
lowest indexed occurrence of e, returns false if
no occurrence of e, true otherwise	

Overloaded List<E> methods	

	

Overloading is when there are two methods of the
same name in a class or interface, List<E> has two
examples:	

•  ls.add(i,e) adds e at position i in list, following
elements move up one position (different from
list.add(e) as that has one argument, this has
two)	

•  ls.remove(i) removes the element at position i
in list, following elements down one position
(different from the general remove method only by
argument type, int, rather than Object)	

Copy constructors	

	

Collection classes do not have a constructor which
works as constructors for new arrays do, that is by
creating a collection of a particular size. But they do
have constructors which take another collection
object as their argument and create a new collection
containing that collection’s elements	

	

•  ArrayList(Collection<? extends E> c)!
•  HashSet(Collection<? extends E> c)	

•  TreeSet(Collection<? extends E> c)	

Iterator<E>	

•  Class Collection<E> has method	

	

Iterator<E> iterator()	

•  Class Iterator<E> has methods	

–  E next() returns an item from the collection that hasn’t

been returned by a previous next() call, throws
NoSuchElementException if there are no more	

–  boolean hasNext() returns true if there are further
items to be returned by a next() call, false otherwise	

•  You can’t use for(int i=0; i<s.size(); i++)
to go through a Set, but you can use Iterator	

For-each loop	

for(Iterator<E> it=a.iterator(); it.hasNext();)!
 {!
 E element = it.next();!
 ...!
 }!

is a common pattern, Java (since Java 5) allows a shorthand
equivalent:	

for(E element: coll)!
 {!
 ...!
 }!

This works for coll of type Collection<E> or any
extension, and also for coll of type E[]

Order of return for Iterator<E>	

•  When produced from an object which
implements List<E>, elements are returned
in their position order	

•  When produced from a HashSet<E> object,
elements are not returned in any obvious order	

•  When produced from a TreeSet<E> object,
elements are returned in their natural order (but
see later for variation of this)	

Other Collection<E> methods	

•  boolean addAll(Collection<? extends E> c)!
•  boolean containsAll(Collection<?> c)!
•  boolean removeAll(Collection<?> c)!
•  boolean retainAll(Collection<?> c)!
•  Object[] toArray()!
•  <T> T[] toArray(T[] a)!
•  boolean isEmpty()!

Other List<E> methods	

•  boolean addAll(int index, 	

! ! ! ! !Collection<? extends E> c)!
•  int lastIndexOf(Object o)!
•  ListIterator<E> listIterator()!
•  List<E> subList(int fromIndex, int toIndex)!

SortedSet<E>	

•  SortedSet<E> introduces some extra methods

to Set<E>	

–  SortedSet<E> headSet(e) where
s.headSet(e) returns the set of all elements from s
less than e!

–  SortedSet<E> tailSet(e) where
s.tailSet(e) returns the set of all elements from s
greater than or equal to e!

•  TreeSet<E> implements SortedSet<E>	

HashSet<E> and TreeSet<E>	

•  HashSet<E> is implemented using a “hash

table”, elements stored in array, “hash function”
gives their position, O(1) access	

•  TreeSet<E> is implemented using an “ordered
binary tree”, linked structure, cells have two links,
follow one or other in binary search to find
element, O(log N) access 	

•  There is not time to discuss these data structures in
more detail in this module	

•  See data structures text books and web sites	

Comparator<T>	

•  Provided with Java, it is:	

!interface Comparator<T>!
!{!
! int compare(T o1, T o2)!
!}!

•  If c is of type Comparator<T> and t1 and t2
are of type T, then c.compare(t1,t2) returns	

–  A negative integer if t1 less than t2	

–  A positive integer if t1 greater than t2	

–  0 if they are equal	

	

in some ordering 	

Writing your own Comparator	

•  You can write your own class which implements
Comparator<T> for T some type, but which gives an
ordering different from T’s natural order, example:	

!class LengthComparer implements Comparator<String>!
!{!

 ! !public int compare(String str1,String str2)!
 ! !{!
! ! return str1.length()-str2.length();!

 ! !}!
!}!

	

	

This orders Strings by length rather than alphabetically	

Scrabble score Comparator	

class Scrabble implements Comparator<String>!
{!
 public static final int[] scores =

{1,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3,10,1,1,1,1,4,4,8,4,10};!
!
 public static int score(String str) {!
 String str1 = str.toUpperCase();!
 int score = 0;!
 for(int i=0; i<str1.length(); i++)!
 score+=scores[str1.charAt(i)-'A'];!
 return score;!
 }!
!
 public int compare(String str1,String str2) {!
 return score(str1)-score(str2);!
 }!
}

Finding the biggest using a Comparator	

 public static <T> T !
 biggest(Collection<T> coll, Comparator<? super T> comp)!
 {!
 Iterator<T> it = coll.iterator();!
 T biggest = it.next();!
 while(it.hasNext())!
 {!
 T nextItem = it.next();!
 if(comp.compare(nextItem,biggest)>0)!
 biggest = nextItem;!
 }!
 return biggest;!
 }!
!

You can use this to find the biggest item in a collection according
to the ordering given by the Comparator argument	

 	

•  If we have ArrayList<String> words	

–  biggest(words,new LengthComparer())	

	

 	

returns the longest string from words	

–  biggest(words,new Scrabble())!
	

 	

returns the string with the highest Scrabble score!

•  But rather than write our own biggest, we can use Java’s
method max in class Collections	

–  Collections.max(words,new LengthComparer())	

	

 returns the longest string from words!

—  Collections.max(words,new Scrabble())!
! returns the string with the highest Scrabble score	

•  Comparator<? super T> allows us to use e.g. a
Comparator<Fruit> to find the biggest from a
Basket<Banana>	

Sorting using a Comparator	

	

•  We have already seen Java’s built-in methods which sort by
“natural order”, so if ls is of type List<E> then the
method call Collections.sort(ls) will sort the list to
which ls refers. The sorting is done “in place”.	

•  This means the elements of ls must have their own
compareTo method, so E should be declared as
<E extends Comparable<? super E>>!

•  As an alternative, Collections.sort(ls,comp) will
sort the list to which ls refers by the order given by a
comparator referred to by comp.	

•  With this, E can be any type, so does not need a bound, and
comp should be of type Comparator<? super E>!

Anonymous Classes	

•  Comparator<String> c = new Comparator<String>(){!
! !public int compare(String str1,String str2)!

 {!
 return str1.length()-str2.length();!
 }!
 };!
	

is an alternative to 	

	

•  Comparator<String> c = new LengthComparer())!

It avoids the need to have a separate class
LengthComparer

Constructing a TreeSet using a
Comparator	

•  new TreeSet<Thing>() will construct a new
TreeSet<Thing> object with its contents ordered
by the natural order of Thing (as given by its
compareTo method)	

•  If c is of type Comparator<? super Thing> then
new TreeSet<Thing>(c) will construct a new
TreeSet<Thing> object with its contents ordered
by the compare method in c.	

•  The variant ordering will be observed in the
Iterator produced from the TreeSet, and
also in the way headSet etc works	

Map<K,V>	

•  Map<K,V> is a generic interface with two type

arguments	

•  It represents a collection of objects of type V

indexed by keys of type K	

•  K is often but not always String	

•  HashMap<K,V> and TreeMap<K,V> are two

classes which implement it	

•  TreeMap<K,V> has elements stored in order of K	

•  HashMap<K,V> more efficient but no ordering of

elements	

Map methods	

•  With m of type Map<K,V>, tag of type K and
item of type V:	

–  m.put(tag,item) puts item into the map with

key tag, returns previous item with key tag!
–  m.get(tag) returns the last item put in with key
tag so long as it hasn’t been removed	

–  m.remove(tag) removes the item with key tag 	

–  m.keySet() returns an object of type Set<K>

giving all the keys of items in the map	

–  m.values() return an object of type
Collection<V> giving all the items in the map	

Map uses	

•  A collection whose elements are indexed by an

identifier (key) rather than a position	

•  Unlike lists, adding or deleting an item does not

change the index of other items	

•  Could be used as a simple database - K is student no.,

NI no., car reg, V is class representing students,
citizens, cars	

•  Or anywhere else where we have data as a collection
of pairs, with one part of the pair not duplicated in
other pairs e.g. count of number of occurrences of
each word in a document, K is String for word, V is
Integer for the count	

SubLists	

•  If str is of type String then
str.substring(from,to) is a String of
the characters in str starting at position from up
to but not including position to	

•  Similarly, if a is of type List<E> (so
ArrayList<E> or LinkedList<E>) then
a.subList(from,to) is a List<E> of the
elements in a starting at position from up to but
not including position to	

•  Example, a is [10,20,30,40,50,60,70], so
b=a.subList(2,5) sets b to [30,40,50]!

Views	

•  A view of a collection is a collection which shares

(some of) the data of the collection	

•  Changing the view changes the collection, and

vice-versa	

•  b=a.subList(p1,p2) creates a view of a	

•  If s if of type TreeSet<E> and e is of type E,

then s.headSet(e) and s.tailSet(e)
create views of s	

•  b=Collections.unmodifiableList(a)
creates a view of a	

SubLists are views	

•  Example, a is [10,20,30,40,50,60,70],

so b=a.subList(2,5) sets b to
[30,40,50]!

•  This means b.add(1,35) changes b to
[30,35,40,50] and changes a to
[10,20,30,35,40,50,60,70]!

•  After this a.add(4,45) changes a to
[10,20,30,35,40,45,50,60,70] and
changes b to [30,35,40,45,50]	

Unmodifiable views	

•  b=Collections.unmodifiableList(a)

creates a view of a!
•  If you attempt to call any method on b which

changes it, e.g. add or remove, you will get an
UnsupportedOperationException	

•  This is useful if you want another part of a
program to access your data but not to change it	

•  But if a call on a changes a, b will get changed in
the same way!

Java’s Collections Framework	

•  Consists of interfaces, implementations and

algorithms	

•  Interfaces specify an Abstract Data Type, and are

arranged in a hierarchy (an interface may specialise
another interface)	

•  Implementations use data structures to provide
working code - different implementations have
different benefits	

•  Some algorithms, e.g. sort, provided as static methods	

•  There are various extra interfaces to aid writing

generalised code	

Algorithms and Data Structures	

•  Seeing how algorithms and data structures translate to

code helps develop your coding ability	

•  It give you and understanding of the basic techniques

of algorithm development, and efficiency issues	

•  It shows how careful attention to the application and

implementation divide gives well structured programs	

•  In practice, however, you wouldn’t need to write your

own code for the simple algorithms and data structures
presented here - you would use library code	

	

Code Re-use	

•  Code re-use means seeing if there is an existing

class which provides what you want (not “cut and
paste”)	

•  An interface with carefully chosen and well
specified methods makes code open for re-use	

•  Using interface types which have just the
necessary methods is one way of generalising
code, so it can be re-used in a variety of situations	

•  Considering how aspects of the code could be
provided as parameters rather than fixed is another
way of generalising	

Java™’s APIs	

•  API – “Application Programming Interface”	

•  The formal name for a “code library”	

•  Provided to give code for common operations, and

for interaction with databases, graphics, web etc	

•  Once you understand the basics of OOP, a lot of

programming is knowing what and how to use
from the API	

•  Oracle’s Java™ APIs may be supplemented by
APIs from other suppliers	

•  You may define and implement your own APIs	

