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Abstract— This paper develops a tractable framework for
exploiting the potential benefits of physical layer security in three-
tier wireless sensor networks (WSNs) using stochastic geometry.
In such networks, the sensing data from the remote sensors
are collected by sinks with the help of access points, and the
external eavesdroppers intercept the data transmissions. We focus
on the secure transmission in two scenarios: 1) the active sensors
transmit their sensing data to the access points and 2) the
active access points forward the data to the sinks. We derive
new compact expressions for the average secrecy rate in these
two scenarios. We also derive a new compact expression for
the overall average secrecy rate. Numerical results corroborate
our analysis and show that multiple antennas at the access
points can enhance the security of three-tier WSNs. Our results
show that increasing the number of access points decreases the
average secrecy rate between the access point and its associated
sink. However, we find that increasing the number of access
points first increases the overall average secrecy rate, with a
critical value beyond which the overall average secrecy rate then
decreases. When increasing the number of active sensors, both the
average secrecy rate between the sensor and its associated access
point, and the overall average secrecy rate decrease. In contrast,
increasing the number of sinks improves both the average secrecy
rate between the access point and its associated sink, and the
overall average secrecy rate.

Index Terms— Beamforming, decode-and-forward (DF),
physical layer security, stochastic geometry, wireless sensor
networks (WSNs).

I. INTRODUCTION

DUE TO its wide applications such as environmental
sensing, health monitoring, and military communica-

tions [2], wireless sensor networks (WSNs) have attracted
considerable attention from the industry and academia.
The security of WSNs is a big concern, since the broadcast
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nature of wireless channels is susceptible to eavesdropping and
the sensing data needs to be protected. In practice, the small-
size, low-cost and low-power sensors are randomly deployed
to sense the data, which is sent back to the sinks by multihop
transmissions. Multihop architectures pose great challenges to
conventional cryptographic methods involving key distribution
and management, and result in high complexity in data encryp-
tion and decryption. Physical layer security has emerged as
an appealing low-complexity approach to secure the informa-
tion transmission. The core idea behind it is to exploit the
characteristics of wireless channels such as fading or noise to
transmit a message from a source to an intended destination
while keeping the message confidential from eavesdroppers.
Motivated by this, the potential applications of physical layer
security have been investigated in various wireless networks
such as cellular networks, cognitive radio, ad-hoc, etc.

A. Physical Layer Security: Current State-of-the-Art

In the 1970s, Wyner first introduced physical layer secu-
rity [3]. Triggered by the rapid evolution of wireless network
architectures, the idea of enabling security at physical layer has
drawn the attention of the wireless community [4]. In cellular
networks, physical layer security is important for adding an
extra level of protection [5], [6]. In [5], secure downlink
transmission in cellular networks was investigated, and the
secrecy using linear precoding based on regularized channel
inversion was examined. In multi-cell environments, the cell
association and location information of mobile users play an
important role in secrecy performance [6]. Although it can
alleviate the scarcity of radio frequency spectrum, security of
cognitive radio networks is critical as it is easily exposed to
external threats [7], [8]. In [7], the optimal secrecy beamform-
ing in a multiple-input single-output (MISO) cognitive radio
wiretap channel was proposed. The beamforming and artificial
noise was proposed to enhance the secure transmission of large
scale spectrum sharing networks [8]. In cooperative networks,
relays are deployed to boost the coverage and reliability,
however, the relay can be trusted [9], [10] or untrusted [11]
where the untrusted relay is thought of as an eavesdropper.
In [9], the design of trusted relay weights and allocation of
transmit power under different relay protocols such as amplify-
and-forward (AF), decode-and-forward (DF), and cooperative
jamming (CJ) was considered. In [10], trusted relay selection
schemes based on the AF and DF protocols were proposed
to improve physical layer security. In untrusted relay net-
works, CJ was introduced to confuse the untrusted relay [11].
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In decentralized networks such as ad-hoc, the public-key
cryptography is expensive and difficult [12]–[14]. In [12], the
secure connectivity in wireless random networks was studied,
and the eigen-beamforming was implemented to maximize
the signal strength to the intended receiver. In [13], the
secrecy transmission capacity in wireless ad-hoc networks
was analyzed, and the secrecy guard zone was introduced
to improve the secrecy transmission capacity. In [14], the
transmit beamforming with artificial noise strategies were
used to enhance the secrecy in large-scale ad-hoc networks.
In [15], the secure communication in twotier heterogeneous
networks (HetNets) was enhanced through massive multiple-
input multiple-output (MIMO).

Physical layer security schemes have been recently proposed
for WSNs to combat eavesdropping [16]–[19]. In [16], the
downlink secure transmission from the mobile agent to the
authorized user was considered and perfect secrecy can be
achieved by intentionally creating channel variation. In [17],
a detection problem under physical layer secrecy constraints in
an energy-constrained WSNs was addressed, and the optimal
operative solutions were analyzed. In [18], sensor transmis-
sions were observed by the authorized fusion center (FC) and
unauthorized (third party) FC. It was shown that physical layer
security for distributed detection is scalable due to its low
computational complexity. More recently in [19], compressed
sensing (CS) was introduced to provide secrecy against eaves-
dropping in addition to the other CS benefits.

B. Approach and Contributions

In this paper, we examine the potential benefits of physical
layer security in a three-tier WSN using stochastic geometry
modeling. In three-tier WSNs, the sensors are located far from
the sinks, and the access points are deployed to help the
sensors forward their data to the sinks. Confidential infor-
mation transmissions are intercepted by the eavesdroppers.
Considering the fact that sensors are densely deployed and
their locations are randomly distributed [2], we introduce sto-
chastic geometry to model the locations of the nodes in WSNs.
Such a modeling approach has been applied in heterogeneous
networks [20] and cognitive radio networks [21]. Our main
contributions are summarized as follows.

• We develop a new analytical framework to examine the
implementation of physical layer security in three-tier
WSNs. The locations and spatial densities of sensors,
access points, sinks, and eavesdroppers are modeled using
stochastic geometry. Each access point is equipped with
multiple antennas and uses the low-complexity maximal-
ratio combining (MRC) to receive the data signals from
the sensors and maximal-ratio transmission (MRT) beam-
former to transmit the signals. We investigate the secure
transmissions between the active sensors and access
points, and beween the active access points and sinks.

• We present new statistical properties, based on which
we derive new compact expressions for the average
secrecy rate between the typical sensor and its associated
access point, and between the typical access point and its
associated sink. We also derive the minimum number of
sinks required for a target average secrecy rate.

TABLE I

NOTATION

Fig. 1. Illustration of three-tier wireless sensor networks, where the sensors
transmit the data to the sinks via the access points, in the presence of
eavesdropping.

Particularly, we derive a new compact expression for
overall average secrecy rate in three-tier WSNs.

• We show that using MRC/MRT at access points can
enhance the secure transmission. Based on the proposed
analysis and simulations, several important observations
are reached: 1) the average secrecy rate decreases as the
number of sensors grows large, due to more interference
from sensors, 2) the average secrecy rate increases with
increasing the number of sinks, because of the shorter
distances between the access points and their associated
sinks, and 3) the overall average secrecy rate increases
with increasing the number of access points. However,
beyond a critical value, the overall average secrecy rate
decreases with increasing the number of access points.

The notation of this paper is given in Table I.

II. SYSTEM DESCRIPTION

As shown in Fig. 1, a three-tier WSN is considered,
where the geographically remote sensors transmit the sensed
data to the sinks with the help of half-duplex decode-and-
forward (DF) access points with no direct links between
sensors and sinks. The eavesdroppers overhears the data trans-
mission without modifying it. In the sensing field, sensors
are randomly located according to a homogeneous Poisson
point process (HPPP) �s with intensity λs . In order to
consider unplanned deployment of the access points and sinks,
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the random locations of the access points and sinks are approx-
imated as independent HPPPs �ap and �sk with intensities
λap and λsk , respectively, which is suitable in large scale
networks [22]. Since the sensors may transmit data intermit-
tently, the activity probability of a sensor that is triggered to
transmit the data is denoted as ρs (0 < ρs < 1), and the
activity probability of an access point that forwards the data
to the sink is denoted as ρap (0 < ρap < 1).1 We assume
that the probability of being an active sensor/access point is
independent of the access point/sink’s location. Therefore, the
active sensors and active access points constitute independent
HPPPs �s,a and �ap,a with intensities λsρs and λapρap,
respectively [22]. Non-colluding eavesdroppers are considered
and eavesdroppers’ locations are modeled as two indepen-
dent HPPPs �s,e and �ap,e with intensities λs

e and λ
ap
e ,

respectively. The eavesdroppers in �s,e intercept the data
transmitted by the sensors and the eavesdroppers in �ap,e

intercept the data transmitted by the access points. Note that
the eavesdroppers in �s,e and in �ap,e are far from each other.

In this three-tier network, the sensor is associated with its
nearest access point to receive the sensor’s data and the access
point is associated with its nearest sink to receive the access
point’s data.2 Each access point is equipped with M antennas,
and the sensors and sinks are single-antenna nodes. To enhance
the information transmission, the access points use MRC to
receive the sensors’ data signals and MRT beamformer to
transmit the signals. The wireless channels are modeled as
independent quasi-static Rayleigh fading.

An arbitrary typical sensor o transmits data to its nearest
access point (called typical access point). The typical access
point not only receives the useful data from the typical
sensor, but is also subject to the interference from other
active sensors and active access points. Thus, the receive
signal-to-interference-plus-noise ratio (SINR) after MRC at its
corresponding typical access point is given by

γap =
∥
∥hs0,a p0

∥
∥

2∣
∣Xs0,a p0

∣
∣
−α

Is,ap + Iap,ap
︸ ︷︷ ︸

I nap

+δ2/Ps
, (1)

where Is,ap = ∑

i∈�s,a\{s0}
∣
∣
∣

hs0 ,a p0
†

‖hs0 ,a p0 ‖hi,a p0

∣
∣
∣

2|Xi,a p0 |−α,

Iap,ap = μ
∑

j∈�ap,a\{a p0}
∣
∣
∣

hs0 ,a p0
†

‖hs0 ,a p0 ‖ H j,a p0

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2|X j,a p0|−α,

and μ = Pap/Ps . Note that the interfering access points
deliver their own data to their corresponding sinks using

MRT beamformer vector
h j,sk j

†

‖h j,sk j ‖ , which are also received

and combined at the typical access point with MRC

1In practical scenarios, the access points operate in three modes: receiving
the sensed data from active sensors, forwarding the sensed data to the sinks,
and idle. The activity probability of sensor only determines the number
of access points which receive the data from the active sensors, and is
independent of the number of access points which forward the data to the
sink. The number of active access points that are triggered to forward the
sensed data to sinks depends on the availability of sinks. As such, ρs and ρap
are independent values.

2In reality, there may be more than one active sensor/access point to choose
the same access point/sink; this can be effectively dealt with using multiple
access techniques.

vector
hs0 ,a p0

†

‖hs0 ,a p0 ‖ . Here, hs0,a p0 and |Xs0,a p0 | are the channel
fading vector and distance between the typical sensor and its
typical access point, respectively, α is the path loss exponent,
hi,a p0 ∈ CM×1 and |Xi,a p0 | are the channel fading vector
and distance between the sensor i and the typical access
point, respectively, H j,a p0 and |X j,a p0| are the channel fading
matrix and distance between the interfering access point j
and the typical access point, respectively, h j,sk j ∈ C1×M

is the channel fading vector between the interfering access
point j and its corresponding sink, Ps is the sensor’s transmit
power, Pap is the access point’s transmit power, and δ2 is the
noise power.

We consider the non-colluding eavesdropping scenario, in
which the most detrimental eavesdropper that has the highest
receive SINR dominates the secrecy rate [9]. An arbitrary
eavesdropper ek that intercepts the sensor and the access
point transmission overhears the useful signal from the typical
sensor to the typical access point, and simultaneously receives
the interfering data from the other active sensors and active
access points. This eavesdropper suffers from the interfering
signals emitted by the other interfering access points using

the MRT beamformer
h j,skk

†

‖h j,skk ‖ . Thus, the received SINR at the
most detrimental eavesdropper in �s,e for the sensor and the
access point transmission is given by

γs,e = max
ek∈�s,e

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣
∣hs0,ek

∣
∣
2∣
∣Xs0,ek

∣
∣
−α

Is,e + Iap,e
︸ ︷︷ ︸

I ns,e

+δ2/Ps

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (2)

where Is,e = ∑

i∈�s,a\{s0}|hi,ek |2|Xi,ek |−α and Iap,e =
∑

j∈�ap,a\{a p0}μ
∣
∣
∣h j,ek

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2|X j,ek |−α , hs0,ek and |Xs0,ek |
are the channel fading coefficient and distance between
the typical sensor and the eavesdropper, respectively,
hi,ek and |Xi,ek | are the channel fading coefficient and distance
between sensor i and the eavesdropper, respectively, and
h j,ek and |X j,ek | are the channel fading vector and distance
between the access point j and the eavesdropper, respectively.

After receiving the typical sensor’s data, the typical access
point ap0 will forward the sensed data to the nearest sink
(called typical sink) sk0 for data collection. Due to the current
transmission from other active access points, the typical sink
suffers from their interferences. As such, the received SINR
at the typical sink sk0 is given by

γsk =
∥
∥ga p0,sk0

∥
∥2∣∣Xa p0,sk0

∣
∣−β

Inap,sk + δ2/Pap
, (3)

where Inap,sk = ∑

j∈�ap,a\{a p0}
∣
∣
∣g j,sk0

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2|X j,sk0 |−β ,

ga p0,sk0 ∈ C1×M and |Xa p0,sk0 | are the channel fading vector
and distance between the typical access point and its typical
sink, respectively, β is the path loss exponent, g j,sk0 ∈ C1×M

and |X j,sk0 | are the channel fading vector and distance between
the access point j and the typical sink, and h j,sk j ∈ C1×M is
the channel fading vector between the access point j and its
associated sink.
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An arbitrary eavesdropper ek that intercepts the typical
access point and the typical sink transmission overhears the
signal transmitted by the typical access point with the MRT

beamformer
ga p0,sk0

†

‖ga p0,Sk0‖ , and suffers from the interfering signals

emitted by other interfering access points with the MRT

beamformer
h j,skk

†

‖h j,skk ‖ . Thus, the received SINR at the most

detrimental eavesdropper for the access point and the sink
transmission is given by

γap,e = max
ek∈�ap,e

{

∣
∣
∣
∣
ga p0,ek

ga p0,sk0
†

∥
∥ga p0,Sk0

∥
∥

∣
∣
∣
∣

2∣
∣Xa p0,ek

∣
∣−β

Inap,e + σ 2/Pap

}

, (4)

where Inap,e = ∑

j∈�ap,a\{a p0}
∣
∣
∣g j,ek

h j,skk
†

‖h j,skk ‖
∣
∣
∣

2|X j,ek |−β ,
ga p0,ek and |Xa p0,ek | are the channel fading coefficient and
distance between the typical access point and the eavesdropper,
respectively, and g j,ek and |X j,ek | are the channel fading vector
and distance between the access point j and the eavesdropper,
respectively.

III. SECRECY PERFORMANCE EVALUATIONS

In this section, we characterize the secrecy performance in
terms of average secrecy rate. Before exhibiting the overall
secrecy performance behaviors, we evaluate the secrecy of
two different links, namely the link between the sensor and
access point, and the link between the access point and sink.
We derive new analytical expressions for the average secrecy
rate, and analyze the impact of the two links on the overall
average secrecy rate.

A. Average Secrecy Rate Between Sensor and Access Point

We evaluate the average secrecy rate based on the worst-
case, where the eavesdropper with the best SINR is used to
calculate the average secrecy rate [9]. Hence, for a typical link
between a typical sensor and its associated access point, the
instantaneous secrecy rate is defined as [23]

Cap
s = [Cap − Cs,e]+, (5)

where [x]+ = max{x, 0}, Cap = log2
(

1 + γap
)

is the capacity
of the channel between the typical sensor and access point, and
Cs,e = log2

(

1 + γs,e
)

is the capacity of the eavesdropping
channel between the typical sensor and the most detrimental
eavesdropper.

1) New Statistics: We derive the cumulative distribution
functions (CDFs) of SINRs at the typical access point and the
most detrimental eavesdropper that intercepts the transmission
between the typical sensor and the access point in Lemma 1
and Lemma 2, respectively.

Lemma 1: The CDF of SINR at the typical access point is
derived as (6) shown at the bottom of this page.

Proof: See Appendix A. �
Lemma 2: The CDF of SINR at the most detrimental eaves-

dropper which intercepts the transmission between the typical
sensor and the access point is derived as

Fγs,e (γth)

= exp

{

−πλs
e

∫ ∞

0
exp

{

−
(

λsρs + λapρapμ
2/α

)

π

� (1 + 2/α) � (1 − 2/α) (γth)
2
α t − δ2γthtα/2/Ps

}

dt .

(7)
Proof: See Appendix B. �

2) Average Secrecy Rate: Based on our fundamental work
in [24], the average secrecy rate between the sensor and
the access point is the average of secrecy rate Cap

s over
γs,e and γap, which can be written as

C̄ap
s = 1

ln 2

∫ ∞

0

Fγs,e (x)

1 + x
(1 − Fγap (x))dx . (8)

By substituting the CDF of γap in (6) and the CDF
of γs,e in (7) into (8), we can obtain the average secrecy rate
between the sensor and the access point.

Note that the derived average secrecy rate between the sen-
sor and the access point in (8) is not in a simple form. As such,
in the following corollary, we present the interference-limited

Fγap (γth) = 1 − 2πλap
(

1 − ρap
)
∫ ∞

0
r exp

{

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α) (γth)
2
α r2−γthrαδ2/Ps

− πλap
(

1 − ρap
)

r2
}

dr − 2πλap
(

1 − ρap
)

M−1∑

m=1

(rα)m

(−1)m

∑ 1
m∏

l=1
ml !l!ml

×
∫ ∞

0
r exp

{

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α) (γth)
2
α r2 − γthrαδ2/Ps − πλap

(

1 − ρap
)

r2
}

×
[

− 2/α
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α) (γth)
2/αr (2−α) − γthδ

2/Ps

]m1
m
∏

l=2

×
[

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α) (γth)
2/α

l−1
∏

j=0

(2/α − j) r2−lα
]ml

dr, (6)

where
m
∑

l=1

l · ml = m.
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case for the average secrecy rate with a single antenna at the
access point.

Corollary 1: When the access points are equipped with
single antenna in the interference-limited scenario, the aver-
age secrecy rate between the sensor and the access point is
given by

C̄ap
s = πλap

(

1 − ρap
)

ln 2

∫ ∞

0

× exp
{−πλs

e/
(

�1x2/α
)}

(1 + x)
(

�1x2/α + πλap
(

1 − ρap
))dx, (9)

where �1 =
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α) .

B. Average Secrecy Rate Between Access Point and Sink

Similar to (5), for a typical access point and its associated
sink, the instantaneous secrecy rate is defined as

Csk
s = [Csk − Cap,e]+, (10)

where Csk = log2 (1 + γsk) and Cap,e = log2
(

1 + γap.e
)

.
1) New Statistics: We derive the CDFs of SINRs at the typ-

ical sink and the most detrimental eavesdropper that intercepts
the transmission between the typical access point and the sink
in Lemma 3 and Lemma 4, respectively.

Lemma 3: The CDF of SINR at the typical sink is
derived as

Fγsk (x) = 1 − 2πλsk

∫ ∞

0
r exp

×
{

−λapρapπ� (1 + 2/β)� (1 − 2/β) (γth)
2
β r2

− γthrβδ2/Pap − πλskr2
}

dr

− 2πλsk

M−1
∑

m=1

1

(−1)m

∑ 1
m∏

l=1
ml !l!ml

∫ ∞

0
rβm+1 exp

×
{

−λapρapπ� (1 + 2/β) � (1 − 2/β) (γth)
2
β r2

− γthrβδ2/Pap − πλskr2
}

[

− λapρapπ
2

β
� (1 + 2/β) � (1 − 2/β)

× (γth)
2
β r2−β − γthδ2/Pap

]m1
m
∏

l=2

×
[

− λapρapπ� (1 + 2/β)� (1 − 2/β) (γth)
2
β

×
l−1
∏

j=0

(2/β − j) r2−lβ
]ml

dr. (11)

Proof: See Appendix C. �
Lemma 4: The CDF of SINR at the most detrimental eaves-

dropper which intercepts the transmission between the typical
access point and the sensor is derived as

Fγap,e (x) = exp
{

−πλ
ap
e

∫ ∞

0
exp

{−λapρapπ� (1 + 2/β)

� (1 − 2/β) γth
2
β t − σ 2γthtβ/2/Pap

}

dt
}

.

(12)
Proof: See Appendix D. �

2) Average Secrecy Rate: The average secrecy rate between
the access point and the sink is the average of the secrecy rate
Csk

s over γsk and γap,e, which is given by

C̄sk
s = 1

ln 2

∫ ∞

0

Fγsk (x)

1 + x
(1 − Fγap,e (x))dx . (13)

By substituting the CDF of γsk in (11) and the CDF of γap,e

in (12) into (13), we can obtain the average secrecy rate
between the access point and the sink.

Note that the derived average secrecy rate between the
access point and the sink is also not in a simple form, we
present the interference-limited case for the average secrecy
rate with single antenna at the access point in the following
corollary.

Corollary 2: When the access points are equipped with sin-
gle antenna in the interference-limited scenario, the average
secrecy rate between the access point and the sink is given by

C̄sk
s = πλsk

ln 2

∫ ∞

0

exp
{−πλ

ap
e /�2x2/β

}

(1 + x)
(

�2x2/β + πλsk
)dx, (14)

where �2 = λapρapπ� (1 + 2/β) � (1 − 2/β) . Based
on (14), for a specific target average secrecy rate C̄0 between
the access point and the sink, the number of sinks must satisfy

λsk > C̄0�2
ln 2

πε
, (15)

where ε = ∫∞
0

exp
{−πλ

ap
e /

(

�2 x2/β
)}

(1+x)x2/β dx.

C. Overall Average Secrecy Rate

In this subsection, we derive the overall average secrecy rate
in three-tier WSNs. The instantaneous secrecy rate is defined
as Cs = min

(

Cap
s , Csk

s

)

. As such, the overall average secrecy
rate is calculated as

C̄s =
∫ ∞

0
x fCs (x) dx =

∫ ∞

0

(

1 − FCs (x)
)

dx, (16)

where fCs (x) and FCs (x) is the probability density func-
tion (PDF) and the CDF of Cs , respectively. The CDF of Cs

is calculated as

FCs (x) = Pr
(

min
(

Cap
s , Csk

s

)

< x
)

= 1 − Pr
(

min
(

Cap
s , Csk

s

)

> x
)

= 1 − Pr
(

Cap
s > x

)

Pr
(

Csk
s > x

)

. (17)

Substituting (17) into (16), we have

C̄s =
∫ ∞

0
Pr

(

Cap
s > x

)

Pr
(

Csk
s > x

)

dx, (18)

where

Pr
(

Cap
s > x

) = 1 −
∫ ∞

0
fγs,e (t) Fγap

(

2x (1 + t) − 1
)

dt

(19)

and

Pr
(

Csk
s > x

)

= 1 −
∫ ∞

0
fγap,e (t) Fγsk

(

2x (1 + t) − 1
)

dt .

(20)
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Fig. 2. The average secrecy rate versus λs
e

λs
. λs = 10−2, ρs = 0.01,

λap = 10−2, ρap = 0.1, α = 3.5, Pap = 25 dBm.

Here, fγs,e is the derivative of Fγs,e given in (7), and fγap,e is
the derivative of Fγap,e given in (12).

Unfortunately, the derived overall average secrecy rate
between the sensor and the sink is not in a simple form,
which motivates us to consider the interference-limited case
with single antenna at the access point, as presented in the
following corollary.

Corollary 3: When the access points are equipped with
single antenna in the interference-limited scenario, the overall
average secrecy rate between the sensor and the sink is
given by

C̄s =
∫ ∞

0

[∫ ∞

0

2πλs
e

α�1 y2/α+1 exp
{−πλs

e/
(

�1 y2/α
)}

× πλap
(

1 − ρap
)

�1(2x (1 + y) − 1)2/α + πλap
(

1 − ρap
)dy

]

×
[∫ ∞

0

2π2λ
ap
e λsk exp

{−πλ
ap
e /�2 y2/β

}

β�2y2/β+1
(

�2(2x (1+y)−1)2/β + πλsk
)dy

]

dx,

(21)

where �1 =
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α) � (1 − 2/α)

and �2 = λapρapπ� (1 + 2/β) � (1 − 2/β) .

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples to show
the average secrecy rate of the three-tier WSN. We assume
that the sensor’s transmit power Ps = 15 dBm, the power
spectral density of noise is −170 dBm/Hz, and the bandwidth
is 1 MHz. We also assume that all the channel gains follow
a complex Gaussian distribution with zero mean and unit
variance. In all the figures, we see a precise match between
the simulations and the exact analytical curves, which validate
our analysis.

A. Average Secrecy Rate Between Sensor and Access Point
Fig. 2 plots the average secrecy rate between the sensor

and the access point versus λs
e/λs . The analytical results are

obtained from (8). We first see that the average secrey rate
decreases with increasing the density of eavesdroppers that
intercepts the transmission between sensor and access point,
due to the detrimental effects of eavesdropping. We also see
that the average secrecy rate increases with increasing the

Fig. 3. The average secrecy rate versus λs . ρs = 0.05, ρap = 0.5, λs
e = 10−3,

α = 3.5, Pap = 25 dBm.

Fig. 4. The average secrecy rate versus
λap

λ
ap
e

. ρap = 0.1, λsk = 10−2,

β = 3.5, Pap = 15 dBm.

number of antennas at the access point, which results from
the array again brought by using MRC at the access point.

Fig. 3 plots the average secrecy rate between the sensor
and the access point versus λs for various λap and M .
The analytical results are obtained from (8). An interesting
observation is that for the same number of antennas M , the
average secrecy rate is nearly invariable for λs < 2 × 10−3,
since the interference from other sensors is much smaller than
the interference from the active access points, and slightly
increasing the interference from the sensor imposes negligible
effect on the performance. However, when λs > 2 × 10−3,
the interference from other sensors is comparable with the
interference from the active access points, and increasing the
interference from the sensor degrades the secrecy performance.
We also observe that increasing λap increases the average
secrecy rate. This is because with more access points, the
distance between the typical sensor and the typical access
point becomes shorter, which improves the average secrecy
rate. In addition, we find that increasing λap slows down the
decreasing trend of average secrecy rate when λs increases.

B. Average Secrecy Rate Between Access Point and Sink
Fig. 4 plots the average secrecy rate between the access

point and the sink versus λ
ap
e /λap for various λap and M .

The analytical results are obtained from (13). We first
observe that the average secrecy rate decreases with increasing
λ

ap
e /λap , which indicates that more access points need to be
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Fig. 5. The average secrecy rate versus λap . ρap = 0.1, β = 3, λ
ap
e = 10−3,

Pap = 25 dBm.

deployed as the density of eavesdroppers increases, to combat
eavesdropping. Second, with the same number of antennas
at the access point, the average secrecy rate decreases with
increasing λ

ap
e . The average secrecy rate between the access

point and the sink improves with increasing the number of
antennas at the access point M .

Fig. 5 plots the average secrecy rate between the access
point and the sink versus λap for various λsk and M . The
analytical results are obtained from (13). We observe that the
average secrecy rate alters slightly for λap < 2 × 10−3, and
decreases with increasing λap for λap > 2×10−3. This can be
explained by the fact that for λap < 2×10−3, the interference
from the active access points is relatively small compared with
the noise, and increasing the number of access points scarcely
influence the performance. However, for λap > 2 × 10−3,
the interference from the access point imposes a dominant
impact on the SINR between the access point and the sink, thus
increasing the interference from the access points degrades the
average secrecy rate. Another observation is that the average
secrecy rate improves with increasing the density of sink,
because the distance between the typical access point and the
corresponding sink becomes shorter.

C. Overall Average Secrecy Rate
Fig. 6 plots the overall average secrecy rate versus λap

for various λs and λsk . The analytical results are obtained
from (18). Interestingly, we find that the overall average
secrecy rate first increases, and then decreases with increas-
ing λap , which implies that there exists an optimal λap to
achieve the maximum average secrecy rate. This phenomenon
can be well explained by the tradeoff between the benefits
brought by the shorter distance from the typical sensor to
the typical access point and the detrimental effects caused
by more interference from the active access points due to
increasing λap . It is also seen that the overall average secrecy
rate can be improved by deploying more sinks, due to the
shorter distance between the access point and the sink. It is
further demonstrated that deploying more sensors in this
network may not greatly degrade the average secrecy rate due
to the low transmit power of sensors. More importantly, it is
shown that the optimal λap is more dependent on the λsk .

Fig. 7 plots the overall average secrecy rate versus λap for
various λs

e, λ
ap
e and M . The analytical results are obtained

Fig. 6. The average secrecy rate versus λap . Pap = 30 dBm, M = 2,
ρs = 0.01, ρap = 0.1, α = 2.8, β = 3.2, λs

e = λ
ap
e = 5 ∗ 10−3.

Fig. 7. The average secrecy rate versus λap . Pap = 30 dBm, ρs = 0.01,
ρap = 0.1, α = 2.8, β = 3.2, λs = λsk = 10−2.

from (18). Similar as Fig. 6, we see that the overall average
secrecy rate first increases, and then decreases with increas-
ing λap . As expected, the average secrecy rate decreases with
increasing eavesdroppers. It is indicated that the optimal λap

for achieving the maximum average secrecy rate does not alter
drastically with different λs

e and λ
ap
e .

V. CONCLUSION

We have analyzed the physical layer security of three-tier
WSNs. We have examined the impact of random locations
and spatial densities of sensors, access points, sinks, and
external eavesdroppers on the secrecy performance. We have
also obtained new expressions for the average secrecy rate.
Based on our analysis, we have established the importance of
physical layer security in three-tier WSNs, where our results
support useful guidelines on secure transmission in practical
WSNs. An important result is the minimum number of sinks
required for a target average secrecy rate, which facilitates
secure node deployment design in WSNs.

APPENDIX A
PROOF OF LEMMA 1

From (1), the CDF of γap is given by

Fγap (γth) =
∫ ∞

0
Pr

[
∥
∥hs0,a p0

∥
∥

2
r−α

Inap + δ2/Ps
≤ γth

]

f∣∣Xs0,a p0

∣
∣ (r) dr

=
∫ ∞

0
Pr

[
∥
∥hs0,a p0

∥
∥2∣∣Xs0,a p0

∣
∣−α

Inap + δ2/Ps
≤ γth

]

2πλap
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× (

1 − ρap
)

r exp
(

−πλap
(

1 − ρap
)

r2
)

dr,

(A.1)

where f∣∣Xs0 ,a p0

∣
∣ (r) is the PDF of the nearest distance between

the access point and the typical sensor. The CDF of the access
point SINR at distance r from its corresponding sensor is
given as

Pr
[
∥
∥hs0,a p0

∥
∥2

r−α

Inap + δ2/Ps
≤ γth

]

= 1 −
M−1∑

m=0

1

m!��s,a

×
{

��ap,a

{∫ ∞

0

[

γthrα
(

τ + δ2/Ps

)]m

exp
[

−γthrα
(

τ + δ2/Ps

)]

d Pr
(

Inap ≤ τ
)}}

. (A.2)

We then substitute
(− (

τ + δ2/Ps
)

γth
)m

e−(

τ+δ2/Ps
)

γ
{s}
th rα=

dm
(

e−γth x(τ+δ2/Ps)
)

dxm

∣
∣
∣
∣
x=rα

into (A.2), we rewrite the CDF of the

access point SINR at distance r from its corresponding sensor
as

Pr
[
∥
∥hs0,a p0

∥
∥2

r−α

Inap + δ2/Ps
≤ γth

]

= 1 −��s,a

{

��ap,a

{ ∫ ∞

0
exp

[

−γthrα
(

τ + δ2/Ps

)]

d Pr

× (

Inap ≤ τ
) }} −

M−1
∑

m=1

(rα)m

m!(−1)m��s,a

×
{

��ap,a

{∫ ∞

0

dm
(

e−γth x
(

τ+δ2/Ps
))

dxm

∣
∣
∣
∣
∣
∣
x=rα

d Pr

× (

Inap ≤ τ
)
}}

= 1 − exp
(

−γthrαδ2/Ps

)

LI nap

(

γthrα
)

−
M−1
∑

m=1

(rα)m

m!(−1)m

dm
(

exp
(−γthxδ2/Ps

)LI nap (γthx)
)

dxm

∣
∣
∣
∣
∣
x=rα

.

(A.3)

Remind that Is,ap = ∑

i∈�s,a\{s0}
∣
∣
∣
∣

hs0 ,a p0
†

∥
∥hs0 ,a p0

∥
∥

hi,a p0

∣
∣
∣
∣

2∣
∣Xi,a p0

∣
∣
−α

,

using Slivnyak’s theorem, the Laplace transform of Is,ap is

LIs,ap (s)

= ��s

⎡

⎣exp

⎧

⎨

⎩
−s

∑

i∈�s,a\{s0}

∣
∣
∣
∣
∣

hs0,a p0
†

∥
∥hs0,a p0

∥
∥

hi,a p0

∣
∣
∣
∣
∣

2
∣
∣Xi,a p0

∣
∣−α

⎫

⎬

⎭

⎤

⎦

(a)= exp

⎧

⎨

⎩
−2πλsρs

∫ ∞

0

⎛

⎝1 − L hs0,a p0
†

‖hs0 ,a p0‖ hi,a p0

(

sy−α
)

⎞

⎠ydy

⎫

⎬

⎭

(b)= exp

{

−2πλsρs

∫ ∞

0

(

1 − 1

1 + sy−α

)

ydy

}

= exp
{

−λsρsπ� (1 + 2/α)� (1 − 2/α) s2/α
}

, (A.4)

In (A.4), (a) follows from the generating functionnal of HPPP

in [25], (b) follows from the fact that
∣
∣
∣

hs0 ,a p0
†

‖hs0 ,a p0 ‖ hi,a p0

∣
∣
∣

2 ∼
exp(1).

Since Iap,ap = μ
∑

j∈�ap,a\{a p0}
∣
∣
∣

hs0 ,a p0
†

‖hs0 ,a p0 ‖H j,a p0

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2

|X j,a p0|−α = μ
∑

j∈�ap\{a p0}H ap,ap
j |X j,a p0|−α, the Laplace

transform of Iap,ap is

LIap,ap (s)

= exp
(

− ∫
[

1 −�h

(

exp
(

−sμH ap,ap
j y−α

))]

× λapρap2πydy
)

(c)= exp

{

−λapρapπμ
2
α�h

{(

H ap,ap
j

) 2
α

}

�

(

1 − 2

α

)

s
2
α

}

(d)= exp
{

−λapρapπμ
2
α � (1 + 2/α) � (1 − 2/α) s2/α

}

,

(A.5)

where (c) follows from the generating functionnal of HPPP
in [25], (d) follows from H j ∼ exp (1).

With the Laplace transform of Is,ap and Iap,ap , we derive
the Laplace transform of Inap as

LI nap (s) = LIs,ap (s)LIap,ap (s)

= exp
{

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α)

× � (1 − 2/α) s2/α
}

. (A.6)

Substituting (A.6) into (A.3), we obtain

Pr
[
∥
∥hs0,a p0

∥
∥2

r−α

Inap + δ2/Ps
≤ γth

]

= 1 − exp
{

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α)

× � (1 − 2/α) (γth)
2/αr2−γthrαδ2/Ps

}

−
M−1
∑

m=1

(rα)m

m!(−1)m
dm (V (x))

dxm

∣
∣
∣
∣
x=rα

, (A.7)

where V (x) = exp
{ − (

λsρs + λapρapμ
2
α
)

π�(1 + 2/α)

�(1 − 2/α)(γthx)2/α − γthxδ2/Ps
}

.
We then apply the Faà di Bruno’s formula to solve the

derivative of mth order as follows:

Pr
[
∥
∥hs0,a p0

∥
∥

2
r−α

Inap + δ2/Ps
≤ γth

]

= 1 − exp
{

−
(

λsρs + λapρapμ
2
α

)

π� (1 + 2/α)

× � (1 − 2/α) (γth)
2/αr2 − γthrαδ2/Ps

}

−
M−1
∑

m=1

(rα)m

(−1)m

∑ 1
m∏

l=1
ml !l!ml

exp

×
{

−
(

λsρs + λapρapμ
2/α

)

π� (1 + 2/α) � (1 − 2/α)

× (γth)
2/αr2 − γthrαδ2/Ps

}

[

−2/α
(

λsρs + λapρapμ
2/α

)

π� (1 + 2/α) � (1 − 2/α)
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(γth)
2
α r (2−α) − γthδ

2/Ps

]m1
m
∏

l=2

×
[

−
(

λsρs + λapρapμ
2/α

)

π� (1 + 2/α) � (1 − 2/α)

× (γth)
2
α

l−1
∏

j=0

(2/α − j) r2−lα
]ml

. (A.8)

Substituting (A.8) into (A.1), we derive the CDF of γap

in (6).

APPENDIX B
PROOF OF LEMMA 2

From (2), the CDF of γs,e is given by

Fγs,e (γth) = Pr

{

max
ek∈�s,e

{∣
∣hs0,ek

∣
∣2
∣
∣Xs0,ek

∣
∣−α

Ins,e + δ2/Ps

}

≤ γth

}

(a)= exp

{

−λs
e ∫

R2
e−δ2γth

∣
∣Xs0 ,ek

∣
∣α/PsLI ns,e

× (

γth
∣
∣Xs0,ek

∣
∣α
)

d
∣
∣Xs0,ek

∣
∣

}

(b)= exp

{

−2πλs
e

∫ ∞

0
e−δ2γthrα/PsLI ns,e

× (

γthrα
)

rdr

}

, (B.1)

where (a) follows from the generating functionnal of HPPP
in [25], (b) is obtained by converting cartesian coordinates to
polar coordinates.

Using the generating functionnal of HPPP in [25],
∣
∣hi,ek

∣
∣2 ∼

exp (1), and H ap,e
j =

∣
∣
∣
∣
∣
h j,ek

h j,sk j
†

∥
∥
∥h j,sk j

∥
∥
∥

∣
∣
∣
∣
∣

2

∼ exp (1), we derive the

Laplace transform of Is,e and Iap,e as

LIs,e (s)

= exp
(

− ∫
[

1 −�h

(

exp
(

−s
∣
∣hi,ek

∣
∣
2
y−α

))]

λsρs2πydy
)

= exp
{

−λsρsπ� (1 + 2/α) � (1 − 2/α) s2/α
}

, (B.2)

and

LIap,e (s)

= exp
(

− ∫
[

1 −�h

(

exp
(

−sμH ap,e
j y−α

))]

λapρap2πydy
)

= exp
{

−λapρapπμ
2
α � (1 + 2/α) � (1 − 2/α) s2/α

}

,

(B.3)

respectively.
With the Laplace transform of Is,e and Iap,e, we derive the

Laplace transform of Ins,e as

LI ns,e (s) = exp
{

−λsρsπ� (1+ 2/α) � (1− 2/α) s2/α− λap

× ρapπμ2/α� (1+2/α) � (1 − 2/α) s2/α
}

.

(B.4)

Substituting (B.4) into (D.1), we derive the CDF of γs,e

in (7).

APPENDIX C
PROOF OF LEMMA 3

From (3), the CDF of γsk is given by

Fγsk (γth) =
∫ ∞

0
Pr

[ ∥
∥ga p0,Sk0

∥
∥2

r−β

Inap,sk + δ2/Pap
≤ γth

]

2πλskr

× exp
(

−πλskr2
)

dr. (C.1)

The CDF of the sink SINR at distance r from its
corresponding access point is derived as

Pr

[ ∥
∥ga p0,sk0

∥
∥

2
r−β

Inap,sk + δ2/Pap
≤ γth

]

= 1 −
M−1
∑

m=0

1

m!��ap,a

×
{∫ ∞

0

[

γthrβ
(

τ + δ2/Pap

)]m
exp

[−γthrβ

×
(

τ + δ2/Pap

)]

d Pr
(

Inap,sk ≤ τ
) }

. (C.2)

Note that (−(τ + δ2/Pap)γth)me−(τ+δ2/Pap)γ
{s}
th rβ =

dm(e−γth x(τ+δ2/Pap))
dxm

∣
∣
∣
x=rβ

, we rewrite (C.2) as

Pr

[ ∥
∥ga p0,sk0

∥
∥

2
r−β

Inap,sk + δ2/Pap
≤ γth

]

= 1 −��ap,a

{∫ ∞

0
exp

[

−γthrβ
(

τ + δ2/Pap

)]

d Pr

× (

Inap,sk ≤ τ
)
}

−
M−1∑

m=1

(

rβ
)m

m!(−1)m��ap,a

×
⎧

⎨

⎩

∫ ∞

0

dm
(

e−γth x
(

τ+δ2/Pap
))

dxm

∣
∣
∣
∣
∣
∣
x=rβ

d Pr
(

Inap,sk ≤ τ
)

⎫

⎬

⎭

= 1 − exp
(

−γthrβδ2/Pap

)

LI nap,sk

(

γthrβ
) −

M−1
∑

m=1

(

rβ
)m

m!(−1)m

dm
(

exp
(−γthxδ2/Pap

)LI nap,sk (γthx)
)

dxm

∣
∣
∣
∣
∣
x=rβ

. (C.3)

Since Inap,sk = ∑

j∈�ap,a\{a p0}
∣
∣
∣g j,sk0

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2|X j,sk0 |−β ,

using the generating functionnal of HPPP and
∣
∣
∣g j,Sk0

h j,sk j
†

‖h j,sk j ‖
∣
∣
∣

2 ∼ exp(1), we derive the Laplace transform

of Inap,sk as

LI nap,sk (s) = exp
{

−λapρapπ� (1+ 2/β) � (1− 2/β) s2/β
}

.

(C.4)

Substituting (C.4) into (C.3), we obtain

Pr

[ ∥
∥ga p0,sk0

∥
∥2

r−β

Inap,sk + δ2/Pap
≤ γth

]

= 1 − exp
{

−λapρapπ� (1 + 2/β)� (1 − 2/β)

× (γth)2/βr2 − γthrβδ2/Pap

}
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−
M−1
∑

m=1

(

rβ
)m

m!(−1)m
dm (U (x))

dxm

∣
∣
∣
∣
x=rβ

(C.5)

with U(x) = exp
{ − λapρapπ�(1 + 2/β)�(1 − 2/β)

(γthx)2/β − γthxδ2/Pap
}

.
We then apply the Faà di Bruno’s formula to solve the

derivative of mth order as follows:

dm
[

exp (U (x))
]

dxm

∣
∣
∣
∣
∣
x=rβ

=
∑ 1

m∏

l=1
ml !l!ml

exp
{

−λapρapπ� (1 + 2/β) � (1 − 2/β)

× (γth)
2/βr2 − γthrβδ2/Pap

}

×
[

− λapρapπ
2

β
� (1 + 2/β) � (1 − 2/β)

× (γth)
2/βx2/β−1 − γthδ2/Pap

]m1

×
m
∏

l=2

[

− λapρapπ� (1 + 2/β) � (1 − 2/β)

× (γth)
2/β

l−1
∏

j=0

(2/β − j) x2/β−l
]ml

. (C.6)

Based on (C.6), (C.5), and (C.1), we derive the CDF of γsk

in (11).

APPENDIX D
PROOF OF LEMMA 4

From (4), the CDF of γap,e is given by

Fγs,e (γth) = ��ap,a

{

��ap,e

{
∏

e�ap,e

Pr

{ ∣
∣ga p0,ek

∣
∣
2

Inap,e + σ 2/Pap

× ∣
∣Xa p0,ek

∣
∣
−β ≤ γth

∣
∣
∣
∣
�ap,a,�ap,e

}}

(a)= exp
{

−λ
ap
e

∫

R2
e−σ 2γth

∣
∣Xa p0,ek

∣
∣β/Pap

× LI nap,e

(

γth
∣
∣Xa p0,ek

∣
∣β
)

de
}

(b)= exp
{

− 2πλ
ap
e

∫ ∞

0
e−σ 2γthrβ/Pap

× LI nap,e

(

γthrβ
)

rdr
}

, (D.1)

where (a) follows from the generating functionnal of HPPP
in [25], (b) is obtained by converting cartesian coordinates to
polar coordinates.

Using the generating functionnal of HPPP in [25], we derive
the Laplace transform of Iap,e as

LIap,e (s) = exp
{

−λapρapπ� (1 + 2/β) � (1 − 2/β) s2/β
}

.

(D.2)

Plugging (D.2) into (D.1), we derive the CDF of γs,e in (12).
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