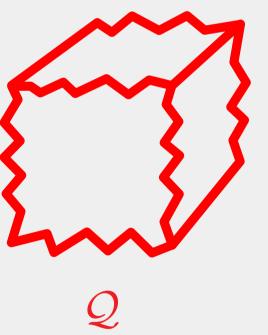


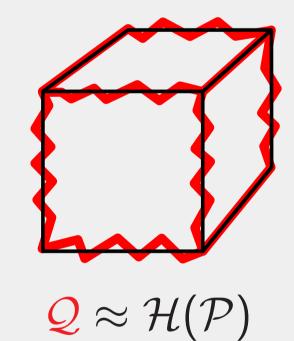
1. Introduction

The aim is to construct a dense 3D representation, with RGB texture. Data is provided by a time of flight camera, plus a stereo system.

TOF Camera 176×144 px. Range 500cm

RGB Cameras 1624×1224 px. Baseline 60cm


► The range camera provides no colour information.


The binocular system is uncalibrated, except for lens distortion.

2. Main Idea

- \blacktriangleright The stereo representation \mathcal{P} is relatively **precise**, but only **projective**.
- \blacktriangleright The range representation Q is **noisy**, but essentially **Euclidean**.
- Find the transformation $Q \approx \mathcal{H}(\mathcal{P})$ between the two representations.

Let $H_{4\times4}$ be a projective transformation of 3D space, hence: $Q\simeq HP$

- \blacktriangleright H is only estimated **once**; it then applies to all points at all times.
- ▶ Dense **RGB correspondence** can be initialized by $P \simeq H^{-1}Q$.
- \blacktriangleright Also applies to **fully calibrated** stereo systems, with \mathcal{H} a rigid motion.

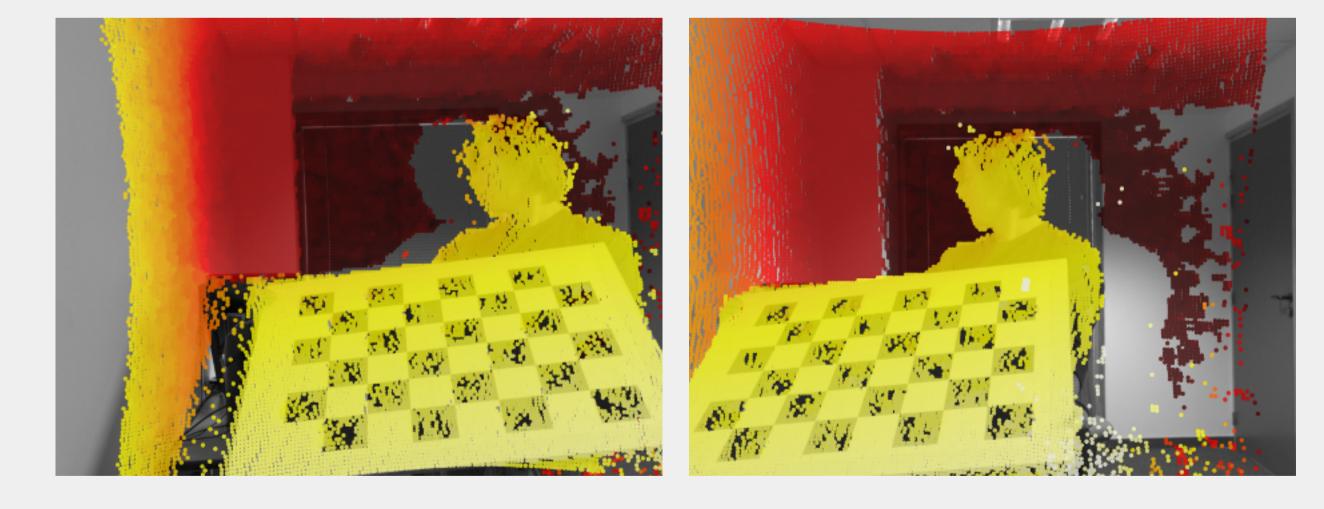
3. Input Data

- \triangleright Stereo data P_i comes from a projective-invariant triangulation method.
- Planes are robustly fitted to the range calibration data.
- \triangleright Range data Q_i comes from the **intersection** of TOF rays with planes.
- \triangleright Correspondence $P_i \leftrightarrow Q_i$ is obtained by using a known planar pattern.

Projective Alignment of Range and Parallax Data

Miles Hansard¹, Radu Horaud¹, Michel Amat¹ and Seungkyu Lee² ¹INRIA Rhône-Alpes and ²Samsung Advanced Institute of Technology

4. Estimation


- \blacktriangleright The homogeneous relation $Q \simeq HP$ is expressed (Förstner '05) as: $(Q)_{\wedge}HP=\mathit{O}_{6}, ext{ where } \left(egin{array}{c} Q_{1:3} \ q_{4} \end{array}
 ight)_{\wedge}=0$ ▶ Let $h_{16} = \text{vec}(H)$, and consider $N \ge 5$ matched points, hence: $\left(P^{\top}\otimes (Q)_{\wedge}
 ight)h_{16}=\mathit{0}_{6} \hspace{0.2cm} ext{and} \hspace{0.2cm} \left(egin{array}{c} P_{1}^{\top}\otimes & & \ & \ddots & \ & \ddots & \ & P_{N}^{\top}\otimes \end{array}
 ight.$
- ► The solution, obtained by SVD, minimizes an algebraic error.

5. Reprojection

Left and right stereo images, plus colour-coded TOF depth map:

▶ Reprojection of the 3D range-points, via new cameras C'_{l} and C'_{R} :

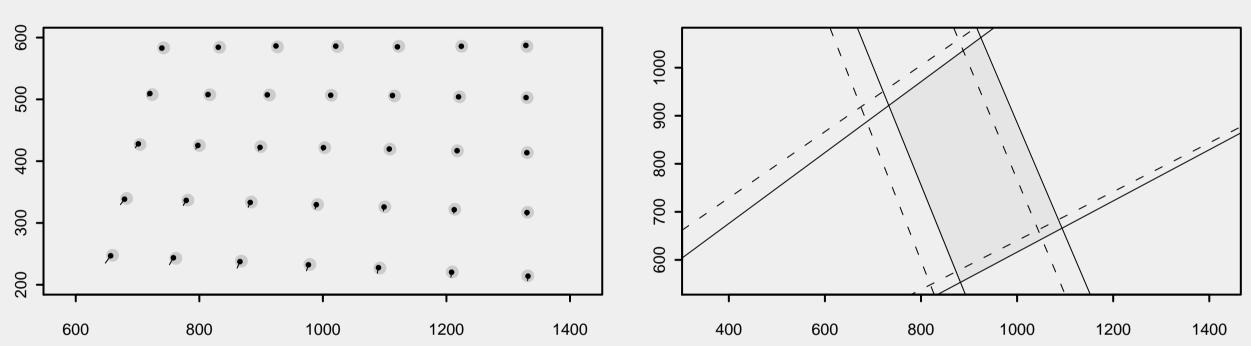
- Gaps are occluded or undetected surfaces / depth outliers.
- The range data are unreliable for very scattering surfaces, e.g. hair.

6. Transformed Cameras

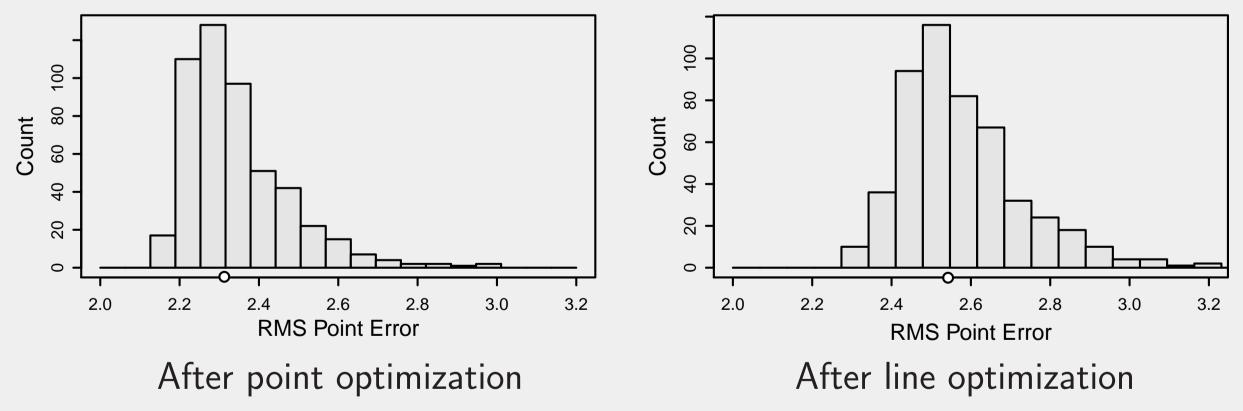
- ► The space-homography is used to transform the RGB cameras:
 - $C'_I = C_L H^{-1}$ and C'_R
- New cameras are used to project all range points into the RGB views.

$$\begin{pmatrix} q_4 I_3 & -Q_{1:3} \\ (Q_{1:3})_{\times} & O_3 \end{pmatrix}_{6\times 4}$$

$$egin{array}{l} \otimes \ (Q_1)_\wedge \ dots \ & \ & \ \otimes \ (Q_N)_\wedge \end{array} \end{pmatrix} h_{16} = \mathit{O}_{6N}$$


$$C_R = C_R H^{-1}$$

7. Plane-Based Method


- These correspond to lines in the TOF image-data.

8. Evaluation

- Example reprojections of calibration-plane data:

- Black points / solid lines are the optimized projections.

9. Conclusions

- reconstruction, by mapping it onto 3D range data.
- from the colour images.

SAMSUNG ADVANCED

INSTITUTE OF TECHNOLOGY

Detection of calibration-features in the TOF intensity data is difficult. ► It is easier to detect calibration planes directly in the depth data.

► There is a **dual procedure** for mapping between planes:

$$V\simeq H^{- op}U$$

Extra planes, through the TOF centre, come from straight depth-edges.

Initial SVD solution is improved by minimizing reprojection error. ▶ Minimize over H, preserving epipolar geometry, or over C'_L and C'_R .

Grey points / quadrilateral are the true feature locations.

Point-error is used as the final evaluation metric in both cases:

Final **RMSE** of ~ 2.5 pixels in the 1624×1224 images is achievable.

Pinhole-camera geometry can be applied to range cameras.

A projective binocular reconstruction can be upgraded to a Euclidean

The high-precision reconstruction can be textured with RGB data

Current work involves extending these methods to multi-TOF systems.