
Continued overleaf

ECS510U Algorithms and Data Structures in an Object-Oriented Framework
Exercise Sheet 6: Developing an Algorithm to Solve a Problem
This is an exercise to support the “Sorting and Efficiency” section

Algorithms
This exercise is intended to get you to think in terms of algorithms. You need to think first about
an algorithm to solve this problem. Once you have thought of an algorithm, then you can write a
Java static method to implement it. You could then see if you could think of a better algorithm.
Although this is not a problem that involves sorting, like sorting it is one which can be tackled
with a variety of algorithms. Also as with sorting algorithms, this will also test and develop your
general skills at programming with indexed collections. The problem here is a well-understood
one, but I have deliberately not given you the name by which it is known because I want you to
work out your own algorithm to solve it. If you knew its name and you decided to use Google to
find an algorithm for it, rather than work it out yourself, it would spoil the point of this exercise.
You should approach the problem by first developing an algorithm which works, without being
concerned about efficiency. Once you have done this, you should experiment with variations or
different algorithms to see how that changes the time taken to solve the problem or the size of the
problem it can deal with in a reasonable amount of time. Careful thought may lead you to being
able to think of a more efficient algorithm than what you first came up with.

Here is the problem:

Given a list of integers, A0, A1, A2, ... , An-1, each of which may be positive
or negative, find the sublist of integers Ap, ..., Aq which has the maximum
sum of any sublist, and return the sum. If all the integers are negative,
return 0.
A sublist has to start at some position in the original list, finish at some later position and include
every number which is in the original list between those positions. So, for example if the list is
{10,-20,11,-4,13,3,-5,-17,2,15,1,-7,8} then the answer is 23 since this is the sum of
the list {11,-4,13,3} and no other sublist has a higher sum. The answer is always at least 0,
because the empty list is always a possible sublist, and its sum is 0.

Assume the numbers are stored in a Java array a so a[k] stores Ak for any k between and
including 0 and n-1. Then write a Java method which returns the sum of some portion of the
array where no other portion has a higher sum.
One possible use of this algorithm is in stock market analysis. Suppose the integers represent the
rise or fall of a share price over a period of time. Then the best period to own that share is the
period represented by the solution to this problem.
A program which provides a frame to test the method can be found in the code folder for this
section in the files Exercise6.java and Exercise6a.java. You will find in these files that
only the header for the method highestSum is given. This method is intended to take an array
storing some integers as its parameter and return the sum of that portion of the array which has a
higher sum of any other portion. You have to write the code for the method which makes it do
this. So, the programs you are given provide you with the support code so you can concentrate on
the important issue, developing and coding the algorithm.

Matthew Huntbach

In the file Exercise6.java you type in your own numbers for the list, but in
Exercise6a.java, a list of numbers is generated at random for you.
In Exercise6a.java, you are asked to enter a “seed”, the length of the list, and the highest
integer value, max. Integers are generated at random, both positive and negative from the range
-max to max. The program takes the time before and after the method that gives the algorithm is
executed. This gives a rough estimate of the timing (not an exact figure, because typically your
computer will spend some of its time doing other things, e.g. maintaining the clock display, when
it's obeying your code).
The “seed” is just a way of ensuring that when you run your code, the particular list of numbers
associated with the seed will be generated, so if you change your code and run it again, you can
make sure it’s using the same “random” numbers as it did before. Apart from that, the numbers
will not appear to have any pattern.
For an example solution, if you type 1234 for the seed, 500 for the length of the list, and 100 for
the highest integer, the answer you should get is 1212 (which is the sum of the range from position
316 to 476 inclusive). To keep things simple, in the method that is the answer to this exercise, as
well as returning the maximum sum of a sublist, your code should also print the starting and
finishing positions of the sublist that has the maximum sum.

Efficiency and Correctness
With this problem, a very poor algorithm will take a long time (time for you to sit and wait for it
to terminate) to find the sublist with the highest sum of even 1000 integers. The algorithm you are
most likely to come up with after some thought on efficiency will work fine with a list of 1000,
but once the size of the array gets to around 100000, you will see a delay between starting it and
getting the solution. The best algorithm, however, will take a short time, appearing to be
instantaneous, for 100000 integers, and only when the length of the list gets into the millions will
there be a delay long enough to notice in giving a solution.
In the module notes on efficiency, you will see how algorithms can be categorised using the
“big-O” notation. Try and work out the big-O category your algorithm falls into.
It is, of course, important that a program works correctly. With an algorithm, this is not a matter
of trial and error, you should be able to argue why the algorithm and your code which implements
it gives a correct solution. As you have seen in previous exercises, it is easy to write code that you
think works, but would not work in other cases that you did not think of to test it. So your
explanation should be able to cover why you think it will work in all cases.
As this exercise is all about developing the algorithm yourself, the assessment will require you to
be able to explain it and why you think it works. Code which works but you cannot explain how
and why will not get high marks.

