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Abstract Conventional fixed-point implementation of
the DCT coefficients quantization algorithm in video
compression may result in deteriorated image quality.
The paper investigates this problem and proposes an
improved floating-to-fixed-point conversion scheme.
With a proper scaling factor and a new-established
look-up table, the proposed fixed-point scheme can
obtain bit-wise consistence to the floating-point real-
ization. Experimental results verify the validity of the
proposed method.
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1 Introduction

Digital signal processing applications are specified with
floating-point type but they are usually implemented in
embedded systems with fixed-point arithmetic to min-
imize cost and power consumption [1]. Thus floating-
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point to fixed-point conversion is required in order
to achieve acceptable levels of performance and cost.
This is particularly crucial in real-time applications
that have strict timeline requirement and processing
throughput and latency. Some algorithms in video com-
pression are typically designed with floating-point op-
erations, such as discrete cosine transform (DCT) and
coefficients quantization etc. It’s necessary to convert
these floating-point algorithms to fixed-point ones be-
fore realizing them in fixed-point hardware efficiently.

Floating-to-fixed-point conversion is relatively ma-
ture since it has appeared for decades [2, 3]. Some
general methods have been formed and widely used.
However, in some specific application, conventional
methods can not provide sufficient precision resulting
in large errors. The paper investigates such a problem
in the floating-to-fixed-point conversion of the DCT
quantization algorithm in video compression, and pro-
poses an improved solution.

The organization of the paper is as follows. Section 2
introduces the conventional fixed-point realization of
the DCT quantization algorithm. Section 3 analyzes the
floating-to-fixed-point conversion error and proposes
a possible solution. Experiments results are given in
Section 4. Finally conclusions are drawn in Section 5.

2 Fixed-Point Realization of DCT Coefficients
Quantization

DCT, quantization, inverse quantization, and inverse
DCT are essential processing steps in video coding
standards [4, 5]. DCT has become a standard method
in image and video compression. Typically an image
is divided into 8 × 8-pixels blocks, which are each
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transformed with 64 transform coefficients. The 8 × 8
DCT coefficients of each block have to be quantized
before entropy coding. Quantization is a many-to-one
mapping where the 64 coefficients of an 8 × 8 block
is divided by the quantization step; then the result
is rounded. Since a large number of coefficients be-
come zero after quantization, compression is achieved.
Quantization is a crucial step in that it allows to re-
duce the accuracy with which the DCT coefficients are
presented, opening the door to different rate quality
trade-offs. In principle, the step size could be computed
and optimized for each 8 × 8 block so as to achieve
minimum distortion for a given target bit rate.

In various video compression standards, different
quantization algorithms are employed. For simplicity
and without loss of generality, for an original value F
and a quantization step P, the quantized value C is
expressed as:

C = sign(F) · round
( |F|

P

)
(1)

where | · | denotes the absolute value of the argument,
sign(·) denotes the sign of it, and round(·) denotes
rounding to the nearest integer. And the reconstructed
(dequantized) value F̂ after inverse quantization is

F̃ = sign(F) · C · P (2)

Division arithmetic used in quantization involves
floating-point operation. Generally, floating-point di-
vision can be implemented in fixed-pointed form as
below.

From Eq. 1, we get

C = sign(F) ·
⌊ |F| + P/2

P

⌋
= sign(F) ·

⌊
B
P

⌋
(3)

where �·� denotes rounding towards zero, and

B = |F| + P/2 (4)

The fixed-point version of C is

Ĉ = sign(F) ·
⌊

B · (2Q/P)

2Q

⌋

= sign(F) · {(B · TP) >> Q} (5)

where Q is the scale factor, (·) >> Q denotes right
shifting Q bits of the argument, and

TP = ⌊
2Q/P

⌋
(6)

can be calculated in advance and stored in a table.
So, with a scale factor Q and a look-up table TP, the
division operation can be replaced by multiplication
and shift operations.

Table 1 Fixed-point realization of the quantization algorithm

Example F P C Q Ĉ B

1 144 12 12 10 12 150
2 138 4 35 8 35 140
3 138 12 12 1∼32 11 144

This floating-to-fixed-point conversion scheme
works well in most cases. However, in some situation,
it fails to provide enough precision as the floating-
point one does. Table 1 gives some examples of the
fixed-point realization of the quantization algorithm.
In the first two examples, Ĉ = C can be guaranteed
by choosing a proper scale factor Q. In the third
example where Q is a random number in the range
[1, 32], a floating-to-fixed-point conversion error with
Ĉ = C − 1. What’s more, it is noticed that Ĉ = C − 1
always hold no matter how large Q is. Although it is a
small deviation, the error will be enlarged after inverse
quantization. In the third example, the dequantized
values by Eq. 2 are 144 and 132, respectively for the
floating-point algorithm and the fixed-point one: an
evident gap between them. It will deteriorate the
reconstructed image quality greatly if the floating-to-
fixed-point error happens frequently. Some examples
in Section 4 will demonstrate this.

3 Improved Floating-to-Fixed-Point Conversion
Method

In this section, the reason for the floating-to-fixed-
point conversion error is investigated and an improved
method is proposed based on it. Without loss of gener-
ality, we suppose the original value F is positive.

Comparing Eqs. 3 and 5, it is found that the
difference between C and Ĉ depends on the values
of (B/P) and �B/P�. Since (B/P) ≥ �B/P�, we dis-
cuss from two aspects respectively: (B/P) > �B/P� and
(B/P) = �B/P�.

3.1 (B/P) > �B/P�

This case corresponds to the first example in Section 2.
It can be obtained that

B
P

>

⌊
B
P

⌋
≥

⌊
B · ⌊

2Q/P
⌋

2Q

⌋
(7)

Furthermore, the error between (B/P) and �B/P� lies
in the range

1
2P

≤ B
P

−
⌊

B
P

⌋
< 1 (8)
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and the error between (B/P) and
⌊

B·�2Q/P�
2Q

⌋
is

B
2Q P

≤ B
P

−
⌊

B · ⌊
2Q/P

⌋
2Q

⌋
<

B
2Q

(9)

From Eqs. 8 and 9, it is observed that

⌊
B
P

⌋
≤

⌊
B · ⌊

2Q/P
⌋

2Q

⌋
(10)

when

1
2P

≥ B
2Q

(11)

From Eqs. 7 and 10, equation
⌊ B

P

⌋ =
⌊

B·�2Q/P�
2Q

⌋
, i.e.

C = Ĉ, will hold once Eq. 11 is satisfied, i.e.

2Q ≥ 2BP (12)

In this way, by choosing an appropriate value of the
scale factor Q, C = Ĉ can be guaranteed.

3.2 (B/P) = �B/P�

We discuss from two aspects: (2Q/P) = ⌊
2Q/P

⌋
and

(2Q/P) >
⌊

2Q/P
⌋

.

(1) (2Q/P) = ⌊
2Q/P

⌋
Since

Ĉ =
⌊

B · ⌊
2Q/P

⌋
2Q

⌋
=

⌊
B · (2Q/P)

2Q

⌋
= C

C = Ĉ always holds. This corresponds to the sec-
ond example in Section 2.

(2) (2Q/P) >
⌊

2Q/P
⌋

Since (B/P) = �B/P�, C = �B/P� = (B/P) is al-
ways an integer.
Since (2Q/P) >

⌊
2Q/P

⌋
, Ĉ < C always holds.

On the other hand, Ĉ is also an integer, thus Ĉ =
C − 1 always holds no matter how large Q is. This
corresponds to the third example in Section 2.

To cope with the problem above, a new floating-to-
fixed-point conversion scheme is proposed which em-
ploys a new established table T̂P in lieu of the original
TP in Eq. 6.

T̂P =
{⌊

2Q/P
⌋ + 1,⌊

2Q/P
⌋

,

if
⌊

2Q/P
⌋

< (2Q/P)

if
⌊

2Q/P
⌋ = (2Q/P)

(13)

Consequently, the new fixed-point version of C is

C̃ =
⎧⎨
⎩

⌊
B·(�2Q/P�+1)

2Q

⌋
, if

⌊
2Q/P

⌋
< (2Q/P)⌊

B·(2Q/P)

2Q

⌋
, if

⌊
2Q/P

⌋ = (2Q/P)
(14)

Comparing Eqs. 3 and 14, it is found that C = C̃,
when

⌊
2Q/P

⌋ = (2Q/P); and C < C̃, when
⌊

2Q/P
⌋

<

(2Q/P). Now we discuss the second case
⌊

2Q/P
⌋

<

(2Q/P).
Similar to the analysis in Section 3.1, we get

⌊
B
P

⌋
= B

P
≤

⌊
B · (⌊

2Q/P
⌋ + 1

)
2Q

⌋
≤

⌊
B
P

⌋
+ 1

= B
P

+ 1 (15)

Thus
⌊ B

P

⌋ =
⌊

B·(�2Q/P�+1)

2Q

⌋
will hold as long as the

condition⌊
B · (⌊

2Q/P
⌋ + 1

)
2Q

⌋
<

B
P

+ 1 (16)

is satisfied.
Furthermore, the error between

⌊
B·(�2Q/P�+1)

2Q

⌋
and

(B/P) is

B
2Q P

<

⌊
B · (⌊

2Q/P
⌋ + 1

)
2Q

⌋
−

(
B
P

)
<

B
2Q

(17)

Thus, from Eqs. 16 and 17,
⌊ B

P

⌋ =
⌊

B·(�2Q/P�+1)

2Q

⌋
will

hold when

2Q > B (18)

By choosing an appropriate value of the scale factor
Q, we can ensure that C = C̃.

In summary, based on the discussion in Sections 3.1
and 3.2, the floating-to-fixed-point conversion error of
the quantization algorithm will be eliminated with a
newly established table by Eq. 13, and two conditions
in Eqs. 12 and 18 satisfied. Moreover, since BP ≥ B,
satisfying Eq. 12, 2Q > 2BP, is sufficient for both con-
ditions. It defines the relationship among the original
value B, quantization step P, and scale factor Q.

In video compression, the dynamic ranges of the
DCT coefficients and the quantization step is not very
large, thus it is feasible to choose an appropriate scale
factor Q. For example, in MPEG-4 video compression
standard, the dynamic ranges of the DCT coefficients
and the quantization step are B < 2,048, P < 48, hence
setting Q = 18 can satisfies Eq. 12. In this way, the
new fixed-point version of C in the third example is
C̃ = 12 = C.

4 Experimental Results

In this experiment, the conventional (cf. Eq. 5) and the
proposed floating-to-fixed-point conversion schemes
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(a) Floating-point algorithm

(b) Conventional fixed-point algorithm

(c) Quantization error distribution by the 
conventional fixed-point algorithm

(d) Improved fixed-point algorithm

Figure 1 Comparison of the reconstructed images by the
floating-point algorithm, the conventional fixed-point algorithm,
and the improved fixed-point algorithm.

are compared when developing a fixed-point DCT
coefficients quantization algorithm in MPEG-4 video
compression standard. A test sequence “Mthr_dotr” of
size QCIF (resolution 176 × 144) is used in the experi-
ment. Both DCT coefficients quantization and DC/AC
prediction are realized in the floating-point form, the
conventional fixed-point form, and the improved fixed-
point form respectively. We set Q = 18 in the later
two fixed-point algorithms. One typical reconstructed
I-frame image after encoding with the three algorithms,
respectively, is shown in Fig. 1.

Comparing Fig. 1a and b, degraded image qual-
ity can be observed for the conventional fixed-point
algorithm. This is due to the floating-to-fixed-point
conversion error. Figure 1c depicts the quantization
error distribution of the DC coefficients of the U
(chrominance) blocks in the image, with the horizontal
axis denoting horizontal macroblocks and the vertical
axis denoting vertical ones. In Fig. 1c, white color de-
notes no quantization error occurring and dark color
marks quantization error. Similar quantization errors
also occur for Y and U data blocks. Furthermore, the
quantization errors may transfer to subsequent mac-
roblocks and frames by DC/AC prediction and inter-
frame prediction. Finally, the accumulated errors result
in the deteriorated image: the image color at the bottom
right is obviously changed. In particular, the error of
the DC coefficients in U and V blocks lead to the
color change. Although this phenomenon does not hap-
pen very often, it degrades the image quality greatly,
which is unacceptable. The reconstructed image with
the improved fixed-point algorithm is shown in Fig. 1d,
where no color change is observed. Furthermore, bit-
wise identity is obtained between the floating-point
algorithm and the improved fixed-point one.

5 Conclusions

The paper investigates the fixed-point realization of
the DCT quantization algorithm in video compression,
where conventional floating-to-fixed-point conversion
scheme can not provide enough precision and results
in degraded reconstructed image quality. The reasons
for the floating-to-fixed-point conversion errors are
analyzed and a new floating-to-fixed-point conversion
scheme is proposed based on it. With a proper scaling
factor and a new-established look-up table, the pro-
posed method can obtain bit-wise consistence to the
floating-point one.
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