
 

ECS510 Algorithms and Data Structures in an Object-Oriented Framework       
Exercise Sheet 5: Implementing a Dictionary class 
This is an exercise to support the “Implementing Objects” section 
 
Write a class Dictionary that represents a set of words stored with their equivalents.  The internal 
data structure should use arrays, but not ArrayList<E> or any other built-in type in Java. 
The class Dictionary should provide methods with the following headers: 
  void add(String word1, String word2) 
  boolean contains(String word) 
  String equiv(String word) throws NotFoundException 
  void remove(String word) throws NotFoundException 
  boolean same(String word1, String word2) throws NotFoundException 
  int size() 
The method add takes two arguments, the first is a word and the second is its equivalent to be stored 
in the dictionary.  It could be that the first word is a word in English and the second a word in some 
other language, or it could be something similar where one String value links to another, for 
example the first String could be a module code and the second String a module name. 
The method contains returns true if there is an equivalent to its argument in the dictionary, and 
false otherwise.  So if its argument has previously been used as the first argument to a call of add 
on the Dictionary object it has been called and there has been no subsequent call of remove with 
that argument it should return true, otherwise it should return false. 
The method equiv returns the word that is the equivalent stored in the dictionary to its argument.  So 
if add was previously called on the Dictionary object with the argument to it being the argument 
to the call to equiv, it should return what was the second argument to that call of add.  If there is no 
equivalent (that is, no previous call of add with the argument to the call of equiv as its first 
argument), it should throw a NotFoundException. 
The method remove should take the word given as its argument out of the dictionary.  So, if add had 
been called previously on the Dictionary object with the first argument to it being the argument to 
remove, a subsequent call of contains with the same argument should return false.  If there is 
no equivalent of its argument stored, the method remove should throw a NotFoundException. 
The method same should return true if the dictionary stores its first argument with its second as its 
equivalent, and false if it stores its first argument but with a different word as its equivalent.  If it 
does not store its first argument with an equivalent, it should throw a NotFoundException. 
The method size should return the total number of words stored in the dictionary. 
You should define your own class NotFoundException, with its constructor taking the word that 
is not found as its argument. 
Note, there are more efficient data structures than arrays that could be used for implementation here, 
but for exercise purposes even if you have knowledge of such data structures from previous study, you 
must use arrays here.  Also, it would be trivial to implement it using an appropriate class as provided 
in Java’s Collections Framework, but the point of this exercise is to build an implementation without 
using anything but arrays.  For the purpose of this exercise, a simple implementation is fine, you are 
not expected to use any technique not covered in the teaching to produce a more efficient 
implementation. 
You should provide the methods as requested.  There may be some ambiguities or uncertainties in the 
specification, if you see them you should note them and how you have handled them. 
An example of how the code should work is given overleaf. 



Matthew Huntbach 

 

Example: 

The following code: 

Dictionary dict = new Dictionary(); 
String module; 
dict.add("ECS510","ADSOOF"); 
dict.add("ECS414","OOP"); 
dict.add("ECS505","Software Engineering"); 
dict.add("ECS607","Data Mining"); 
System.out.println("Number of modules is: "+dict.size()); 
try { 
   module = dict.equiv("ECS505"); 
   System.out.println("The module with code ECS505 is: "+module); 
   if(dict.contains("ECS410")) 
      { 
       module=dict.equiv("ECS410"); 
       System.out.println("The module with code ECS410 is: "+module); 
      } 
   else 
      System.out.println("There is no module with code ECS410"); 
   if(dict.same("ECS414","OOP")) 
      System.out.println("The module with code ECS414 is: OOP"); 
   else 
      System.out.println("The module with code ECS414 is not OOP"); 
   dict.remove("ECS510"); 
   module=dict.equiv("ECS510"); 
   System.out.println("The module with code ECS510 is: "+module); 
  } 
catch(NotFoundException e) 
   { 
    module=e.getMessage(); 
    System.out.println("There is no module with code "+module); 
   } 

when executed should result in: 
   Number of modules is: 4 
   The module with code ECS505 is: Software Engineering 
   There is no module with code ECS410 
   The module with code ECS414 is: OOP 
   There is no module with code ECS510 
being printed. 

This code and further code to test your implementation is available as DictionaryTest1.java 
and DictionaryTest2.java from the code folder for the “Implementing Objects” section of the 
module website. 


