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Abstract—The paper investigates vector quantization coding of
high-order (e.g., 20th-50th order) linear prediction coding (LPC)
parameters, and proposes a novel hierarchical decomposition
vector quantization method for a scalable speech coding frame-
work with variable orders of LPC analysis. Instead of vector
quantizing the whole group of LPC parameters in the linear
spectral frequency (LSF) domain directly, the proposed method
decomposes the high-order LPC model into several low-order
(e.g., 10th-order) LPC models, and vector quantizes them in the
LSF domain separately. For the decomposition, the high-order
LPC model is converted into a group of reflection coefficients
at first, and then the group is split into several subgroups and
converted into multiple low-order LPC models. It is shown that
the proposed method is naturally suitable for a scalable coding
framework where the information of the decomposed low-order
LPC models can be encoded into a multi-layered bitstream and
can be combined in a progressive way to recover the high-order
LPC information. Experiments in a scalable coding framework
with variable LPC analysis orders (10-50) reveal that, compared
to a direct vector quantization scheme, the proposed method can
reduce the size of the codebook and the number of coding bits
significantly, and can also efficiently reduce the computation cost.

Index Terms—Line spectral frequency, linear prediction coding
(LPC), reflection coefficient, scalable coding, vector quantization.

I. INTRODUCTION

L INEAR prediction plays an important role in modern
speech processing technology [1], [2]. Linear predictive

coding (LPC) coefficients can represent the short-time spectral
envelope information of speech signals efficiently and are
widely used in code-excited linear prediction (CELP) speech
codecs, such as G.728, G.729, AMR, and EVRC [3]–[6]. To re-
duce the bit rate, LPC parameters are generally vector quantized
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in the linear spectral frequency (LSF) domain, which shows
advantages of robustness and interpolation [7]. Many mature
vector quantization algorithms have already been proposed for
the quantization of the LSF parameters, such as split vector
quantization, multistage vector quantization, and predictive
vector quantization [8]–[15]. The precision of LPC spectral
estimation is closely related to the harmonic structure of source
signals as well as the LPC order. In low-bit-rate speech codecs,
which typically operate in the frequency range of 300–4000 Hz,
a 10th-order LPC model can generally describe a speech signal
well enough. However, for signals with a wider frequency
range (e.g., 50–8000 Hz) or with more harmonic structures
and spectral components (e.g., speech signals with background
music), it is difficult to represent all the formant information
with only 10 parameters. In this case, low-order LPC analysis
will lead to unnatural regeneration of speech and hence it is
necessary to increase the analysis order in order to capture all
the formant information required for high-quality speech/audio
synthesis [16], [17].
In recent years, the continuous increase of available data

rates in telecommunication systems has allowed enhancing user
experiences with for example the transmission of wideband
speech/audio in high fidelity. In addition, to be compatible with
different transmission bandwidth conditions, scalable speech
codec techniques have emerged in recent years, which generate
a multi-layered bitstream format with each additional layer
successively improving the speech/audio quality [18]–[20].
Existing scalable speech codecs usually operate in low and
high frequency bands separately and allocate most of the
bandwidth to excitation parameters. However, in future speech
codecs with higher bit rates, it is possible to allocate extra
bandwidth to LPC information. This creates a more detailed
LPC spectrum, which can further improve the speech synthesis
quality. For now, high-order LPC analysis techniques have
rarely been employed in a scalable speech codec. There are
mainly two reasons for that: 1) The computation and memory
cost increases significantly with the LPC analysis order when
quantizing the LPC parameters in the LSF domain; 2) The
current LPC quantization scheme (vector quantizing in the LSF
domain directly) is unsuitable for the scalable speech coding
framework.
This paper investigates vector quantization coding of high-

order LPC parameters and proposes a novel vector quantization
method that is naturally suitable for a scalable coding frame-
work with variable LPC orders. The main idea is to decompose
a high-order LPCmodel into several low-order ones, and then to
vector quantize them in the LSF domain separately. The decom-
position is performed with the help of an intermediate parameter
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Fig. 1. Basic components of a CELP encoder.

(RC - reflection coefficient). The high-order LPCmodel is trans-
formed to a group of RCs, which are then divided into several
subgroups. Each subgroup of RCs is further transformed to a
low-order LPC model and vector quantized in the LSF domain.
The feasibility of the conversion between RC, LPC and LSF in
each subgroup will be proved theoretically in the paper. The ob-
tained low-order LPC models can be encoded in a multi-layered
bitstream, which aims to successively improve the LPC anal-
ysis precision. Therefore, the proposed method is referred to as
a hierarchical decomposition vector quantization method. By
decomposing a high-order LPC model into low-order ones, the
proposed method works more efficiently in a scalable coding
framework than traditional methods, which vector quantize the
high-order LPC model directly.
The rest of the paper is organized as follows. The theoretical

background that is related to the proposed method is reviewed in
Section II. The hierarchical decomposition vector quantization
method is described in detail in Section III. Experiments are
carried out to evaluate the performance of the proposed method
in Section IV. Finally, conclusions are drawn in Section V.

II. THEORETICAL BACKGROUND

In this section, the principle of CELP is introduced at first,
after which some properties of LPC and its alternative represen-
tations, i.e., line spectral frequencies (LSFs) and reflection co-
efficients (RCs), are reviewed to help understand the proposed
method.

A. CELP and LPC Order

Code-excited linear prediction has been widely used in
speech coding [21]. The basic principle of a CELP encoder
is shown in Fig. 1, which can be divided into two paths. In
the upper path, the speech signal is segmented into short-time
frames and LPC analyzed to compute the LPC parameters. The
LPC parameters are converted into LSFs and vector quantized.
In the lower path, the frames of speech are passed through
a prediction error filter, which is constructed from the LPC
parameters, obtaining the excitation residuals, which are sub-
sequently encoded in the form of adaptive and fixed codebook
indices and gains. The LPC encoder and the excitation encoder
are two core blocks of the CELP encoder. The two blocks
are relatively independent. The aim of the LPC encoder is to
minimize the error between the original (unquantized) LPC
spectrum and the reconstructed (quantized) LPC spectrum.
The aim of the excitation encoder is to minimize the error
between the original and reconstructed speech according to a

Fig. 2. Objective evaluation scores for speech (PESQ) and music (PESQ and
QoE) encoding at different LPC analysis orders in a G.728 framework.

perceptually weighted distortion measure. LPC analysis, which
connects the LPC encoder block and the excitation encoder
block, plays an important role on the performance of the whole
CELP encoder.
To show the influence of LPC analysis order on the speech

codec quality, we use a modified G.728 speech codec, where the
LPC order can be varied, to encode 5 segments of speech files
and 5 segments of music files (each about 10 s long, 16 kHz
sampling) at different LPC analysis orders increasing from 10
to 50, and calculate the perceptual evaluation of speech quality
(PESQ) values of the decoded files [22]. (The details of themod-
ified G.728 will be described in the Appendix.) Fig. 2 shows
the average PESQ values of the speech and music files at dif-
ferent LPC orders. It can be clearly seen from Fig. 2 that speech
obtains a higher PESQ value than music overall, and both of
them show improved PESQ values with the increase of the LPC
order. For speech, the improvement of PESQ becomes slow
when the LPC order is greater than 40. For music, the PESQ im-
proves continuously with the LPC order. Considering that PESQ
is mainly designed for testing speech quality, we use another
objective quality of experience (QoE) measure to evaluate the
music quality [23]. The QoE measure is a linear combination
of PESQ and perceptual evaluation of audio quality (PEAQ)
[24], resulting in mean opinion score (MOS)-like values. The
QoE results for music are also plotted in Fig. 2. Similar to the
PESQ value for music, the QoE value also improves constantly
with the LPC order. In a short summary, the observations above
verify the utility of high-order LPC analysis in speech coding1.
It should be noted that in G.728 standard, the 50-th order LPC

information is not encoded and transmitted in the bitstream.
When synthesizing speech in the decoder, the LPC informa-
tion of each frame is approximated by the LPC parameters an-
alyzed from previously decoded speech frames. In this way,
the high computation and coding bits consumption of encoding
high-order LPC parameters is avoided at the cost of inaccurate

1Some audio demos are available online [28].
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LPC information. Although the aim of the paper is not to pro-
pose an alternate of G.728, we believe that if the LPC informa-
tion is available in the bitstream, the speech codec quality can
be further improved.
In this paper, we investigate how to efficiently encode the

high-order LPC information in a scalable framework so that
the spectral information can be reconstructed and improved pro-
gressively. The excitation encoder block will not be addressed
in this paper since it is independent of the LPC encoding block.

B. LPC and LSF

Linear prediction analysis is a powerful tool used frequently
in audio and speech signal processing for representing the
spectral envelope. In linear prediction models, a short-time
segment of speech is assumed to be generated as the output of
an all-pole filter , where is the predic-
tion error filter defined by a set of -order LPC parameters

, i.e.,

(1)

where is generally calculated from the autocorrelation infor-
mation of the signals with the Levinson-Durbin algorithm [1],
[25], which is simply given below.
In the Levinson-Durbin algorithm, the autocorrelation vector

for a time sequence is defined as ,
with the -th element , where de-
notes mathematical expectation. The -order LPC parameters

can be estimated by using the re-
cursions in (2):

(2)

where is the recursion order ascending from 1 to ;
is the vector of LPC parameters obtained

at the -th recursion and is the
order-reversed version of ; is the -th reflection coeffi-
cient and always satisfies .
In speech coding, the LPC parameters are generally vector

quantized in the LSF domain to reduce the data rate, because
LSFs have a smaller dynamic range. In addition, the LSF rep-
resentation is more robust to quantization than the LPC param-
eters and in difference to the LPC parameters, LSFs can be in-
terpolated between frames without loss of stability of the pre-
dictor. In order to define LSF, the prediction error filter polyno-
mial is used to construct two polynomials:

(3)

The roots of the polynomials and are called the linear
spectral frequencies (LSFs). The polynomials and
have two properties: 1) All zeros of and lie on the
unit circle; 2) Zeros of and are interlaced with each
other, so that the LSFs are in ascending order. These properties
help in efficient numerical computation of the LSFs from

and . It is shown in [1] that has the minimum phase
property, i.e., all zeros of must be inside the unit circle in
the -plane, when its LSFs satisfy these two properties. In this
case, the stability of LPC synthesis filter can be easily ensured
by quantizing the LPC information in LSF domain. Thus, the
minimum phase property of is a prerequisite for the con-
version between LPC parameters and LSFs. This requirement is
called the Minimum Phase Condition.

C. LPC and Reflection Coefficient

As a by-product of the Levinson-Durbin algorithm, the re-
flection coefficients (RCs) in Eq. (2) are important parameters
when representing an LPC predictor as a lattice structure. The
relationship between RC and LPC is given below.
On the one hand, the -order LPC parameters

can be uniquely determined by a set of
reflection coefficients by using the

recursion in (4):

(4)

where is the recursion order ascending from 1 to ;
is the vector of LPC parameters obtained

at the -th recursion and is the
order-reversed version of ; is the -th reflection coeffi-
cient. On the other hand, can also be calculated from by
using the recursions in (5):

(5)

with the recursion order descending from to 1.
There are two important properties of RCs.
1) With Eqs. (4) and (5), RCs and LPC parameters can be
converted to each other freely. In addition, it is shown in
[26] that a prediction error filter constructed from
is minimum phase if and only if its corresponding RC set

satisfies for .
2) The values of the RCs are independent of the LPC analysis
order. For instance, two RC sets and , as a result
of applying -order and -order ( ) LPC
analysis to a same signal respectively, will share the same
first elements. This Order Invariant Property can be
exploited for a scalable speech coding framework.

III. HIERARCHICAL DECOMPOSITION VECTOR
QUANTIZATION METHOD

Split vector quantization (SVQ) is an efficient method to
vector quantize the high-order LPC parameters, which can
balance between codebook size and bit rate [8]. However,
this method is not suitable in a scalable coding framework
where the LPC analysis precision is supposed to be improved
progressively with a multi-layered bitstream. For such an
application, a hierarchical decomposition vector quantization
(HDVQ) method is proposed. We will introduce the split vector
quantization method at first and then present the proposed
method in detail.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 24,2021 at 01:08:33 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: NOVEL HIERARCHICAL DECOMPOSITION VECTOR QUANTIZATION METHOD 215

Fig. 3. Block diagrams of the encoding part of split vector quantization.

Fig. 4. Using split vector quantization in a scalable coding framework.

A. Split Vector Quantization

The block diagram of the encoding part of split vector quan-
tization is shown in Fig. 3. After converting from LPC parame-
ters to LSFs, the obtained LSF group is
split into subgroups , where the subscript
is the size of the -th subgroup and . Each
LSF subgroup is then vector quantized and represented with
an index of the corresponding codebook. With fewer LSFs in
each subgroup, the size of the codebook for each subgroup de-
creases significantly. In this way, the LPC parameters can be
well vector quantized even if the LPC order is high.
The application of split vector quantization in a multi-lay-

ered scalable LPC coding framework is shown in Fig. 4. In
each layer, the LPC parameters obtained at a specific LPC order
( ) are encoded separately with split vector
quantization. The precision of LPC analysis improves with the
increase of the layer and LPC order. The number of bitstream
layers to be transmitted will depend on the network transmis-
sion status. Although split vector quantization can reduce the
codebook size, it is still inefficient in this scalable coding frame-
work since in essence the low-order LPC information has been
encoded repeatedly in higher layers.

B. Proposed Method

With the aim of scalable coding, a hierarchical decomposi-
tion vector quantization method is proposed. The main idea is
to decompose a high-order LPC model into several low-order
LPC models, whose coefficients are then vector quantized in
the LSF domain separately. Since an LPC model should satisfy
the Minimum Phase Condition to be able to convert to LSFs,
we use an intermediate variable (i.e., RC) to assist the decom-
position. Specifically, the higher-order LPC model is converted
to a group of RCs, which is then divided into subgroups. Next,
each RC subgroup is converted to a low-order LPC model and
then vector quantized in the LSF domain. It can be proved in
Section III-C that with this intermediate variable the obtained
low-order LPC models will satisfy the Minimum Phase Condi-
tion and hence can be converted to LSFs for vector quantiza-
tion. The decomposed low-order LPC models can be encoded
into different layers of the bitstream. Furthermore, based on
the Order Invariant Property of reflection coefficients, the RCs

from each subgroup can be combined to construct a high-order
LPC model. In the following paragraphs, the proposed method
is presented in encoding and decoding parts respectively.
Encoding Part: For an -order LPC analysis with its LPC

parameters , the encoding part is
shown in Fig. 5, consisting of 5 steps.
E1: Convert the LPC model into a group of RCs

by using the recursion (5).
E2: Split into subgroups, i.e.,

, where denotes the size of the
-th subgroup. We choose equal size for all the
subgroups, i.e., for , and

. The components of the -th subgroup
is expressed as

. Each subgroup is
processed respectively in Step 3–5.

E3: Convert the -th RC subgroup into an -order
LPC model by using the
recursion (4).

E4: Convert to LSFs .
E5: Vector quantize the LSFs , where the vector can

be represented by an index of a codebook.
The RC-LPC-LSF conversion and vector quantization (the

steps 3–5) are repeated for all the subgroups. Finally is
represented by indexes . For scalable coding,
each index can be encoded into a separate layer of the bit-
stream. Regarding the value of , we typically choose
and , because a large amount of works have already
been done on the vector quantization of 10-th order LPCmodels
and can be used directly. Apart from this, other values of can
also be used as appropriate.
For vector quantization at each subgroup, there are two

schemes to design the codebook.
Scheme 1: Considering the fact that in each subgroup we have

the same number of LSF parameters distributed in the interval
, a shared codebook can be designed for all the subgroups.

This scheme can reduce the total size of the codebook signifi-
cantly. However, the vector quantization efficiency is low since
the probability distribution of the LSF parameters in each sub-
group may be different.
Scheme 2: Considering the fact that the probability distribu-

tion of the LSF parameters in each subgroup may be different,
an individual codebook can be designed for each subgroup sep-
arately. This scheme can increase the vector quantization effi-
ciency. However, the total size of the codebook also increases
with the number of subgroups.
Decoding Part: The decoding part of the proposed method

is shown in Fig. 6
D1: Given the indexes , the D subgroups of

LSFs can be recovered with inverse
vector quantization.

D2: At each subgroup, the LSF vector is converted to
the LPC model and then to the RC set using
the recursion (4).

D3: The D subgroups of RC are combined to get a whole
group .

D4: Finally, the RC set is converted to the LPC model
using the recursion (5).

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 24,2021 at 01:08:33 UTC from IEEE Xplore.  Restrictions apply. 



216 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 1, JANUARY 2015

Fig. 5. Block diagram of the encoding part of the proposed hierarchical decomposition vector quantization method.

Fig. 6. Block diagram of the decoding part of the proposed hierarchical decomposition vector quantization method.

The LSF-LPC-RC-LPC conversion in the decoding part is
completely an inverse procedure of the encoding part. Based
on the Order Invariant Property, the information of the RCs at
different layers can be combined to improve the LPC analysis
precision progressively in the decoding part.

C. Remarks on the Proposed Algorithm

In the encoding part of the proposed method, each subgroup
of RCs is converted to LPC parameters and then converted to
LSFs for vector quantization. As mentioned in Section II, LPC
parameters and RCs can be converted to each other freely, while
the conversion between LPC parameters and LSFs should sat-
isfy the Minimum Phase Condition. A proof of the equivalence
between LPC parameters and LSFs in each subgroup is provided
below.
In the step (E1), the -order LPC model obtained by the

Levinson-Durbin algorithm satisfies the Minimum Phase Con-
dition, meanwhile the corresponding RC set also satisfies
that , for .
In the step (E2), since all the elements of the -th RC sub-

group come from the whole group , they also satisfy
that , for .
In the step (E3), a new -order LPC model is uniquely

determined from the RC set . Based on the first property for
RCs in Section II-C, the new LPC model also satisfies the
Minimum Phase Condition and thus can be converted to LSFs
successfully.
In a short summary, by using RCs as intermediate variables,

the proposed method decomposes a high-order LPC model into
several low-order LPC models and then vector quantizes them
separately. The main difference between the proposed hierar-
chical decomposition vector quantization method and the split
vector quantization method, which also splits the LSFs into sub-
groups, is as below.
1) In HDVQ, the LSFs of each subgroup are contained within
the same interval ( ). Exploiting this feature, either a
shared or individual codebook can be designed for each
subgroup. In contrast, the LSFs obtained by SVQ in each
subgroup distribute in different but smaller intervals and
thus an individual codebook must be designed for each
subgroup. For SVQ, the LSFs in each subgroup have

smaller dynamic range and are easier to be vector quan-
tized. Therefore, for LPC analysis at a fixed order, SVQ
performs more efficiently than HDVQ.

2) The advantage of HDVQ lies in that it can decompose a
high-order LPC model into several low-order LPC models
for encoding and thus it is fit for a scalable coding frame-
work. In contrast, SVQ has to encode LPC models at dif-
ferent orders separately, and thus is inefficient in terms of
codebook size and coding bits.

3) A major computation consuming operation in LPC vector
quantization is the conversion from LPC parameters to
LSFs, which requires calculating the roots of the poly-
nomials in Eq. (3) with numerical analysis methods [27].
The computation complexity of this procedure typically
increases exponentially with the LPC order. As shown in
Fig. 3, SVQ involves a direct conversion from LPC pa-
rameters to LSFs and hence is computationally demanding
especially for high-order LPC. In contrast, as shown in
Fig. 5, HDVQ can decompose a high-order LPC-LSF
conversion into the conversion between several low-order
models, and hence can reduce the computation complexity
significantly.

It should be noted that in Fig. 5 and Fig. 6 we aim to present a
framework for scalable LP coding. This framework can be used
for arbitrary model orders. For encoding the low-order model
in each subgroup, existing vector quantization schemes (such as
split vector quantization, differential vector quantization, multi-
stage vector quantization, or a combination of them [8]–[15]),
which are already mature and efficient, can be utilized for this
task. For simplicity, we only use split vector quantization in the
following experiments and the conclusion can be generalized to
other vector quantizers.

IV. EXPERIMENTAL RESULTS

In this section, we give some experimental results to demon-
strate the advantages of the proposed method. The test sequence
used in the experiment consists of 45 minutes of random broad-
casting speeches sampling at 16 kHz, where 40 minutes of the
data is used for codebook training and the remaining 5 minutes
of data is used for testing. After applying a high-pass filter at
100 Hz and a pre-emphasis filter of , the
Levinson-Durbin algorithm is performed every 15 ms after ap-
plying a 30-ms Hanning window. LPC parameters at 5 different
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Fig. 7. Spectrum of 30 ms speech for different orders of linear prediction anal-
ysis.

orders (10, 20, 30, 40 and 50) are calculated and vector quan-
tized with SVQ and HDVQ, respectively. The performance of
the two methods is compared in a scalable coding framework
where the LPC information at the 5 different orders is encoded
into 5 layers respectively.
The experiment is divided into two parts. The first part inves-

tigates the probability distribution of the obtained LSFs in each
subgroup when applying high-order LPC analysis. The second
part compares SVQ and HDVQ in a scalable coding framework
in terms of vector quantization performance and computation
complexity.

A. High-Order LPC Analysis

Fig. 7 shows the spectrum of a frame (30 ms) of wideband
speech using different orders (10-50) of linear prediction anal-
ysis. A shifted version of the spectrum is depicted so that the
details of the spectrum curves can be clearly observed and com-
pared. The 10th-order LPC can only capture the variation of
the speech spectrum roughly, with a lot of important formant
information missing as compared to the original speech spec-
trum. For instance, the formants at frequencies around 2.2 kHz,
3.5 kHz and 6.7 kHz are completely invisible at LPC-10. One
main reason for the information missing is the fact that number
of formants is greater than the LPC order. When the LPC order
is increased to 20, some formants, which are missed in LPC-10,
are well captured in LPC-20. Further increasing the LPC order
will introduce more spectral details into the LPC spectrum. The
spectrum of LPC-50 is quite close to the original speech spec-
trum.With Fig. 7, the spectral difference between different LPC
orders can be clearly observed, with more spectral (formant)
details captured by using higher LPC orders. Referring to the
observation in Fig. 2, it can be confirmed that by increasing
the LPC order and introducing more spectral details into the
LPC spectrum, the speech codec quality can be continuously
improved.
The 50th-order LPC model is decomposed into five 10th-

order LPCmodels using the proposed method, with their spectra

Fig. 8. Spectra of the five 10th-order LPC models obtained by decomposing
a 50th-order LPC model. Each column depicts the LPC spectrum that is repre-
sented using only 10 LSFs (k1-10, k11-k20, k21-k30, k31-k40, and k41-k50).

shown in Fig. 8. The first panel of Fig. 8 depicts the LPC spec-
trum that is represented using only k1-10; the second panel de-
picts the LPC spectrum that is represented using only k11-k20;
and so on. As indicated in the proposed method, each low-order
LPC model contains the information of a subgroup of reflection
coefficients. It can be seen from Fig. 8 that the first low-order
LPCmodel (k1-k10), which is equivalent to the 10th-order LPC
model in Fig. 7, can only represent the speech spectrum roughly.
Regarding the other 4 models (k11-k20, k21-k30, k31-k40, k41-
k50), it seems that their spectra are unrelated to the speech spec-
trum. However, when we compare them with the spectrum of
LPC-50 in Fig. 7, it is found that the positions of the spectral
peaks and valleys in these models are consistent with those in
the LPC-50 spectrum. This observation implies a possibility to
incorporate a perceptual model in the vector quantization proce-
dure of each subgroup. Specifically, when designing a codebook
for vector quantization, a weighted Euclidean distance measure
can be employed to improve the perceptual performance, be-
cause the spectral peaks play a higher role than spectral valleys
in auditory perception [8]. This is achieved by assigning more
weights to the LSFs corresponding to the high-amplitude for-
mants than those corresponding to the low-amplitude formants
when calculating the Euclidean distance between quantized and
unquantized LSFs. As a possible extension in our future work,
we can apply this spectral weighting strategy to the spectral
peaks and valleys of each decomposed low-order LPC model
in order to improve the perceptual performance.
It is additionally observed in Fig. 8 that the dynamic range

of the spectrum of the first (k1-k10) model, which varies within
the range between dB and 30 dB, is much wider than the
dynamic range of the spectra of the 2nd-5th models, which all
vary within the range between dB to 5 dB. We thus pre-
sume that the 2nd-5th models may be easier to vector quan-
tize than the first one. To verify this assumption, we plot the
probability distribution function (PDF) of the LSF parameters
of each low-order model in Fig. 9. As shown in each panel in
Fig. 9, the 10 LSF parameters of each model distribute in the
interval ( ). The PDFs of the LSFs in the first model show
irregular shapes, each spanning a wide dynamic range. In con-
trast, the PDFs of the LSFs in the 2nd-5th models show regular
Gaussian-like shapes, each spanning a much narrower dynamic
range. The phenomena above can confirm our assumption: the
LSF parameters in the 2nd-5th models span smaller dynamic
range than the ones in the first model and hence can be vector
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TABLE I
REQUIRED OPERATIONS BY SPLIT VECTOR QUANTIZATION AND HIERARCHICAL DECOMPOSITION VECTOR QUANTIZATION IN A SCALABLE CODING FRAMEWORK

Fig. 9. Probability density functions of the LSF parameters at the five decom-
posed low-order LPC models.

quantized more efficiently. It is additionally observed that the
PDFs of the LSFs in the 2nd-5th models are very similar. For
instance, the first LSFs of the 2nd-5th models all distribute in
the same interval (0, 0.5); similar phenomena can be observed
for all the other LSFs. Based on this observation, we propose to
design an individual codebook for the first model while a shared
codebook for the 2nd-5th models.

B. Comparison Between SVQ and HDVQ

Vector Quantization Performance: The vector quantization
performance of HDVQ and SVQ are compared in a scalable
coding framework. For SVQ, the LPC information at the orders
of 10, 20, 30, 40 and 50 are encoded into five different layers
separately. For HDVQ, the decomposed five 10th-order LPC
models are encoded into five different layers separately. The
required operations by the two methods are shown in Table I,
where for example the term “(

” denotes one LPC-LSF (of order 20) conversion plus
twice RC-LPC-LSF (of order 10) conversions.

The vector quantization performance is compared in terms of
codebook size, coding bits and quantization error. The quanti-
zation error is measured by log spectral distortion (LSD), which
is often used in evaluation of LPC quantization [8]. For the -th
frame, the spectral distortion is defined in dB as

(6)

where is the sampling frequency in Hz,
and are the coded and decoded LPC power
spectra in the -th frame, respectively, with and
calculated from the coded and decoded LPC parameters. An av-
eraged LSD is calculated over all the testing frames. For HDVQ,
two LSD measures can be calculated: a local LSD measure
for each low-order LPC model and a global LSD measure for
the reconstructed high-order LPC model, which combines the
low-order models. For SVQ, only the global LSD measure for
the high-order LPC model is calculated.
For these two types of vector quantization methods, the code-

books are designed under a criterion that the two methods can
achieve comparable global LSD at all the LPC orders. The pa-
rameters of the designed codebooks for SVQ and HDVQ are
given by Table II and Table III, respectively. As shown in Eq.
(6), the global SD for each LPC order is calculated between the
(same-order) quantized and unquantized LPC power spectra. As
the LPC order grows, the spectrum of the LPC model becomes
complicated. This increases the challenge of quantization and
results in more spectral distortion even if more coding bits are
used. In SVQ, each subgroup of the 10 LSF parameters is pro-
cessed with another round of SVQ, i.e., the 10 LSFs are further
split into subgroups of (3, 3, 4) and vector quantized separately.
The codebook size, coding bits, and global LSD by SVQ are also
shown in Table II. In HDVQ, each subgroup of the LSF param-
eters is processed in a similar way, i.e., the 10 LSFs are split
into subgroups of (3, 3, 4) and vector quantized separately. The
codebook size, coding bits, local and global LSDs by HDVQ
are also shown in Table III. It should be noted that the param-
eters of the codebook for each subgroup, e.g., codebook size,
are determined heuristically and may not be optimal. Other ad-
vanced techniques for codebook design can also be employed.
However, in this paper, we focus on the comparison between the
two methods and the design of an optimal codebook will be left
for future work.
One big difference between SVQ and HDVQ in a scalable

coding framework is that SVQ has to encode the full LPC in-
formation at different orders into the corresponding layer while
HDVQ only needs to encode the decomposed low-order LPC in-
formation into each layer. We compare the two methods in two
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TABLE II
CODEBOOK FOR SPLIT VECTOR QUANTIZATION

TABLE III
CODEBOOK FOR HIERARCHICAL DECOMPOSITION VECTOR QUANTIZATION

Fig. 10. Performance comparison between split vector quantization and hier-
archical decomposition vector quantization in a scalable coding framework.

scenarios: LPC quantization with fixed LPC order (i.e., only one
LPC order is considered) and LPC quantization with scalable
LPC orders (i.e., all the variable LPC orders are considered).
As a summary of Table II and Table III, Fig. 10 compares the
twomethods in both scenarios in terms of codebook size, coding
bits and LSD. In each panel of Fig. 10 three curves are depicted:
one for HDVQ (which performs equivalently for both fixed and
variable LPC orders), one for SVQ with a fixed LPC order, and
one for SVQ with variable LPC orders. In Fig. 10(c), the local
LSD obtained by HDVQ for each low-order LPC model is ad-
ditionally given as “HDVQ (local)” for reference.
As mentioned above, the sizes of the codebooks are espe-

cially chosen for the two methods so that they can show com-
parable global LSD performance at all the variable LPC orders.
As shown in Fig. 10(c), with the designed codebook, HDVQ
can achieve good local LSD performance inside each low-order
model. For instance, very small local LSD (less than 0.4 dB)
can be obtained for the last four models (order 20–50) even
if a shared codebook is employed for them. However, since
the quantization error at each low-order LPC model accumu-
lates when reconstructing a high-order LPC model, degraded

global LSD performance will be observed with the increasing
LPC order. In contrast, SVQ processes the LPC information at
different orders separately and hence performs more efficiently
than HDVQ for a fixed LPC order. As shown in Fig. 10(a)–(c),
once the LPC order is fixed, SVQ (fixed) requires smaller code-
books and fewer coding bits than HDVQ for a comparable LSD
performance.
The advantage of HDVQ is mainly manifested for scalable

LPC orders. Since the codebooks and coding bits of SVQ accu-
mulate with the number of variable LPC orders, the total con-
sumption (in terms of codebook size and coding bits) of SVQ
(scalable) tends to increase exponentially with the increasing
LPC order, just as shown in Fig. 10(a)–(b). In contrast, HDVQ
only needs to encode the decomposed low-order models pro-
gressively, and the consumption of the codebook and coding bits
generally increases linearly with the increasing LPC order. As
shown in Fig. 10(a), since HDVQ uses an individual codebook
for the first low-order model while a shared codebook for the
remaining low-order models, no new codebook is required for
the 3rd-5th layers.
In a short summary, HDVQ performs less efficiently than

SVQ for fixed LPC orders; however, it shows greater advan-
tages in a scalable framework by reducing the total codebook
size and coding bits significantly.
Computation Complexity: The computation complexity of

SVQ andHDVQ are compared also in two scenarios: LPC quan-
tization with fixed LPC orders and LPC quantization with scal-
able LPC orders. The computation complexity is measured by
computation time. When calculating this measure, only the op-
erations listed in Table I are considered. The programwas coded
in Matlab and run on an Intel 64 Q8400@2.66 GHz. The en-
coding time and decoding time for 10000 frames are counted
for the SVQ and HDVQ in both scenarios and are shown in the
two panels of Fig. 11, respectively. In each panel three curves
are depicted: one for HDVQ (which performs equivalently for
both fixed and variable LPC orders), one for SVQ with a fixed
LPC order, and one for SVQ with variable LPC orders.
As shown in Fig. 11(a), for fixed LPC orders, the encoding

time of SVQ (fixed) increases exponentially with the increasing
LPC order. This is mainly because the computation complexity
of the conversion from LPC parameters to LSFs exponentially
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Fig. 11. Computation time (for 10000 frames) comparison between split vector
quantization and hierarchical decomposition vector quantization in a scalable
coding framework.

grows with the LPC order. HDVQ decomposes a high-order
LPC-LSF conversion into multiple low-order conversions; as
a result, its encoding time increases linearly with the increasing
LPC order. The advantage of HDVQ decomposition can be ev-
idently observed especially for high-order LPC. As shown in
Fig. 11(b), the decoding time of SVQ (fixed) and HDVQ both
increases linearly with the increasing LPC order. Additionally,
SVQ (fixed), which involves only one LSF-LPC conversion, re-
quires less decoding time than HDVQ, which involves a rela-
tively more complicated LPC reconstruction procedure.
For scalable LPC orders, SVQ (scalable) needs to encode for

all the bitstream layers, thus its encoding time increases ex-
ponentially with the LPC order. As shown in Fig. 11(a), the
encoding time by SVQ (scalable) reaches an extremely high
value at the 50th LPC order. For the decoding time shown in
Fig. 11(b), SVQ (scalable) needs only one LSF-LPC conver-
sion (the same operation as in SVQ (fixed)), and hence requires
the same time as SVQ (fixed). HDVQ performs equivalently
for both scalable and fixed LPC orders. It requires much less
encoding time than SVQ (scalable) while a bit more decoding
time.
In a short summary, compared with SVQ, HDVQ can reduce

the computation time significantly in a scalable coding frame-
work. Furthermore, by decomposing the high-order LPC-LSF
conversion into low-order ones, HDVQ can further reduce com-
putation complexity.

V. CONCLUSION

With the help of an intermediate parameter, reflection co-
efficient, it is possible to decompose a high-order LPC model
into several low-order LPC models and quantize them sepa-
rately in the LSF domain. This scheme is naturally fit for a scal-
able coding scheme with variable orders of LPC analysis since
the decomposed low-order LPC models can be combined in a
progressive way to recover the high-order LPC information. A
shared codebook can be designed for the vector quantization of
these low-order LPCmodels, which can significantly reduce the

total size of a codebook. Comparison with the traditional split
vector quantization method demonstrates that
1) For a fixed LPC order, SVQ works more efficiently than
the proposed HDVQ method.

2) In a scalable coding framework, HDVQ evidently outper-
forms SVQ by reducing the size of the codebooks and the
number of coding bits significantly and reducing the com-
putation time efficiently.

3) By decomposing the high-order LPC-LSF conversion,
which is highly computation demanding, into low-order
LPC-LSF conversions, HDVQ can further reduce the
computation complexity.

The proposed method is feasible for arbitrary LPC analysis
orders and has shown great potential in a scalable coding frame-
work.
In the experiment, a 50th-order LPC analysis is employed to

validate the proposed method. It should be noted that an LPC-50
model might not be optimal for a practical speech codec, where
the bandwidth efficiency has to be considered. Applying the
proposed method to a high-quality scalable coding system, de-
termining the optimal LPC analysis order, and evaluation with
comprehensive subjective listing tests will be our future work.

APPENDIX
A MODIFIED G.728 WITH VARIABLE LPC ORDER

G.728 is an ITU-T standard for low-delay CELP speech
coding operating at 16 kbit/s [3]. It involves a 50th-order LPC
analysis and thus is inherently suitable to be modified as a codec
with variable LPC orders from 10 to 50. Although optimally
designed to work at an 8 KHz sampling rate, it can also process
the speech stream sampling at 16 kHz, by directly treating the
latter one as a stream sampling at 8 kHz.
We use the G.728 ANSI C code obtained from ITU [29]. The

Order Invariant Property of RC in Section II-C will be em-
ployed for code modification. Specifically, to encode with an
-order ( ) LPC analysis, we only need to modify the

Levin-Durbin algorithm in G.728, setting all the reflection co-
efficients that satisfy to 0 during the iteration. In
this way, we get 50th-order LPC parameters which contain only
the -order information, without changing the processing of
other blocks in the G.728 project. Finally, the executable files
of the modified G.728 are given online, along with the PESQ
executable files and audio demos [28].
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