
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
���

“ADSOOF”���
	

Strings and ArrayLists:	

Java’s Built-in Classes	

Strings	

•  In Java, strings are objects 	

•  Java library class String defines them	

•  If str is of type String	

–  str.length() is the length of the string it refers to	

–  str.charAt(expr) is the character (type char) at

position expr where expr evaluates to an integer	

•  Strings have a “literal representation” - the

characters in them surrounded by double quotes
e.g. "fred"!

Strings are immutable	

•  There is no method in class String which

changes the String object it is called on	

•  Don’t think that e.g.	

	
str.charAt(i)='x';	

	
would work because a[i]='x' would work if
a[i] is of type char[]. Remember,
charAt(i) is a method call	

String methods	

Java’s String class provides many useful methods

on strings, examples:	

•  str.replace(ch1,ch2) replace all

occurrences of ch1 by ch2	

•  str.toUpperCase() change all lower case

letters to equivalent upper case	

•  str.trim() remove all leading and trailing

blanks	

These are all constructive, they return new Strings	

More String methods	

For the purposes of this module you don’t need to know all

the methods in class String, but the following are
important:	

•  str.substring(p1,p2) returns a string which is
those characters from str starting at position p1 up to but
not including position p2!

•  str.substring(p) returns a string which is those
characters from str starting at position p up to the last
character!

•  str1.compareTo(str2) returns an integer which is
negative if str1 is before str2 alphabetically, positive if
str1 is after str2 alphabetically, and 0 if they are equal	

String equality	

•  With str1 and str2 of type String,
str1==str2 is an alias test	

•  Two String objects may contain the same
characters in the same order, but may not be
aliases	

•  So str1.equals(str2) is how to test
equality	

•  This is because the method equals is defined in
class String so that str1.equals(str2)
returns true if str1 and str2 contain the same
characters in the same order, false otherwise	

String concatenation	

•  The + operator when used with Strings is a
concatenation operator	

•  For example if str1 is "black" and str2 is
"berry" then str1+str2 is "blackberry"!

•  When + is used with a String an another object,
the reference to the object is automatically
replaced by a call to toString() on it	

The toString() method	

•  Every class has a method with signature	

	
 	
public String toString()	

•  It is inherited from the “most general class”,
Object!

•  Other methods inherited from Object include
equals and clone	

•  The default behaviour of these methods may not
be what you want, so when you write your own
classes you may have to override these methods
with your own code	

Recursion with Strings	

•  Recursion is when “a method calls itself”, here is an

example:	

 public static boolean !
 startsWith(String str1,String str2) {!
 if(str2.length()==0)!
 return true;!
 else if(str1.length()==0)!
 return false;!
 else if(str1.charAt(0)!=str2.charAt(0))!
 return false;!
 else!
 return startsWith(str1.substring(1),!
 str2.substring(1));!
 }!

Recursion	

•  Recursion is when “a method calls itself”, but a better way of

putting it is that “a method call makes a new call to the same
method”	

•  This emphasises that a method call has its own variables of
the names given by the parameters and any local variables
declared in the method, you cannot assign a value to a
variable of a particular name in one method call and cause the
variable of the same name in another call to the same method
to change its value	

•  So each call to startsWith here has its own variables
called str1 and str2, whereas a solution using a loop
(“iteration”) would just have two variables whose values are
changed	

 	

Iteration	

•  Here is an iterative version of the same operation:	

 public static boolean !
 startsWith(String str1, String str2) !
 {!
 int i;!
 for(i=0; i<str1.length()&&i<str2.length(); i++)!
 if(str1.charAt(i)!=str2.charAt(i))!
 break;!
 return i==str2.length();!
 }!

•  Strings are usually best processed iteratively, but recursion is
another option, it means working by passing a smaller String
to a recursive call rather than changing index values	

	

 	

Tail Recursion	

•  Here is another iterative version of the same operation:	

 public static boolean !
 startsWith(String str1,String str2) {!
 while(str2.length()!=0&&str1.length()!=0&&!
 str1.charAt(0)==str2.charAt(0))!
 {!
 str1=str1.substring(1);!
 str2=str2.substring(1);!
 }!
 return str2.length()==0; !
 }!

•  This is closer to the recursive version, except that as it is
iterative variables str1 and str2 have their values changed
instead of there being separate variables of the same name with
different values in each recursive call	

 	

Scanner	

An object of library type Scanner reads text	

•  Scanner in = new Scanner(System.in);	

	
declares a Scanner variable called in which
refers to an object which reads from the console
window	

•  Scanner f = new Scanner(new File(name));	

	
declares a Scanner variable called f which refers
to an object which reads from the file named by the
String referred to by name. 	

Scanner methods	

If in is of type Scanner	

•  in.next() returns String giving next word (up to next

blank character or new line), and reads past it	

•  in.nextLine() returns String of all characters up to

but not including the next new line character, and reads past
it	

•  in.nextInt() returns int giving next word converted
to an integer if that is possible (exception thrown if it is
not)	

•  in.hasNextInt() return true if next word can be
interpreted as an integer, false otherwise	

There are many more, you don’t need to know them	

	

Wrapper classes	

•  Each primitive type in Java has an equivalent object

type, int has Integer, char has Character,
double has Double and so on.	

•  Conversion is automatic, an int is converted to an
Integer (boxing) and an Integer converted to an
int (unboxing) when necessary (but not in versions
of Java before Java 5)	

•  The wrapper classes also have useful static methods
dealing with their primitive equivalent, for example
Character.isUppercase(ch) returns true if
ch is an upper case character, false otherwise.	

ArrayLists	

•  The class ArrayList is part of Java’s
“Collections Framework”	

•  In early versions of Java, Vector was used
where ArrayList would now be used	

•  As ArrayList is a “generic type”,
properly it should be written
ArrayList<E>	

Generic types	

•  A generic type should be combined with another
type (the base type) to form a full type e.g
ArrayList<Integer>,
ArrayList<String>,
ArrayList<DrinksMachine>,
ArrayList<ArrayList<Integer>>	

•  The base type cannot be a primitive type, so use
the equivalent wrapper class	

ArrayLists as Arrays	

•  An ArrayList object resembles an array in some ways	

•  It is a collection of items of its base type indexed by

integers from 0 to one less than its size	

•  If a is of type ArrayList<String> then a.get(i)

returns the string at position i and a.set(i,str)
changes the string at position i to str!

•  But we cannot have a.get(i)=str like array
a[i]=str because get(i) is a method call, you cannot
assign to a method call	

•  Do not confuse the [] of arrays, which contains an
index, with the < > of ArrayLists which contains a type.!

Raw Types	

•  If a is of type ArrayList<T> for any T, then
a.get(i) can be used where a value of type T is
needed, and a.set(i,t) expects t to be of
type T.	

•  Java allows ArrayList on its own to be used as
a type, this is to maintain compatibility with older
versions of Java that did not have generics	

•  With a “raw type” like this, there is no way of
ensuring objects in a collection are of the same
type, and type casting has to be used when
extracting them: t = (T) a.get(i);	

ArrayLists as ���
flexible sized arrays	

•  Unlike array objects, an ArrayList object can change its size	

•  If a is of type ArrayList<String> and str is of type

String and i is of type int:	

–  a.add(str) adds str to the end of the list, increasing its

size by one	

–  a.add(i,str) adds str at position i, everything after it

is pushed up one place	

–  a.remove(i) removes the string at position i, everything

beyond it is moved down one place	

–  a.remove(str) removes the lowest indexed occurrence

of str and moves everything following it down one place,
leaves it unchanged if str does not occur	

Starting ArrayList objects	

•  ArrayList<String> a;	

	
declares a variable called a of type ArrayList<String>!

!

•  a = new ArrayList<String>();	

	
creates a new ArrayList<String> object and sets a to
refer to it	

	

•  Declaring a variable and creating an object are NOT the same
thing!	

•  a.size() returns the current size of the
ArrayList<String> object referred to by a	

Building ArrayList objects	

•  The statement 	

!a = new ArrayList<String>();!
!sets a to an ArrayList of size 0, the ArrayList can

be increased in size by adding things to it	

•  This is different from array where you have to create an

array of the size you want, then set its locations to the
things you want to store	

•  There isn’t a constructor equivalent to new String[n]
with arrays which creates an arrayList with n unfilled
locations already there	

•  Note new ArrayList<String>(n) is allowed, but
doesn’t do what you might think	

Copying an ArrayList	

ArrayList<String> copy(ArrayList<String> a)!
{!
 ArrayList<String> b = new ArrayList<String>();!
 for(int i=0; i<a.size(); i++)!
 b.add(a.get(i));!
 return b;!
}!

•  But ArrayList has a “copy constructor”:	

!ArrayList<String> al1;!
!…!
!ArrayList<String> al2 = new ArrayList<String>(al1);!

•  This is “shallow copy”, new object, contents aliased!

Searching an ArrayList	

public static boolean isIn(ArrayList<String> a,

String w)!
{!
 int i=0;!
 for(; i<a.size(); i++)!
 if(a.get(i).equals(w))!
 return true;!
 return false;!
}
•  Similar to what we saw with arrays, but built-in
a.contains(str) does the same

Destructive Change	

public static void !
 change(ArrayList<String> a,String w1,String w2)!
 {!
 for(int i=0; i<a.size(); i++)!
 if(a.get(i).equals(w1))!
 a.set(i,w2);!
 }!
!

•  Similar to what we saw with arrays

Constructive Change	

public static ArrayList<String> !
 constChange(ArrayList<String> a,String w1,String w2)!
 {!
 ArrayList<String> b = new ArrayList<String>();!
 for(int i=0; i<a.size(); i++)!
 {!
 String next = a.get(i);!
 if(next.equals(w1))!
 b.add(w2);!
 else!
 b.add(next);!
 }!
 return b;!
 }!

•  Different from what we saw with arrays, collection grows in size

Destructive change in size	

•  With ArrayLists, unlike arrays, we can have destructive

methods which change the size of the collection:	

public static void !
 addAfter(ArrayList<String> a,String w1,String w2)!
 {!
 for(int i=0; i<a.size(); i++)!
 if(a.get(i).equals(w1))!
 {!
 a.add(i+1,w2);!
 i++;!
 }!
 }
•  The i++ is needed to prevent an infinite loop when w1 and
w2 are the same, always check for subtleties like this

Arrays v. ArrayLists	

•  Thing[] is the type

“array of Thing”	

•  a[i] is a “variable

variable” (the memory
location it accesses
changes as i changes)	

•  Arrays are of fixed size,
you create one then fill it
in	

•  Arrays correspond directly
to computer memory	

•  ArrayList<Thing> is
the type “arrayList of
Thing”	

•  a.get(i) and
a.set(i,t) are method
calls	

•  ArrayLists can change
size, you create one of size
0 and add to it	

•  ArrayLists are
implemented by Java code	

Need for generic methods	

In the previous examples, if we were dealing with
ArrayLists of integers rather than strings, the code
would look almost identical:	

public static void !
 change(ArrayList<Integer> a,Integer n1,Integer n2)!
 {!
 for(int i=0; i<a.size(); i++)!
 if(a.get(i).equals(n1))!
 a.set(i,n2);!
 }!

Is there a way round writing lots of very similar methods
for collections of different types?	

Generic methods	

•  To make a method generic, declare a type
variable before the return type, then use that
type variable as a type	

•  But the only method you can call on an
object of the type of the type variable is one
inherited from Object, such as equals	

•  Java has a way of getting round this, see
later	

 	

public static <T> ArrayList<T> !
 constChange(ArrayList<T> a, T m, T n)!
 {!
 ArrayList<T> b = new ArrayList<T>();!
 for(int i=0; i<a.size(); i++)!
 {!
 T next = a.get(i);!
 if(next.equals(m))!
 b.add(n);!
 else!
 b.add(next);!
 }!
 return b;!
 }!
!

Generic constructive change	

Using generic methods	

•  When a generic method is called, the type variable is set

according to its arguments.	

•  So with:	

!ar2=constChange(ar1,t1,t2);!
!If ar1 is of type ArrayList<Integer>, t1 and t2 must be of

type Integer (or int) and ar2 must be of type
ArrayList<Integer>	

	
If ar1 is of type ArrayList<String>, t1 and t2 must be of type
String and ar2 must be of type ArrayList<String>	

	

 	

	
Consider	

	

public static <T> void destChange1(ArrayList<T> a, T m, T n)!
{!
 for(int i=0; i<a.size(); i++)!
 {!
 T next = a.get(i);!
 if(next==m)!
 a.set(i,n);!
}!
!

	
As we saw with Strings, the comparison next==m does not
mean the same as next.equals(m)!

Equality testing	

 	

•  In general, obj1.equals(obj2)is used to test if two

objects are equal, it is not the same as obj1==obj2	

•  For example list.remove(obj) removes an object at

position i where list.get(i).equals(obj) returns
true, not only where list.get(i)==obj gives true !

•  The method equals can be implemented so that
obj1.equals(obj2)gives true when obj1 and obj2
have identical content, even if they refer to separate objects
whereas obj1==obj2 evaluates to true if and only if
obj1 and obj2 are aliases	

•  Code which uses equals depends on how it is implemented
in the class of the object it is called on (“dynamic binding”)	

	

Using equals and ==!

Java’s built-in classes	

•  Java provides many classes as part of the language, you

use them by knowing their public methods	

•  Classes String, Scanner, Character provide useful

methods for text handling	

•  Class ArrayList provides a more flexible way of

handling indexed data than arrays	

•  But you don’t need to memorise lots of Java’s classes and

their methods for this module	

•  The class ArrayList is just one example of a collection

class provided as standard in Java, we will look briefly at
others later	

•  Java provides many classes for special purposes, such as
database interaction, graphical user interfaces and so on,
we will not cover any of that in this module	

	

Other issues	

•  We have briefly looked at recursion here, we will look at this

idea in more detail in the next section on Lisp Lists	

•  We have also looked at generic types: a type which has one

or more type variables	

•  ArrayList<E> is just one example of a generic type	

•  The type variables in a generic type must be set to particular

types to give an actual type of an object, for example we
cannot have just an ArrayList object, it must be an
ArrayList of some element type	

•  A method can be written with type variables, meaning it is
generalised so one method can work with arguments of a
variety of different types, we will look at this in more detail
later	

•  We will also look at the equals method in more detail later	

	

