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This paper investigates the permutation ambiguity problem in frequency-domain blind source separation
and proposes a robust permutation alignment algorithm based on inter-frequency dependency, which
is measured by the correlation coefficient between the time activity sequences of separated signals. To
calculate a global reference for permutation alignment, a multi-band multi-centroid clustering algorithm
is proposed where at first the permutation inside each subband is aligned with multi-centroid clustering
and then the permutation among subbands is aligned sequentially. The multi-band scheme can reduce
the dynamic range of the activity sequence and improve the efficiency of clustering, while the multi-
centroid clustering scheme can improve the precision of the reference and reduce the risk of wrong
permutation among subbands. The combination of two techniques enables to capture the variation
of the time–frequency activity of a speech signal precisely, promising robust permutation alignment
performance. Extensive experiments are carried out in different testing scenarios (up to reverberation
time of 700 ms and 4 × 4 mixtures) to investigate the influence of two parameters, the number
of subbands and the number of clustering-centroids, on the performance of the proposed algorithm.
Comparison with existing permutation alignment algorithms proves that the proposed algorithm can
improve the robustness in challenging scenarios and can reduce block permutation errors effectively.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Blind source separation has attracted considerable attention in
research communities in recent years. Its main objective is to sepa-
rate multiple sources mixed through unknown channels using only
the observations of their mixtures. It has found a lot of potential
applications including noise robust speech recognition, crosstalk
separation in telecommunications, biomedical signal analysis and
so on. The term “blind” means that separation is done without us-
ing any information about the mixing channels and the sources.
The simplest BSS model assumes the existence of independent sig-
nals and the observation of their mixtures being linear and instan-
taneous. This problem can be solved by independent components
analysis (ICA) [1,2]. A more challenging case is when the sources
are mixed through convolutive channels [3]. This situation is com-
mon for audio applications where signals are recorded in a rever-
berant environment. Long reverberation time and non-stationary
mixing conditions make the estimation of the original source sig-
nals a challenging task [4,5]. In addition, the high computational
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complexity hampers the application of the algorithms in real-time
devices.

Traditional approaches to solve the convolutive blind source
separation problem can be classified into two categories: time-
domain and frequency-domain. In time-domain BSS, the separa-
tion network is derived by optimizing a time-domain cost function
[6–8]. These approaches may not be effective due to slow con-
vergence and large computation load. In frequency-domain BSS,
the observed time-domain signals are converted into the time–
frequency domain by short-time Fourier transform (STFT), and then
an instantaneous BSS algorithm is applied to each frequency bin,
after which the separated signals of all frequency bins are com-
bined and inverse-transformed back to the time domain [9–13].
Although satisfactory instantaneous separation may be achieved at
all frequency bins, combining them to recover the original sources
is a challenge because there are unknown permutations associated
with individual frequency bins. This permutation ambiguity should
be dealt with properly so that the separated frequency components
from the same source are grouped together.

There are generally three strategies to tackle the permutation
ambiguity problem:
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• The first strategy is to exploit the continuity of the separa-
tion matrices across frequencies. In [7,14,15], separation filters
of shorter length relative to the fast Fourier transform (FFT)
block size are used so that the separation filters are smooth
across frequencies and hence the permutation ambiguities are
avoided. In [16], the magnitude continuity of the separation
filters is used to align the permutation. In [17] a recursively
regularized ICA (RR-ICA) algorithm is proposed which uses a
predicted separation matrix from previous frequency bins as
the initialization for the current bin. With this recursive initial-
ization scheme, the phase continuity of the separation filters is
maintained and the permutation ambiguities are minimized.

• The second strategy is to use the time structure of separated
frequency bins, such as the inter-frequency dependency of the
amplitude of separated signals [18,19], assuming high cor-
relation between neighboring bins. Aligning consecutive bins
using inter-frequency dependency may be precise but not ro-
bust, since a single wrong permutation leads to whole blocks
of falsely permuted bins. This is referred to as misalignment
spread. To solve this problem, clustering-based and region-
wise permutation alignment schemes are proposed [19–23].
As a particular formulation of joint blind source separation
[24,25], independent vector analysis (IVA) algorithms are pro-
posed which directly incorporate the inter-frequency depen-
dency measure into instantaneous ICA so that permutation
ambiguities can be minimized by a joint optimization across
all the frequency bins [26–30].

• The last strategy is to use position information of the sources
such as direction of arrival (DOA) or time difference of ar-
rival (TDOA) [31–34]. It is believed that contributions from
the same source are likely to come from the same direction.
By estimating the arriving delay of the sources or analyzing
the directivity pattern formed by a separation matrix, source
directions can be estimated and permutations aligned. The
major drawback of this approach is that the assumption of
sources originating from specific directions is only valid in
low reverberation. Although robust in low reverberation, the
performance of this strategy degrades significantly in highly
reverberant environments. In addition, it fails to align the per-
mutation when the two sources are closely spaced. In [35–38],
source direction information and inter-frequency dependency
of the separated signals are combined to get a precise and ro-
bust permutation result.

In this paper we aim at solving the permutation ambiguity
problem based on inter-frequency dependency of separated sig-
nals, which can be measured by the correlation of the time activity
sequences at individual frequency bins. The frequency-dependent
time activity sequence, as can be calculated from the power ra-
tio of the separated signals, has proven to show strong depen-
dency between two frequencies if they come from the same source
[19]. The key of permutation alignment is to find a frequency-
independent global reference for each source respectively. By align-
ing to the reference the permutation can be corrected across the
whole frequency band. Several ways have already been proposed
to estimate such a reference:

• The simplest way is to use the time-activity sequence at an
adjacent bin as a reference to align the permutation at the
current bin [22]. Obviously, this bin-wise processing is sensi-
tive to the permutation error at an individual bin, leading to
misalignment spread.

• In [22], a region-growing algorithm is proposed, which di-
vides the full frequency band into multiple regions based on
the bin-wise permutation alignment result and then merges
these regions together in a region-growing way, and shown to
prevent misalignment spread effectively. The region-growing
algorithm calculates the reference adaptively by doing permu-
tation alignment and reference update simultaneously during
its region-growing procedure. One disadvantage is that the
permutation errors at individual bins may accumulate during
the region-growing procedure, leading to possibly wrong up-
dates of the reference.

• Clustering-based algorithms, which perform one-centroid [19]
or multi-centroid clustering across the whole frequency band
[20], are proposed to estimates centroid sequences for each
source and uses them as a global reference for permutation
alignment. In [21] this work is extended to an underdeter-
mined separation problem. Compared with the region-growing
algorithm, the clustering-based algorithm performs the two
tasks of reference calculation and permutation alignment sep-
arately. It is less affected by the permutation alignment results
at individual bins and thus tends to be more robust espe-
cially when a multi-centroid scheme is employed. However,
although the time activity of a speech signal shows strong
inter-frequency similarity, it still varies slowly with frequency.
In some case, it is difficult to find a global reference that is
consistent to all the bins throughout the frequency band. As
a result, permutation errors still occur at some bins or even
throughout a block of bins.

Given the deficiencies of the existing algorithms above, we pro-
pose a multi-band multi-centroid clustering algorithm to better
estimate the reference. The proposed algorithm in essence is a
combination of multi-band processing and multi-centroid cluster-
ing, i.e., the whole frequency band is split into multiple bands, and
in each subband the permutation reference is estimated in a multi-
centroid way. After the permutation correction inside each sub-
band, the permutation between these subbands is aligned sequen-
tially to recover the full frequency band. The multi-band scheme
can reduce the dynamic range of the activity sequences and im-
prove the efficiency of clustering; while the multi-centroid cluster-
ing scheme can improve the precision of the reference and reduce
the risk of wrong permutation among subbands. The combination
of two techniques can capture the variation of the time–frequency
activity of a speech signal more precisely and hence promises bet-
ter permutation alignment results. Based on the principle of the
proposed algorithm, the number of subbands and the number of
centroids play important roles on the permutation alignment per-
formance. The impact of the two parameters will be investigated
in this paper.

One issue which has not been studied well in previous papers
is the robustness of a permutation alignment algorithm, i.e., it may
perform well for one mixing scenario but fails in another case. For
this reason, the performance of the permutation alignment algo-
rithm is investigated extensively in various mixing scenarios with
different reverberation time (up to 700 ms), number of sources (up
to 4), and testing files. To make a comprehensive evaluation, four
objective measures (the mean performance and robustness perfor-
mance in terms of permutation error and signal-interference-ratio)
are newly defined and computed with multiple testing files. Ex-
perimental results clearly show the superior performance of the
proposed method over the single-band multi-centroid algorithm.
Especially, it can improve the robustness and reduce block permu-
tation errors effectively. Finally, comparison with other referenced
permutation alignment algorithms in both simulated and real en-
vironments also proves the advantage of the proposed algorithm.

The rest of the paper is organized as follows. The principle of
frequency-domain blind source separation is reviewed in Section 2.
The proposed multi-band multi-centroid permutation alignment
scheme is described in detail in Section 3. Experimental results
are presented in Section 4. Computational cost analysis of the
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Fig. 1. Workflow of the frequency-domain blind source separation.

proposed algorithm is given in Section 5. Finally, Section 6 con-
cludes the paper.

2. Frequency-domain blind source separation

Depending on the number of sources N and microphones M ,
the BSS problem can be classified into overdetermined (N < M),
determined (N = M), and underdetermined (N > M) cases, each
involving a different ICA procedure [3,21]. The paper focuses on
the determined case, i.e., with equal number of sources and mi-
crophones.

Supposing N sources and N microphones in a real-world acous-
tic scenario, the source vector s(n) = [s1(n), · · · , sN(n)]T, and the
observed vector x(n) = [x1(n), · · · , xM(n)]T. In reverberant scenar-
ios, the acoustical mixing channels are modeled by finite impulse
response (FIR) filters of length P , and the convolutive mixing pro-
cess is formulated as

x(n) = H(n) ∗ s(n) =
P−1∑
p=0

H(p)s(n − p), (1)

where H(n) is a sequence of N × N matrices containing the im-
pulse responses of mixing channels, and n is time index. For sep-
aration, we use FIR demixing filters of length Q and obtain the
estimated source signal vector y(n) = [y1(n), · · · , yN(n)]T by

y(n) = W (n) ∗ x(n) =
Q −1∑
q=0

W (q)x(n − q), (2)

where W (n) is a sequence of N × N matrices containing the
demixing filters.

Although the demixing network W (n) can be estimated directly
in the time domain, the task of estimating many parameters si-
multaneously has to face the challenge of slow convergence and
high computational demand. A more popular way is to do it in the
frequency domain. The workflow of the frequency-domain BSS is
shown in Fig. 1.

By using a blockwise Q -point short-time Fourier transform
(STFT), the time-domain convolution regarding the mixing process
can be converted into frequency-domain multiplications and corre-
spondingly the convolutive BSS problem is converted into multiple
instantaneous BSS problems at individual frequency bins. This is
expressed as

x( f , l) = H( f )s( f , l), (3)

where l is a decimated version of the time index n, f is the fre-
quency index, H( f ) is the Fourier transform of H(n), and x( f , l)
and s( f , l) are the STFTs of x(n) and s(n), respectively.

The instantaneous BSS problem at each frequency bin can be
solved relative easily by applying a complex-valued ICA to the time
series x( f , l). The ICA algorithms for instantaneous BSS have been
studied for many years and are considered to be quite mature [1,
39–41]. For instance, the demixing matrix can be estimated itera-
tively by using the well-known Infomax algorithm [1], i.e.,{

y( f , l) = W ( f )x( f , l)

W ( f ) = W ( f ) + η
(

I − E
[
Φ

(
y( f , l)

)
yH( f , l)

])
W ( f ),

(4)
where I is an identity matrix, Φ(·) is a nonlinear function, and E[·]
is the expectation operator.

With the estimated demixing matrix W ( f ), the original source
signals can be recovered up to scaling and permutation ambigui-
ties:

y( f , l) = W ( f )x( f , l) = Λ( f )D( f )s( f , l), (5)

where D( f ) is a permutation matrix and Λ( f ) a scaling matrix
at frequency f . It is necessary to correct the scaling and permuta-
tion ambiguities before transforming the signals back to the time
domain:

• The permutation at each bin should be aligned so that the
separated components originating from the same source are
grouped together. Permutation alignment is a challenging
problem and will be addressed in Section 3.

• The scaling ambiguity can be resolved by using the Minimal
Distortion Principle [42], i.e.,

W s( f ) = diag
(
W −1

p ( f )
) · W p( f ), (6)

where W p( f ) is W ( f ) after permutation correction, (·)−1 de-
notes inversion of a square matrix or pseudo inversion of a
rectangular matrix, and diag(·) retains only the main diagonal
components of a matrix.

Finally, the demixing network W (n) is obtained by inverse
Fourier transforming W s( f ), and the estimated source y(n) is ob-
tained by filtering x(n) through W (n).

3. Multi-band multi-centroid permutation alignment

In this section we aim to solve the permutation ambigu-
ity problem based on the inter-frequency dependency of sepa-
rated signals. A key issue of permutation alignment is to find a
frequency-independent global reference for each source, by align-
ing to which the permutation can be corrected across the whole
frequency band. Although some clustering based algorithms have
been proposed to calculate to calculate the global reference, these
algorithms typically operate in a full-band style and may suffer
block permutation errors due to the fact that the inter-frequency
dependency of a speech signal becomes weak among far-apart fre-
quency bins [19–21]. To solve this problem, a multi-band multi-
centroid clustering based permutation alignment method is pro-
posed, which divides the whole frequency band into multiple
bands and estimates the reference in each subband with a multi-
centroid clustering algorithm. In this way, the variation of the
inter-frequency dependency of a speech signal can be captured
precisely, producing satisfactory permutation alignment results.

The remaining part of the section is organized as below. Af-
ter defining the measure for inter-frequency dependency of speech
sources, a multi-band multi-centroid clustering based permutation
alignment algorithm is proposed in this section, followed by a
discussion regarding the relationship between some existing per-
mutation alignment algorithms and the proposed one. At last, lo-
cal permutation alignment based post-processing method is pre-
sented.

3.1. Inter-frequency dependency

The inter-frequency dependency of speech sources can be used
for permutation alignment based on the fact that neighboring fre-
quency bins tend to show high dependency if they come from
the same speech source. The inter-frequency dependency is usu-
ally measured by the correlation coefficient between some kind
of time sequences of the separated signals. Although a commonly
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Fig. 2. Block diagrams of the proposed multi-band multi-centroid permutation alignment method.
used time sequence is the envelopes of separated signals, recently
it has been reported that the time activity sequence, which is cal-
culated based on the power ratios of separated signals, can better
explore the dependency among frequency bins [35]. Thus, this time
activity sequence is employed in the proposed method for calcu-
lating the inter-frequency dependency.

In order to obtain the time activity sequence, the power ratio of
separated signals is defined first [19]. Given the demixing matrix
W ( f ) at the frequency f , the acoustical mixing matrix can be es-
timated as A( f ) = W −1( f ) = [a1( f ), · · · ,aN( f )], where the N × 1
vector ai( f ) describes the path from the i-th source to the N mi-
crophones. The power ratio is defined at each time–frequency bin
for the i-th separated source yi( f , l) as

v f
i (l) = ‖ai( f )yi( f , l)‖2∑N

j=1 ‖a j( f )y j( f , l)‖2
, (7)

where ‖ · ‖2 denotes the norm-2 operation. The numerator of (7)
represents the power of the i-th separated signal at all N micro-
phones while the denominator represents the power of all sepa-
rated signals. This definition measures the dominance of the i-th
separated signal in the observed mixtures at the time–frequency
bin ( f , l): being in the range [0,1], (7) is close to 1 when the i-th
separated signal is dominant, and close to 0 when others are dom-
inant. The time sequence of the power ratio in some sense reflects
the time activity of the signal and thus is called the “time activity
sequence”.

The correlation coefficient between two time activity sequences
v f1

i and v f2
j , the i-th separated signal at frequency f1 and the j-th

separated signal at frequency f2, is defined as

ρ
(

v f1
i , v f2

j

) = ri j( f1, f2) − μi( f1)μ j( f2)

σi( f1)σ j( f2)
, (8)

where ri j( f1, f2) = E{v f1
i v f2

j }, μi( f ) = E{v f
i }, σi( f ) =√

E{(v f
i )2} − μ2

i ( f ) are, respectively, the correlation, mean, and
standard deviation, and E{·} denotes expectation regarding the
time l. In general, (8) tends to be high if the separated channels
i and j originate from the same source and low if they represent
different sources. This property can be exploited for aligning the
permutation among frequency bins.

3.2. Multi-band multi-centroid clustering

Given the measure of inter-frequency dependency, the follow-
ing task is to find a frequency-independent global reference for
each source. A multi-band multi-centroid clustering based permu-
tation alignment algorithm is proposed, which can be divided into
three stages as shown in Fig. 2a. The details of the three stages are
shown in Fig. 2b to Fig. 2d, respectively. The first stage provides
an initialization for the second stage by aligning the permutation
across the whole frequency band with a one-centroid clustering
method. In the second stage, the full frequency band is divided
into multiple subbands, and the permutation inside each subband
is aligned independently with a multi-centroid clustering method.
Finally, in the third stage, the permutation among these subbands
is aligned sequentially. In the following, the details of these stages
will be described.

Stage-1: one-centroid clustering
In this stage, each source is assumed to have only one centroid

time-activity sequence. This centroid is estimated by maximizing
the correlation coefficient between the time-activity sequence of
a source and its centroid. The cost function (originally defined in
[19]) is given as

J
({ck}, {Π f }

) =
∑
f ∈F

N∑
k=1

ρ
(

v f
i , ck

)∣∣
i=Π f (k)

, (9)

where ck is the centroid sequence of the k-th source, Π f is the
permutation at the f -th frequency bin, and the set F denotes the
frequency bins under consideration (in Stage-1 it consists of all
the bins in the full frequency band). The maximization of the cost
function can be achieved via expectation maximization (EM) itera-
tion procedure:
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(1) Given the current permutation Π f at all frequency bins, the
centroid ck can be calculated for the k-th source by using

ck = 1

N F

∑
f ∈F

v f
i

∣∣
i=Π f (k)

, k = 1, · · · , N (10)

where N F is the number of bins in the set F .
(2) The permutation Π f at each frequency bin is recalculated so

that the correlation coefficient between each time activity se-
quence and the corresponding centroid is maximized:

Π f ← arg max
Π

N∑
k=1

ρ
(

v f
i , ck

)∣∣
i=Π f (k), ∀ f ∈ F . (11)

The two operations (10) and (11) are iterated until convergence,
when the correlation coefficient in (11) does not change any more.
Generally, less than 15 iterations are required to reach conver-
gence.

Stage-2: multi-centroid clustering
In this stage, the whole frequency band is equally divided into

Nb subbands, and each subband is processed independently. In-
side each subband, the permutation alignment result from Stage-1
is further improved with a cascaded system consisting of one-
centroid clustering and multi-centroid clustering.

The one-centroid clustering employs the same procedure as in
Stage-1. The only difference is that the number of frequency bins
considered is confined to a subband.

In multi-centroid clustering, each source is assumed to have Nc
candidated centroids instead of one. In this way, the variation of
the time activity across frequencies can be better captured. The set
of Nc centroid set per source is estimated by maximizing the cor-
relation coefficient between the time-activity sequence of a source
and its centroid set. The cost function was originally defined in
[20] and here we rewrite it for better understanding as

J
({Ck}, {Π f }

) =
∑
f ∈Fb

N∑
k=1

ρ̄
(

v f
i ,Ck

)∣∣
i=Π f (k)

, (12)

where the set Fb consists of the frequency bins in the b-th sub-
band, Ck = {ck,1, · · · , ck,Nc } denotes the Nc-centroid set for k-th
source and ρ̄ denotes the correlation coefficient between a time
activity sequence and a centroid set. The definition of ρ̄ is ex-
pressed

ρ̄(v,Ck) = max
m

{
ρ(v, ck,m)

}
. (13)

The cost function in (12) is maximized with expectation maximiza-
tion (EM) iteration, distinguishing from the optimization procedure
in Stage-1:

(1) For each source, the Nc-centroid set are calculated by applying
a K-means clustering algorithm to its time activity sequences
throughout the subband.

Ck = k mean
(

v f
i

∣∣
i=Π f (k), f ∈Fb

)
, k = 1, · · · , N (14)

The K-means algorithm, which typically operates in an itera-
tive way, is a popular clustering method which aims to parti-
tion observations into specified clusters in which each obser-
vation belongs to the cluster with the nearest mean [43].

(2) The permutation Π f is recalculated so that the correlation
coefficient between each time activity sequence and the cor-
responding centroid set is maximized:

Π f ← arg max
Π

N∑
k=1

ρ̄
(

v f
i ,Ck

)∣∣
i=Π f (k). (15)
The two operations (14) and (15) are iterated until conver-
gence, when the correlation coefficient in (15) does not change any
more. With a good initialization from the one-centroid clustering,
it generally requires less than 5 iterations for the multi-centroid
clustering to reach the convergence.

Stage-3: permutation alignment among subbands
After permutation correction inside each subband, these sub-

bands are further aligned sequentially from low to high frequency
to form a full band (i.e., by firstly aligning the band 2 to the band 1,
then aligning the band 3 to the band 2, and so on) as shown in
Fig. 2(d). For two neighboring subbands B1 and B2, the permuta-
tion alignment procedure is as follows:

(1) Calculate the centroids c B1
k and c B2

k for the two subbands with

ck = 1

N Fb

∑
f ∈Fb

v f
i (n)

∣∣
i=Π f (k)

, k = 1, · · · , N. (16)

(2) Assuming the permutation of the subband B1 is already known
as ΠB1, the permutation ΠB2 which aligns the subband B2
to B1 is determined by maximizing the correlation coefficient
between two centroids c B1

k and c B2
k :

ΠB2 ← arg max
Π

N∑
j=1

ρ
(
c B1

k , c B2
k′

)∣∣
k=ΠB1( j),k′=ΠB2( j). (17)

For Nb subbands, the processing above is carried out Nb − 1
times in total. Since each subband consists of a number of
correctly aligned frequency bins, the region-based permutation
alignment is quite robust.

In the proposed algorithm, the one-centroid clustering esti-
mates one centroid of the time-activity sequences for each source,
which may not be precise enough as a reference for permuta-
tion alignment; thus, the subsequent M-centroid clustering further
splits the one centroid into multiple ones, which are used together
as a reference for permutation alignment. On the one hand, the
one-centroid clustering provides the M-centroid clustering initial-
ization with coarsely aligned frequency bins. On the other hand,
the M-centroid clustering improves the results from one-centroid
clustering.

3.3. Remarks on the proposed algorithm

In fact, the clustering-based framework has been exploited for
the permutation ambiguity problem in [19–21]. Compared with
the proposed one, these algorithms do clustering in the whole fre-
quency band and can be seen as a special case of the proposed
algorithm. For instance, the algorithm proposed in [19] is equiv-
alent to the proposed algorithm with Nb = 1 and Nc = 1; while
the algorithm in [20] is equivalent to the proposed algorithm with
Nb = 1 and Nc = 2. Since the time activity of a speech signal may
vary with frequency, it is difficult to find a global reference that
is consistent to all the bins throughout the whole frequency band.
In some cases, the full-band algorithm may suffer from blocks of
permutation errors.

The multi-band processing can tackle this problem efficiently.
After band division, there are fewer bins available in each process-
ing band, and the dynamic range of the time activity sequences
becomes smaller accordingly, making it easier to find a reference
that is consistent to all bins. Obviously, the multi-band process-
ing is imposed to the risk of block permutation error between two
subbands. However, with a multi-centroid clustering algorithm, the
variation of the time activity sequence inside each subband can
be better captured, promising better permutation alignment in-
side the subband. Consequently, the risk of wrong permutation
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Fig. 3. Centroids estimated for a 2 × 2 mixture by the proposed multiple-band multiple-centroid algorithm with Nb = 2, Nc = 2.
between two subbands will be minimized once the bins inside
them are already permutation corrected. Therefore, both multi-
band and multi-centroid processing is important for permutation
alignment. The multi-band processing reduces the dynamic range
of the activity sequences and improves the efficiency of the cluster-
ing algorithm. The multi-centroid clustering further improves the
precision of the reference and reduces the risk of wrong permuta-
tion among subbands. The two strategies work together, ensuring
better performance.

For better understanding, a simple example is shown in Fig. 3
which depicts the multi-centroid clustering results for a 2×2 mix-
ture by the proposed algorithm (2 bands, 2 centroids). The first
row depicts the time-domain waveforms of the two source sig-
nals; the second row depicts the activity of the two sources in the
time–frequency domain; the third row depicts the two centroids
estimated for each source in the high frequency band (4–8 kHz)
while the fourth depicts the centroids in the low frequency band
(0–4 kHz). The left column represents the source S1 while the right
column S2. It can be clearly seen in the first row of Fig. 3 that the
time activity of the speech signal in the high frequency band is dif-
ferent from the one in the low frequency band. Furthermore, even
in each subband, the time activity pattern may still vary slightly
with frequency. With a multi-band multi-centroid strategy, the ob-
tained reference (centroids) can better capture these differences,
leading to better permutation alignment results.

3.4. Postprocessing with local permutation alignment

The 3-stage processing can be referred to as a global permuta-
tion alignment since the permutation is corrected by aligning the
frequency bins to a global reference. In [19,20,35], it is additionally
mentioned that a local permutation alignment can be employed to
further enhance the permutation alignment performance. The lo-
cal permutation alignment is performed at each frequency bin f
so that the correlation coefficient between the current bin and a
set of selected bins is maximized. This is expressed as [20]

Π f ← arg max
Π

∑
g∈G ( f )

N∑
k=1

ρ
(

v f
i , v g

i′
)∣∣

i=Π f (k), i′=Πg(k), (18)

where the set G ( f ) = { f − 3� f : f + 3� f , f /2 − � f : f /2 +
� f , 2 f − � f : 2 f + � f } contains adjacent frequencies and har-
monic frequencies, and � f = f s/Q with Q being the FFT size.
The local permutation alignment scheme can be used as a post-
processing step of any inter-frequency dependency based permuta-
tion alignment algorithm. By fine tuning the permutation at each
frequency bin, the permutation alignment performance can be im-
proved in a certain degree especially when most frequency bins are
already correctly aligned. However, employing local information
only, the local permutation alignment cannot correct permutation
errors effectively when a block of misalignment occurs. This state-
ment will be proved in the experiment part. In the remaining part
of the paper, this local postprocessing will be excluded from the
permutation alignment algorithm unless particularly mentioned.

4. Experiment results and analysis

The proposed algorithm is an empirical method which mainly
relies on the observation that the time activity of a speech sig-
nal varies with frequency and hence tries to capture this variation
with a multi-band multi-centroid processing. Two parameters, the
number of subbands (Nb) and the number of candidated centroids
for each source (Nc), play a crucial role on the permutation align-
ment performance of the proposed algorithm. It may be difficult
to predict the influence of the parameters on the performance of
the algorithm analytically. For this reason, extensive experiments
are carried out in different testing scenarios to examine how the
performance varies with respect to the two parameters.

Another important issue is the robustness of a permutation
alignment algorithm, i.e., it may perform well for one mixing sce-
nario or testing file but fail in another case. Thus, the performance
of the permutation alignment algorithm should be investigated
with different mixing scenarios and testing files. Experiments in
both simulated and real environments are conducted. The organi-
zation of the experiments is as below. After introduction of the
simulation environment and the objective measures, four experi-
ments are carried out. The first experiment investigates how the
two parameters, the number of subbands Nb and the number of
centroids Nc , affect the performance of the proposed algorithm.
The second experiment examines the influence of the postpro-
cessing with local permutation alignment. The third experiment
compares the proposed algorithm with some existing permutation
alignment algorithms with simulated data. Finally, the last experi-
ment evaluates the performance of the considered algorithms with
real recorded data.
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Fig. 4. Simulated room environment.

4.1. Simulation environment

In the simulated acoustical environment, several microphones
and loudspeakers are placed inside a room of size 5 m×4 m×3 m
as shown in Fig. 4. The height of all loudspeakers and microphones
is 1.5 m. The room impulse response is simulated by using the im-
age method with the reverberation time T60 controlled by varying
the absorption coefficients [44]. For 2 × 2 mixtures, the micro-
phones (B, C) and loudspeakers (3,6) are used; for 3 × 3 mixtures,
the microphones (A, B, C) and loudspeakers (1,2,3) are used; for
4 × 4 mixtures, the microphones (A, B, C, D) and loudspeakers
(1,2,3,5) are used. The testing speech signals are composed of
5 male and 5 female speakers, with each one being 10 seconds
long. All possible combinations of the 10 speakers are tested, i.e.,
we have 45, 120 and 210 testing files for the 2 × 2, 3 × 3, and
4 × 4 mixtures, respectively. The sampling rate is 16 kHz. Three re-
verberation times are used in the experiment: 200 ms, 400 ms and
700 ms, with the simulated impulse responses for the latter two
shown in Fig. 5.

The implementation detail of the blind source separation al-
gorithm is as below. The Tukey window is used in STFT, with a
shift size of 1/4 window length. The window length varies de-
pending on the reverberation time: it being 4096 for T60 = 200
and 400 ms while being 6144 for T60 = 700 ms, under a sampling
rate of 16 kHz. The instantaneous BSS is implemented by means
of the Scaled Infomax [45], with an iteration number of 120. The
scaling ambiguity is solved by using the Minimum Distortion Prin-
ciple (6). A smoothing method proposed in [46] is applied in order
to reduce spikes due to the circularity effect of the FFT.

4.2. Objective measures

With multiple testing files, it is possible to examine the mean
performance and the robustness performance of the permutation
alignment algorithm. The mean performance can be measured by
averaging the multiple results. The robustness performance can be
measured by counting the outlier results only. Both performances
are evaluated from two aspects: permutation alignment error and
signal-to-interference ratio (SIR).

To calculate the permutation alignment error, the correct per-
mutation should be known, which can be calculated from the
mixing and demixing network. Given the mixing matrix H( f ) and
the demixing matrix W ( f ) at each frequency bin, we consider a
combined response G( f ) = W ( f )H( f ). The correct permutation
for the i-th channel (the i-th source) corresponds to the maximal
value in the i-th row of G( f ):

permi = arg max
j

∣∣G i j( f )
∣∣. (19)

In cases that the mixing matrix is unknown, the correct permuta-
tion can also be estimated using the individual contributions from
the sources to the microphones in a similar way.

Using the correct permutation as a reference, the accuracy of
the permutation alignment can be easily calculated. For one sepa-
ration task with N sources, the permutation error is defined as

E = 1

N

N∑
i=1

ei, (20)

where ei is the number of bins with erroneous permutation at the
i-th source. For multiple testing files, the mean permutation error
is defined as

Emean = 1

K

K∑
k=1

Ek × 100% , (21)

where K is the total number of testing files and Ek is the permu-
tation error for the k-th testing file. We assume that a block of
permutation errors occur if the error Ek of a testing file is larger
than a threshold ETh , and this test file is flagged as an outlier (we
use ETh = 20% in this paper). The number of files with outlier re-
sults among all the testing files is used to measure the robustness
against block errors. This robustness measure is defined as

Noutlier = num(outlier)

K
× 100% , (22)

where K is the number of testing files and num(outlier) is the
number of outlier files with Ek > ETh . A small Emean as well as a
small Noutlier indicate good permutation alignment performance.
Fig. 5. Simulated room impulse responses with reverberation time of 400 ms and 700 ms, sampling rate 16 kHz.
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Signal-to-interference ratio (SIR) is an objective measure to
evaluate the global separation performance of a BSS algorithm. The
input and output SIRs at the i-th channel are defined as

SIRi
in = 10 log10

∑
n |∑l hii(l)si(n − l)|2∑

j �=i

∑
n |∑l hi j(l)s j(n − l)|2 , (23)

SIRi
out = 10 log10

∑
n |∑l giq(i)(l)sq(i)(n − l)|2∑

j �=q(i)

∑
n |∑l gi j(l)s j(n − l)|2 , (24)

where n is time index, q(i) is the index of the output channel in
which the i-th source appears, hij(n) is an element of H(n), and
gij(n) is an element of the overall impulse response matrix G(n) =
W (n) ∗ H(n). For one separation task with N sources, an averaged
SIR is calculated as

SIRin = 1

N

N∑
i=1

SIRi
in, (25)

SIRout = 1

N

N∑
i=1

SIRi
out. (26)

In our experiment, the input SIR does not vary greatly for differ-
ent reverberation time, valuing around −5 dB for 4 × 4 mixtures,
−3 dB for 3 × 3 mixtures, and 0 dB for 2 × 2 mixtures. Hence, we
only compare the output SIR. For multiple testing files, the mean
performance in terms of SIR is defined as

SIRmean = 1

K

K∑
k=1

SIRout(k) , (27)

where SIRout(k) is the output SIR of the k-th testing file. The ro-
bustness of the BSS algorithm can be evaluated by the averaged
SIR of a set of Kworst testing files with worst SIR performance (we
use Kworst = 10 in this paper). This measure indicates the per-
formance of the BSS algorithm in worst scenarios and is defined
as

SIRrobust = 1

Kworst

∑
k∈Kworst

SIRout(k) . (28)

A large SIRmean as well as a large SIRrobust indicate good permuta-
tion alignment performance.

We want to point out that SIR as a widely-used BSS perfor-
mance measure does not evaluate the permutation alignment per-
formance accurately since it is more sensitive to the separation
result for low frequencies at which a speech signal has more en-
ergy than at high frequencies. That is why we need both measures
in terms of permutation alignment error and SIR.

In short summary, four objective measures (Emean, Noutlier,
SIRmean, and SIRrobust) are used in the experiment, aiming at a
comprehensive evaluation of the permutation alignment perfor-
mance. We want to mention that, apart from objective measures,
subjective measures such as mean opinion score (MOS) and re-
vised MOS (R-MOS) [47] can also be employed for the performance
evaluation. However, the subjective evaluation work will be left for
future research when incorporating BSS into a practical speech en-
hancement system.

4.3. Performance versus parameters

In this simulated experiment, the relationship between the per-
mutation performance and the two parameters are examined in
testing scenarios with different mixing conditions (3×3 and 4×4)
Fig. 6. Emean (mean permutation error) versus the number of subbands (Nb ) and the
number of centroids (Nc ) in testing scenarios with different reverberation (400 ms,
700 ms) and sources (3 × 3, 4 × 4).

Fig. 7. Noutlier (number of outlier files among all the testing files) versus the num-
ber of subbands (Nb ) and the number of centroids (Nc ) in testing scenarios with
different reverberation (400 ms, 700 ms) and sources (3 × 3, 4 × 4).

and reverberation times (400 ms and 700 ms). Nb is chosen from
the set {1,2,4,8,16}, and Nc is chosen from the set {1,2,4,8,16}.
All 25 combinations of the two parameters are tested.

The permutation errors in terms of Emean and Noutlier obtained
by the proposed algorithm are plotted in Figs. 6 and 7, respec-
tively. In Fig. 6, each panel plots the Emean results for one testing
scenario, with the horizontal axis representing Nc , the vertical axis
representing Emean, and each curve in the figure depicting the re-
sults for a fixed value of Nb . The following trends can be observed
from the four panels in Fig. 6:

(1) Emean increases with the complexity of the testing scenario.
(2) Emean decreases when Nb is increased from 1 to 4, and only

varies slightly afterwards.
(3) The influence of Nc on Emean is smaller compared to the influ-

ence of Nb .
(4) For a fixed Nb , Emean decreases when Nc grows from 1 to 2,

and only varies slightly afterwards.
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Fig. 8. SIRmean (mean SIR performance) versus the number of subbands (Nb ) and the
number of centroids (Nc ) in testing scenarios with different reverberation (400 ms,
700 ms) and sources (3 × 3, 4 × 4).

Fig. 9. SIRrobust (worst SIR performance) versus the number of subbands (Nb ) and
the number of centroids (Nc ) in testing scenarios with different reverberation
(400 ms, 700 ms) and sources (3 × 3, 4 × 4).

For the robustness performance given in Fig. 7, the variation of
Noutlier (the number of outliers) with respect to Nb and Nc shows
similar trends as Emean in Fig. 6. Especially for 4 × 4 mixtures, the
proposed algorithm shows a large number of outliers at Nb = 1
while almost no outliers at Nb ≥ 4. This demonstrates that the
multiple-band processing can reduce the block permutation errors
effectively.

The global separation performance in terms of SIRmean and
SIRrobust obtained by the proposed algorithm are given in Figs. 8
and 9, respectively. For the mean performance shown in Fig. 8, the
following trends can be observed:

(1) SIRmean decreases with increasing complexity of the testing
scenarios.

(2) SIRmean increases when Nb is increased from 1 to 2, and only
varies slowly afterwards, with the highest SIR observed at
Nb = 8 in almost all the testing scenarios.
(3) For a fixed Nb value, SIRmean increases when Nc is increased
from 1 to 4, and only varies slowly afterwards.

(4) For almost all the testing scenarios, the highest SIR can be
observed at around Nb = 8, Nc = 8. The best performance
obtained by the proposed algorithm is close the bench-
mark for the first three scenarios (rev400n3, rev400n4 and
rev700n3), and slightly worse for the most challenging sce-
nario (rev700n4).

For the robustness performance shown in Fig. 9, the variation
of SIRrobust (SIR in worst scenarios) with respect to Nb and Nc

shows similar trends as SIRmean in Fig. 8. It should be reminded
that a smaller SIRrobust indicates better robustness performance.
Additionally, the following trends can be observed.

(1) The variation trend of SIRrobust with respect to Nb becomes
more evident than the variation trend of SIRmean in Fig. 8.

(2) In complex scenarios (rev400n4 and rev700n4), SIRrobust is
smaller than the one at Nb = 4 or 8. This phenomenon demon-
strates that the proposed algorithm becomes less robust at
Nb = 16, although a higher SIRmean is observed in Fig. 8.

(3) For a fixed Nb value, the variation of SIRrobust with Nc is not
evident. However, increased robustness can still be observed
for Nc rising from 1 to 4.

(4) In almost all testing scenarios, the highest SIRrobust can be ob-
served at Nb = 8, Nc = 8.

Finally, with promising and consistent results observed
for all the testing scenarios, two temporary conclusions can
be drawn. First, the advantage of using multiple bands and
multiple centroids over using single band or single centroid
can be clearly observed. Especially, the multiple-band pro-
cessing can increase the robustness of the algorithm signifi-
cantly. Second, the proposed algorithm with the parameters
Nb chosen from {4,8} and Nc chosen from {4,8} works well
for all the testing cases.

4.4. Performance with postprocessing

We investigate the performance of the proposed algorithm with
and without local permutation alignment postprocessing in a test-
ing scenario with 4 × 4 mixtures and the reverberation time of
400 ms. For simplicity, we only check the performance of pro-
posed algorithm for Nb chosen from {1,8} and Nc chosen from
{1,2,4,8}. The results are shown in Fig. 10 with each panel repre-
senting one of the four objective measures: Emean, Erobust, SIRmean,
and SIRrobust. The following phenomena can be observed from
Fig. 10:

(1) The local permutation alignment can only reduce the permu-
tation error limitedly. Especially, the performance in terms of
Noutlier only changes slightly. This indicates that the local pro-
cessing cannot correct the permutation error effectively when
a block of misalignment occurs.

(2) Although with limited improvement in reducing permutation
errors, the local permutation alignment can improve the SIR
performance evidently. The reason for the improvement of SIR
is that the SIR measure is more indicative to the separation
result for low frequencies at which a speech signal has more
energy than at high frequencies. In low frequency, even fine
tuning at several bins can improve the SIR value remarkably.
In high frequency, even a block of permutation errors does not
change the SIR value greatly. However, the perceptual quality
of the separated speech is severely degraded with clearly au-
dible distortion.
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Fig. 10. The performance of the proposed algorithm with and without local permu-
tation alignment postprocessing, for 4 × 4 mixture and reverberation time 400 ms.

Finally, we reach a temporary conclusion that the local
permutation alignment can improve the SIR performance
evidently but cannot handle the situation with blocks of
permutation errors.

4.5. Performance comparison with other algorithms

In this experiment, the performance of the following algorithms
is compared in the simulated environments as shown in Fig. 4. The
same testing files in Section 4.3 are used, i.e., we have 45, 120 and
210 testing files for 2 × 2, 3 × 3, and 4 × 4 mixtures, respectively.

(1) The proposed multi-band multi-centroid algorithm (Proposed)
with the parameters Nb = 8, Nc = 8.

(2) The originally proposed one-centroid clustering algorithm
(Centroid-1), which is equivalent to the proposed algorithm
with the parameters Nb = 1, Nc = 1 [19].

(3) The originally proposed multi-centroid clustering algorithm
(Centroid-M), which is equivalent to the proposed algorithm
with the parameters Nb = 1, Nc = 2 [20].

(4) The region-growing algorithm (RG), which aligns the permuta-
tion in a region-growing way based on inter-frequency depen-
dency [22].

(5) The improved Murata algorithm (Murata), which also aligns
the permutation in a region-wise way based on inter-frequency
dependency [23].

(6) The improved chain-like overlapped independent vector anal-
ysis algorithm (IVA), which aims to solve the permutation
ambiguity problem by conducting optimization jointly for all
frequencies [28]. In the algorithm, the overlapped chain is cho-
sen to be 1/4 size of all frequency bins and shifted by half of
the chain size.

(7) The benchmark algorithm (Benchmark), which assumes perfect
permutation alignment.

For the six algorithms (Proposed, RG, Centroid-1, Centroid-M,
Murata, Benchmark), which do instantaneous separation and per-
mutation alignment separately, the same instantaneous BSS algo-
rithm, the Scaled Infomax algorithm [45], is used so that the per-
mutation alignment performance of these algorithms can be fairly
compared. For the IVA algorithm, which does instantaneous sepa-
ration and permutation alignment jointly, it is difficult to incorpo-
rate a new instantaneous separation algorithm into their own pro-
cessing. Therefore, the original implementation of the algorithm is
used. It should be noted that the instantaneous separation perfor-
mance of the Scaled Infomax algorithm is generally better than the
one used in IVA as it is performed at each frequency bins indepen-
dently and hence can converge to the optimal result more easily.

The separation results in terms of Emean, Noutlier, SIRmean and
SIRrobust obtained by the considered algorithms are shown in the
four panels of Fig. 11 respectively. In each panel, the horizontal
axis represents different testing scenarios while the vertical axis
represents the objective measure. As can be seen from Fig. 11 the
performance of all the algorithms decreases when the complexity
of the testing scenarios is increased.

The five algorithms (Proposed, RG, Centroid-1, Centroid-M, Mu-
rata), which do instantaneous separation and permutation align-
ment separately, obviously outperform the IVA algorithm, which
does the two tasks jointly. Although IVA performs well for simple
scenarios, its instantaneous separation is coupled with the per-
mutation alignment procedure and tends to converge to a local
optimum when the number of sources or the reverberation time
increases, leading to block permutation errors. For example, in the
simulated experiment it is a very challenging task for IVA to find
the optimal solution with so many frequency bins (4096 or more)
considered simultaneously. Consequently, as shown in Fig. 11, it
sufferers from severe block permutation errors and shows signifi-
cantly decreased SIR performance in challenging scenarios.

The five algorithms (Proposed, RG, Centroid-1, Centroid-M, Mu-
rata) perform similarly in simple scenarios (2×2). In more compli-
cated scenarios (3×3 and 4×4), the difference of these algorithms
becomes evident, ranking from good to poor as Proposed > RG
> Centroid-M > Centroid-1 > Murata. As can be seen from the
“Emean” and “SIRmean” panels, the proposed algorithm outperforms
all the other algorithms with its Emean and SIRmean curves closest
to the benchmark. Consistent results can also be observed for the
robustness performance in terms of Noutlier and SIRrobust. As can
be seen in the “Noutlier” panel, the proposed algorithm can reduce
block permutation errors (measured by the number of outlier files
from all the testing files) significantly. In the “SIRrobust” panel for
the performance in worst scenarios, the proposed algorithm per-
forms much better than all the other algorithms.

As discussed in Section 3, the proposed multi-band multi-
centroid algorithm can better capture the variation of the time–
frequency activity of the speech signals and thus can improve the
mean performance and the robustness significantly with respect to
the Centroid-1 and Centroid-M algorithms. It is noticed that the
RG algorithm also performs quit robust in all testing scenarios,
although worse than the proposed algorithm. The RG and the pro-
posed algorithm both do permutation alignment by aligning the lo-
cal frequency bins to a global reference, but estimate this reference
in different ways. The RG algorithm does reference update and
permutation alignment simultaneously during its region-growing
procedure. Although updating the reference in a region-wise way
is quite robust to permutation errors at individual bins, these er-
rors will accumulate during the region-growing procedure, leading
to possible erroneous update of the reference. In contrast, the pro-
posed algorithm estimates the reference in a clustering-based way
first and then aligns the frequency bins to the reference. By do-
ing reference estimation and permutation alignment separately,
the clustering-based way is less affected by the permutation er-
rors at individual bins. Especially, multiple-band multiple-centroid
strategy improves the accuracy of the reference significantly, lead-
ing to better performance in challenging scenarios.

Finally, a temporary conclusion can be drawn from this
experiment: the proposed algorithm outperforms other al-
gorithms for all testing scenarios. Especially, it can improve
the robustness performance in challenging scenarios and re-
duce block permutation errors efficiently.
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Fig. 11. Comparison of the permutation alignment algorithms in various testing scenarios.
4.6. Experiment with real recordings

In this part we evaluate the performance of the permutation
alignment algorithms (Proposed, Centroid-1, Centroid-M, RG, Mu-
rata, IVA) with two sets of real recorded data. For reference, the
results obtained with extra local permutation alignment are also
calculated. As a benchmark, the correct permutation can be calcu-
lated by using the individual contributions from the sources to the
microphones.

The first data set was downloaded from the internet.1 It con-
sists of 7 seconds long speech recordings sampled at 8 kHz with
individual contributions from the sources to the microphones.
With the reverberation time around 130 ms, the separation task
of this dataset is relatively easy. The separation results are calcu-
lated for the 2 × 2, 3 × 3 and 4 × 4 mixing scenarios, respectively.
Since only one testing file for each mixing scenario is available, the
objective measure of SIRout (cf. Eq. (26)) is used. For the proposed
algorithm, we choose Nb = 4 and Nc = 8 (for the sampling rate
of 8 kHz). The STFT frame size is 2048. The separation results in
terms of SIRout are given in Table 1. The performance of the pro-
posed algorithm is the closest to the benchmark. Furthermore, the
postprocessing with local permutation alignment can improve the
SIR performance slightly.

The second data set was recorded in an office environment with
a reverberation time of around 450 ms. The separation task with
this dataset is relatively challenging. The geometrical configura-
tion of the microphones and loudspeakers is similar to the one
shown in Fig. 4. The main difference is that all the loudspeakers
are placed 2 m away from the center of the microphone array.
The same 10 speech signals used in the simulated experiment are
played through each loudspeaker and recorded by all the micro-
phones. In this experiment, we evaluate the performance of the
considered algorithms with a 4 × 4 mixture, where all the 210
combinations of the 10 speech files are tested. For the proposed

1 <http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html>.
Table 1
Comparison of the permutation alignment algorithms in terms of SIRout [dB] for the
first real recorded dataset (reverberation time 130 ms).

Algorithms 2 × 2 3 × 3 4 × 4

Benchmark 18.80 12.87 9.81
Proposed (+local) 17.10 (18.95) 12.74 (12.74) 9.16 (9.53)
Centroid-1 13.25 11.17 2.30
Centroid-M 14.49 12.51 4.13
RG 16.95 11.30 6.91
Murata 11.75 11.21 4.40
IVA 12.46 10.98 2.99

Table 2
Comparison of the permutation alignment algorithms in terms of SIRmean and
SIRrobust for the second real recorded dataset (4 × 4, reverberation time 450 ms).

Algorithms SIRmean [dB] SIRrobust [dB] Emean [%] Noutlier [%]

Benchmark 8.08 7.56 0 0
Proposed (+local) 7.44 (7.87) 5.02 (5.24) 5.6 (5.8) 0 (0)
Centroid-1 4.71 0.90 12.9 14.7
Centroid-M 5.91 2.35 11.4 15.2
RG 5.71 1.51 8.4 3.8
Murata 4.72 1.22 13.2 16.7
IVA 1.56 0.06 36.0 87.6

algorithm, we choose Nb = 4 and Nc = 8 (for the sampling rate
of 16 kHz). The STFT frame size is 4096. The separation results
in terms of SIRmean and SIRrobust are given in Table 2. The perfor-
mance of the proposed algorithm is the closest to the benchmark.
Slight improvement by postprocessing can also be observed.2

The results in Table 1 are obtained in a relatively simple test-
ing scenario and with just one testing file. Even in such a simple
scenario, the proposed algorithm can still achieve slightly better
performance than other algorithms. The results in Table 2 are ob-
tained in a more challenging scenario with multiple testing files

2 Matlab codes and audio demos are available at <https://sites.google.com/site/
linwangsig/bss_mbmc>.

http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html
https://sites.google.com/site/linwangsig/bss_mbmc
https://sites.google.com/site/linwangsig/bss_mbmc
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and thus are more convincing. Although the proposed algorithm
exhibits just a bit higher SIRmean than some existing algorithms
such as RG and Centroid-M, it shows much higher SIRrobust. This
indicates that the proposed performs more robustly than others. In
terms of permutation errors, the proposed algorithm shows small-
est Emean among all the algorithms. In addition, as indicated by
the Noutlier value, the proposed algorithm shows no block permu-
tation errors while other algorithms suffers from block errors more
or less. The IVA shows severe block permutation errors, which lead
to poor SIR performance.

Finally, we can conclude that the experimental results in
real environments are consistent to those obtained in sim-
ulated environments: the proposed algorithm outperforms
other algorithms for all testing cases.

5. Computational complexity analysis

In this section, we analyze the influence of the two parame-
ters, Nb and Nc , on the computational complexity of the proposed
BSS algorithm. For convenience, only multiplication operations are
considered. Suppose there are N sources and N microphones,
the length of the input signals is T , and the STFT frame length
is Q = 2L with a window shift = L/2. After STFT, the number
of data points available for each frequency bin is approximately
B = T /shift = 2T /L. From Figs. 1 and 2, the computation of the
frequency-domain BSS is mainly composed of two parts: (1) in-
stantaneous BSS (ICA); (2) permutation alignment. The computa-
tion cost of the first part is generally a fixed value. The compu-
tation of the second part (the proposed permutation alignment
algorithm) is mainly composed of three stages:

Cperm = Cs1 + Cs2 + Cs3, (29)

with{
Cs1 = Cpwr + C1c_1,

Cs2 = Nb(C1c_2 + Cmc).
(30)

The computation of the first stage Cs1 is composed of power ratio
computation Cpwr and one centroid clustering C1c_1; the com-
putation of the second stage Cs2 is composed of Nb groups of
one centroid clustering C1c_2 and multi-centroid clustering Cmc ;
the computation of the third stage Cs3 is composed of Nb −1 align-
ment processing, which can be neglected when compared with Cs1
and Cs2.

Suppose we have N F frequency bins in each subband with L =
Nb · N F , it follows that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cpwr = L
(
N2 B + N B

)
C1c_1 = I1c_1 · L · P N

N · Cρ

C1c_2 = I1c_2 · N F · P N
N · Cρ

Cmc = Imc · (N · Ckm + N F · P N
N · Nc · Cρ

)
,

(31)

where P N
N is the permutation number of N . I1c_1, I1c_2 are the it-

eration numbers of the one-centroid clustering in the two stages,
respectively; Imc is the iteration number of the multi-centroid clus-
tering; Cρ = 3B is the computation cost of calculating the correla-
tion coefficient between two time activity sequences by (8); Ckm ,
the computation cost of K-means clustering with Nc centroids, is
proportional to the data size and can be approximately represented
as Ckm = Ikm · ξ · B · N F · Nc , with Ikm being the iteration number
inside the K-means algorithm and ξ being a constant.

Finally, combining (29)–(31), we have

Cperm = Cpwr + (I1c_1 + I1c_2) · L · P N
N · Cρ

+ Imc · L · Nc · (P N
N · Cρ + ξ Ikm

)
. (32)
Fig. 12. Execution time of the permutation alignment algorithm versus the number
of subbands (Nb ) and the number of centroids (Nc ) (the time for the instantaneous
ICA and postprocessing with local permutation alignment are also given); Data:
4 × 4 mixtures of 10 s length under reverberation 400 ms and 16 kHz sampling
rate.

It can be seen from (32) that the theoretically computational com-
plexity of the multi-band multi-centroid algorithm is linearly pro-
portional to Nc but independent of Nb , if all the values of the
iteration numbers I1c_1, I1c_2, Imc and Ikm are fixed. However, in
practice, the required iteration number for reaching convergence
relates to the size of data involved, e.g., the number of frequency
bins in each processing band. This implicates that the compu-
tational complexity of the permutation algorithm may decrease
when Nb is increased.

Fig. 12 gives the execution time of the permutation alignment
algorithm with different parameters when separating a 4 × 4 mix-
ture of 10 seconds long generated under reverberation time of
400 ms and sampling rate of 16 kHz. Since ICA and permuta-
tion alignment are two essential parts of a frequency-domain blind
source separation procedure, the computation time of ICA as well
as the postprocessing with local permutation alignment, which are
both independent of the two parameters, are also shown to give
the readers a global impression of the computational complexity
of the blind source separation algorithm. The program was coded
in Matlab and run on Intel 64 Q8400 @ 2.66 GHz. It needs to be
pointed out that the execution time of an algorithm depends on a
lot of factors such as computational complexity, program structure,
hardware pipeline, and thus may vary significantly for different
implementations. In Fig. 12 the vertical axis denotes the execution
time; the horizontal axis denotes Nb; each curve plots the execu-
tion time for a fixed value of Nc . It can be seen from Fig. 12 that
for a fixed Nb the execution time increases with Nc . For a fixed
small Nc value (1,2) the execution time keeps almost constant
with respect to Nb . In addition, for a fixed large Nc value (4,8,16),
the execution time drops significantly with increasing Nb . This
phenomenon indicates that the number of iterations (e.g., I1c_2,
Imc and Ikm) required for reaching convergence tends to decrease
evidently with rising Nb , especially in case of large Nc values. This
is an extra benefit when using a large value of Nb .

6. Conclusions

Studying frequency-domain convolutive blind source separation,
this paper proposes an improved permutation alignment algorithm
based on inter-frequency dependency of separated signals. The
main contribution of the paper is summarized as below:
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(1) A multi-band multi-centroid clustering algorithm is proposed
for the permutation alignment problem. It is shown that both
multi-band and multi-centroid processing is important for per-
mutation alignment. The proposed algorithm evidently out-
performs the full-band clustering algorithms. Especially, it can
improve the robustness in challenging scenarios and can re-
duce block permutation errors effectively.

(2) Extensive experiments (with different reverberation time,
number of sources, and testing files) are carried out to investi-
gate the influence of two parameters, the number of subbands
and the number of clustering-centroids, on the performance
of the proposed algorithm. A robust combination of the two
parameters can be easily found from the experiment results.

(3) Computational analysis demonstrates that the multi-band pro-
cessing can reduce the computational cost compared to a full-
band algorithm.

(4) The proposed algorithm also outperforms other existing algo-
rithms in both terms of mean performance and robustness for
all testing scenarios.

Finally, with nearly perfect permutation results in most testing
scenarios, the proposed algorithm is promising for practical appli-
cations.

The current version of the proposed blind source separation al-
gorithm only considers batch processing, which however has to
bear deficiencies such as high computational cost and long algo-
rithm delay. Extending the proposed algorithm to an online im-
plementation and making it more suitable for real-time processing
will be our future work.
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