ECS510 Algorithms and Data Structures in an Object-Oriented Framework

Exercise Sheet 7: Extended use of the DrinksMachine class
This is a set of exercises to support the “Inheritance” section.

1)

2)

3)

4)

5)

Look at the code folder for this section. You will find the following files there:

Can. java, EmptyCanException. java DrinksMachine. java,
ExtDrinksMachinel. java, ExtDrinksMachine2.java, DrinksCompany.java,
DrinksMachineOps. java, UseDrinksMachines5. java and

UseDrinksMachines6.java. Download these files, compile them, and make sure you
can run the programs whose main methods are in UseDrinksMachines5.java and
UseDrinksMachines6. java.

Write an extended version of class Can called PromotionCan. This represents cans
produced in a promotion where certain cans are prize-winning cans. If you have a prize-
winning can and you contact the company to inform them, they will send you a prize. All
cans produced as part of this promotion have a special design on the outside, so you can
tell by looking at it whether a can is a promotion can. But you only find out if a promotion
can is also a prize-winning one by drinking from it and seeing if it has a special message
printed inside it. Your class PromotionCan should add an extra method called
isWinner to the class Can which tells you whether a particular PromotionCan object
represents a prize-winning can. As it is necessary to drink the contents of a promotion can
to see if it is a prize-wining can, calling isWinner on a PromotionCan object which
does not represent an empty can should throw an exception.

Write a class CanFactory that describes an object which has a method makeCan that can
be called to return a new PromotionCan object. The CanFactory class should be set up
so that a proportion of cans that are produced are prize-winning cans, the proportion
should be an argument to the CanFactory constructor. You could use Java’s built-in
class Random to make a random decision on whether a new PromotionCan object it
returns is a prize winner.

Modify your answer to question 3) to give CanFactory a method which represents a
switch — when you turn it one way, makeCan returns ordinary Can objects, when you turn
it the other way, makeCan returns PromotionCan objects.

Write an extended version of the class DrinksMachine which differs from a normal one
by using a CanFactory object as defined in question 4) to produce the Can objects added
to the machine when it is created. There should also be variants of the methods
loadcCoke and loadFanta which cause a Can produced from a particular CanFactory
to be loaded when the methods are called instead of the Can being an argument to the
method. Write front-end code which uses this class to simulate buying a drink from a
machine, seeing if it is a can from the promotion, and if it is, checking if a prize-winning
can has been bought. The factory used to produce Can objects should be given by a field
in the extended DrinksMachine class which is initialised in the constructor.



6)

7)

8)

9)

Write a class CanAndCash. This will define a single object which stores a Can object and
an int value representing a sum of money. Use this as the return type for a static method
buyCoke which takes a DrinksMachine object and an integer representing a sum of
money, and returns a CanAndCash object representing the result of putting the money
into the machine, pressing the “Coke” button and then pressing the “change” button.

Write a static method buySpriteOrFanta. This method should take as its argument a
DrinksMachine object and an integer representing a sum of money, and return a
CanAndCash object as mentioned in question 6). If the DrinksMachine object is
actually an ExtDrinksMachinel object, the method returns the result of inserting the
money and pressing the “Sprite” and “change” buttons. Otherwise it returns the result of
inserting the money and pressing the “Fanta” and “change” buttons.

Write a class CanBuyer. A CanBuyer represents a robot who you send off to buy cans
of drink for you. It will have an ArrayList representing the drinks machines in the
locality. The robot has a command implemented by the instance method buyCoke to take
some money from you and return with the change and a can of Coke (so return type
CanAndCash), and a command buyFanta to do the same and return with the change and
a can of Fanta. It will buy the can from whichever machine in the locality is the cheapest
one which has the type of drink you want in stock. But it will also charge you a
commission to do the job (the commission rate might be set when the CanBuyer object is
created).

Write an extended version of CanBuyer which has an additional method buySprite
which will return with the change and a can of Sprite from the cheapest machine in the
locality which has Sprite in stock.

10) Write an extended version of CanBuyer which represents robots operated by a company

represented by an object of type RobotCompany. The commission charged by the robot is
passed on to the company. The RobotCompany object should have a method that can be
called to return a new robot and a method which returns all the commissions collected by
the robots it controls.

Matthew Huntbach



