ECS510

Algorithms and Data Structures in an
Object Oriented Framework

“ADSOOF”

Java’s Collections Framework



Java’s Collections Framework

A “framework” 1s a group of classes and interfaces
designed to work together

Java’s Collections Framework provides library
code for collections of data

Using library code saves you programming effort

It means you are using a common standard, others
will be familiar with that standard, and will more
casily understand your code

Your code will more easily link with other code
which uses the same standard



ArrayList

ArrayList<E> i1s just one class in the
Collections Framework

It 1s an 1implementation of the interface List<E>

List<E> is an extension of another interface,
Collection<E>

List<E> is intended to define array-like
behaviour

Unless you have particular need for “hands-on”
control, 1t’s best to program using these rather
than arrays directly



Collection

Set
z T F
SortedSet
ArrayList| [LinkedList HashSet 7<

TreeSet




Collection<g>

Has methods which include:
boolean add(E e)
boolean remove(Object o)
boolean contains(Object 0)
int size()

Doesn’t fully define how they work



Set<E>

e Defines s.add(e) to work as:

— If s.contains(e) was false, it becomes true,
method returns true, s.size () increased by 1

— If s.contains(e) was true, it remains true,
method returns false, s.size () unchanged
e Defines s.remove (e) to work as:

— If s.contains(e) was true, it becomes false,
method returns true, s.size () decreased by 1

— If s.contains(e) was false,itremains false,
method returns false, s.size () unchanged

e This 1s mathematical set behaviour



List<E>

* Adds methods which work on 1tems being in a
position 1n the collection:
— E get (1)
— E set(1i,e) (returns replaced element)
— int indexOf (e)

e Defines 1s.add(e) to work by adding e to end
of list, returns true

* Defines 1s.remove (e) to work by removing
lowest indexed occurrence of e, returns false if
no occurrence of e, true otherwise



Overloaded List<E> methods

Overloading 1s when there are two methods of the
same name 1n a class or interface, List<E> has two
examples:

ls.add(1i,e) adds e at position i in list, following
elements move up one position (different from
list.add(e) as that has one argument, this has
two)

ls.remove (1) removes the element at position i
in list, following elements down one position
(different from the general remove method only by
argument type, int, rather than Object)



Copy constructors

Collection classes do not have a constructor which
works as constructors for new arrays do, that 1s by
creating a collection of a particular size. But they do
have constructors which take another collection
object as their argument and create a new collection
containing that collection’s elements

e ArrayList(Collection<? extends E> c¢)
e HashSet (Collection<? extends E> c)
e TreeSet (Collection<? extends E> c)



Tterator<kE>

e (Class Collection<E> has method
ITterator<E> iterator()

e (Class Iterator<E> has methods

— E next () returns an item from the collection that hasn’t
been returned by a previous next () call, throws
NoSuchElementException if there are no more

— boolean hasNext () returns true if there are further
items to be returned by a next () call, false otherwise
e Youcan'tuse for(int i=0; i<s.size(); i++)
to go through a Set, but you can use Iterator



For-each loop

for(Iterator<E> it=a.iterator(); it.hasNext(); )

{

E element = it.next();

}

1S a common pattern, Java (since Java 5) allows a shorthand
equivalent:
for(E element: coll)
{
}

This works for coll of type Collection<E> or any
extension, and also for coll of type E[ ]



Order of return for Iterator<g>

 When produced from an object which
implements List<E>, elements are returned
in their position order

* When produced from a HashSet<E> object,
clements are not returned 1n any obvious order

* When produced from a TreeSet<E> object,
elements are returned 1n their natural order (but
see later for variation of this)



Other Collection<E> methods

boolean addAll (Collection<? extends E> c)
boolean containsAll(Collection<?> c)
boolean removeAll (Collection<?> c)
boolean retainAll(Collection<?> c)
Object[] toArray()

<T> T[] toArray(T[] a)

boolean 1isEmpty()



Other L1 st<E> methods

boolean addAll(int index,
Collection<? extends E> c)
int lastIndexOf(Object 0)
ListIterator<E> listIterator()
List<E> subList(int fromIndex, int toIndex)



SortedSet<iE>

e SortedSet<E> introduces some extra methods
to Set<E>
— SortedSet<E> headSet (e) where

s .headSet (e) returns the set of all elements from s
less than e

— SortedSet<E> tailSet(e) where
s.tailSet (e) returns the set of all elements from s
greater than or equal to e

e TreeSet<E> implements SortedSet<E>



HashSet<E> and TreeSet<E>

e HashSet<E> is implemented using a “hash
table”, elements stored 1n array, “hash function”
gives their position, O(1) access

e TreeSet<E> is implemented using an “ordered
binary tree”, linked structure, cells have two links,
follow one or other in binary search to find
element, O(log N) access

e There 1s not time to discuss these data structures in
more detail in this module

e See data structures text books and web sites



Comparator<T>

e Provided with Java, it 1s:
interface Comparator<T>

{
int compare(T ol, T o02)
}

e If cisof type Comparator<T>and tl and t2
are of type T, then c.compare(tl,t2) returns

— A negative integer if t1 less than t2
— A positive integer if t1 greater than t2
— 0 1f they are equal

1In some ordering




Writing your own Comparator

* You can write your own class which implements
Comparator<T> for T some type, but which gives an
ordering different from T’s natural order, example:

class LengthComparer implements Comparator<String>
{

public int compare(String strl,String str2)

{
return strl.length()-str2.length();

}
}

This orders Strings by length rather than alphabetically



Scrabble score Comparator

class Scrabble implements Comparator<String>

{

public static final int[] scores =
{1,3,3,2,1,4,2,4,1,8,5,1,3,1,1,3,10,1,1,1,1,4,4,8,4,10};

public static int score(String str) {
String strl = str.toUpperCase();
int score = 0;
for(int i=0; i<strl.length(); i++)
score+=scores[strl.charAt(i)-'A"];
return score;

}

public int compare(String strl,String str2) {
return score(strl)-score(str2);

}
}



Finding the biggest using a Comparator

public static <T> T
biggest(Collection<T> coll, Comparator<? super T> comp)
{
Iterator<T> it = coll.iterator();
T biggest = it.next();
while(it.hasNext())
{
T nextItem = it.next();
if (comp.compare(nextItem,biggest)>0)
biggest = nextItem;
}

return biggest;

}

You can use this to find the biggest item in a collection according
to the ordering given by the Comparator argument



e If we have ArrayList<String> words

— biggest(words,new LengthComparer())

returns the longest string from words
— biggest (words,new Scrabble())

returns the string with the highest Scrabble score

e But rather than write our own biggest, we can use Java’s

method max in class Collections
— Collections.max(words,new LengthComparer())

returns the longest string from words
— Collections.max(words,new Scrabble())
returns the string with the highest Scrabble score

® Comparator<? super T> allowsustousee.g.a
Comparator<Fruit> to find the biggest from a
Basket<Banana>



Sorting using a Comparator

We have already seen Java’s built-in methods which sort by
“natural order”, so if 1s is of type List<E> then the
method call Collections.sort (1ls) will sort the list to
which 1s refers. The sorting is done “in place”.

This means the elements of 1s must have their own

compareTo method, so E should be declared as
<E extends Comparable<? super E>>

As an alternative, Collections.sort(1ls,comp) will
sort the list to which 1s refers by the order given by a
comparator referred to by comp.

With this, E can be any type, so does not need a bound, and
comp should be of type Comparator<? super E>



Anonymous Classes

e Comparator<String> ¢ = new Comparator<String>(){
public int compare(String strl,String str2)

{
return strl.length()-str2.length();

}
}i

1S an alternative to

e Comparator<String> c¢ = new LengthComparer())

It avoids the need to have a separate class
LengthComparer



Constructing a TreeSet using a
Comparator

new TreeSet<Thing>() will construct a new
TreeSet<Thing> object with its contents ordered
by the natural order of Thing (as given by its
compareTo method)

If c 1s of type Comparator<? super Thing> then
new TreeSet<Thing>(c) will construct a new
TreeSet<Thing> object with its contents ordered
by the compare method in c.

The variant ordering will be observed in the
Tterator produced from the TreeSet, and
also in the way headSet etc works



Map<K, V>

Map<K, V> 1s a generic interface with two type
arguments

It represents a collection of objects of type V
indexed by keys of type K

K 1s often but not always String

HashMap<K, V> and TreeMap<K, V> are two
classes which implement it

TreeMap<K, V> has elements stored in order of K

HashMap<K, V> more efficient but no ordering of
elements



Map methods

e With m of type Map<K, V>, tag of type K and
item of type V:

— m.put(tag,item) puts item into the map with
key tag, returns previous item with key tag

— m.get (tag) returns the last item put in with key
tag so long as it hasn’t been removed

— m.remove (tag) removes the item with key tag

— m.keySet () returns an object of type Set<K>
giving all the keys of items in the map

— m.values () return an object of type
Collection<V> giving all the items in the map



Map uses

A collection whose elements are indexed by an
identifier (key) rather than a position

Unlike lists, adding or deleting an item does not
change the index of other items

Could be used as a simple database - K 1s student no.,
NI no., car reg, V is class representing students,
citizens, cars

Or anywhere else where we have data as a collection
of pairs, with one part of the pair not duplicated in
other pairs e€.g. count of number of occurrences of
each word in a document, K 1s String for word, V 1s
Integer for the count



SublL.ists

e If strisof type String then
str.substring(from,to) isaStringof
the characters in str starting at position £rom up
to but not including position to

 Similarly, if a 1s of type List<E> (so
ArrayList<E> or LinkedList<E>) then
a.subList(from,to) 1sa List<E> of the
elements in a starting at position £rom up to but
not including position to

e Example,ai1s[10,20,30,40,50,60,70],so
b=a.subList(2,5) setsbto [30,40,50]



Views

A view of a collection 1s a collection which shares
(some of) the data of the collection

Changing the view changes the collection, and
vice-versa

b=a.subList(pl,p2) creates a view of a

If s if of type TreeSet<E> and e is of type E,
then s.headSet(e) and s.tailSet (e)
create views of s

b=Collections.unmodifiableList(a)
creates a view of a



Subl.ists are views

e Example,a1s[10,20,30,40,50,60,70],
so b=a.subList (2,5) sets b to
30,40,50]

e This means b.add(1,35) changes b to
130,35,40,50] and changes a to
10,20,30,35,40,50,60,70]

e After thisa.add(4,45) changes a to
[10,20,30,35,40,45,50,60,70] and
changes bto [30,35,40,45,50]



Unmodifiable views

b=Collections.unmodifiableList(a)
creates a view of a

If you attempt to call any method on b which
changes it, e.g. add or remove, you will get an
UnsupportedOperationException

This 1s useful 1f you want another part of a
program to access your data but not to change it

But if a call on a changes a, b will get changed in
the same way



Java’s Collections Framework

Consists of interfaces, implementations and
algorithms

Interfaces specify an Abstract Data Type, and are
arranged 1n a hierarchy (an interface may specialise
another interface)

Implementations use data structures to provide
working code - different implementations have
different benefits

Some algorithms, e.g. sort, provided as static methods

There are various extra interfaces to aid writing
generalised code



Algorithms and Data Structures

Seeing how algorithms and data structures translate to
code helps develop your coding ability

It give you and understanding of the basic techniques
of algorithm development, and efficiency issues

It shows how careful attention to the application and
implementation divide gives well structured programs

In practice, however, you wouldn’t need to write your
own code for the simple algorithms and data structures
presented here - you would use library code



Code Re-use

Code re-use means seeing if there 1s an existing
class which provides what you want (not “cut and
paste™)

An 1nterface with carefully chosen and well
specified methods makes code open for re-use

Using interface types which have just the
necessary methods 1s one way of generalising
code, so i1t can be re-used 1n a variety of situations

Considering how aspects of the code could be
provided as parameters rather than fixed 1s another
way of generalising



Java™ ’s APIs

API — “Application Programming Interface”
The formal name for a “code library”

Provided to give code for common operations, and
for interaction with databases, graphics, web etc

Once you understand the basics of OOP, a lot of

programming 1s knowing what and how to use
from the API

Oracle’s Java™ APIs may be supplemented by
APIs from other suppliers

You may define and implement your own APIs



