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The paper proposes a hybrid compression method to resolve the storage problem of a large number of
head-related transfer functions (HRTFs). First, each HRTF is approximated by a minimum-phase HRTF
and an all pass filter whose group delay equals the interaural time delay (ITD). Second, principal compo-
nent analysis is applied to the entire HRTF set to derive several basis functions, with a weight vector set
defining the contribution of the basis functions to each HRTF. Third, the weight set is vector quantized
with the designed codebook. At last, the ITD is curved surface fitted with a cosine series bivariate poly-
nomial. As a result, the HRTF can be reconstructed from the basis functions, codebook indexes, and ITD
polynomial coefficients. Simulation results reveal that the proposed method may reduce the data size
greatly with similar reconstruction precision comparing with the principal component analysis method.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A set of transfer functions from different spatial locations to
both ears, or head-related transfer functions (HRTFs), are primarily
due to interactions of acoustic waves with a listener’s head, torso
and pinnae [1,2]. It is known that HRTFs convey important cues
for human spatial hearing, such as interaural time difference
(ITD), interaural level difference (ILD), and spectral cues, where
ITD and ILD describe information in the horizon plane while spec-
tral cues help resolving the cone of confusion by giving front–back
and elevation perception. HRTFs serve a dominant role for imple-
mentation of binaural technology and virtual auditory reality,
including 3D sound system. Spatial perception can be made
through the convolution of the sound with the appropriate pair
of HRTFs. There are two critical aspects to HRTFs: they vary accord-
ing to sound source position and are unique for each individual.
Theoretically, an ideal 3D sound field may be generated with indi-
vidualized HRTFs, which are measured accurately for each subject
separately. But in practice individualized HRTFs are difficult to be
obtained because the measurement is time-consuming and re-
quires specific equipments. In practice, generalized or non-individ-
ualized HRTFs are used, which may cause large localization errors
which typically appear as up–down confusion, front–back confu-
ll rights reserved.

9.
), flyin@dlut.edu.cn (F. Yin),
sion and in-head localization [3]. To solve the problems, some
spectrum modification methods have been proposed to enhance
the perception difference from different sound directions [4,5].
But these methods only improve the localization performance a lit-
tle because of the diversity of individuals. Recently some methods
have been proposed to select a most appropriate HRTF set from a
large number of HRTF sets for the listener by subjective listening
comparison [6,7]. The subjective selection method requires no ex-
tra measurement equipment and thus can resolve the localization
error problem to a certain extent when individualized HRTFs are
difficult to be acquired. But the HRTF sets of multi-subjects con-
sume a lot of storage space, this impedes the application of the
subjective selection method in binaural technology and virtual
auditory reality system.

Much research work has been done to reduce the memory con-
sumption of the HRTF. The research may be divided into three
kinds. The first kind is to calculate the HRTF by accurately acoustic
modelling for the given sound direction [8,9]. This method requires
little memory, but its localization performance needs further
examination because of the complexity of human body structure.
The second kind is pole-zero modelling of the measured HRTF,
which represents the HRTF as a low order pole-zero model [10–
12]. It can reduce the data size and computation load greatly.
The third kind is to represent the HRTFs as weighted combinations
of a few basis functions by mathematical decomposition. As an
example of the third method, Chen et al. [13] and Bai et al. [14]
modeled the external ear as a multisensor broadband beamformer
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whose weight vector set represented the characteristics of HRTF.
Kistler and Wightman applied principal component analysis
(PCA) to the logarithms of the HRTF magnitudes and represented
them as linear combinations of basis functions [15]. Chen et al. pro-
posed a spatial feature extraction and regularization (SFER) model
for the complex valued (magnitude and phase) HRTFs, which rep-
resents HRTF as weighted combinations of a set of complex valued
eigen transfer functions [16]. It is believed that there are a lot of
similarities existing in the HRTFs [15], therefore a HRTF can be ex-
pressed as a linear combination of a few basis functions. The com-
pression performance of the third kind of method is the best
among the three ones, but the total memory size of it is still huge
when there are a large number of HRTFs.

To reduce the memory size of the HRTF database, especially the
one composed of multi-subjects’ HRTFs, a hybrid compression
method for HRTF is proposed. The HRTF is firstly approximated
by a minimum-phase HRTF and an all pass filter whose group delay
equals the interaural time delay (ITD). Principal component analy-
sis is applied to the minimum-phase HRTF magnitudes to derive a
set of basis functions for the entire data set and a weight vector for
each HRTF. The weight vector set is vector quantized with the de-
signed vector codebook [17]. The ITD variation with azimuth and
elevation is curved surface fitted with a cosine series bivariate
polynomial model. Comparing with principal component analysis,
the proposed method may reduce the data size greatly with similar
reconstruction precision.

This paper is organized as follows. The hybrid compression
method for HRTF is developed in Section 2 and described in three
aspects: principal component analysis, vector quantization, and
curved surface fitting. Experiment results and analysis are given
in Section 3 to evaluate the performance of the proposed method.
Finally, conclusions are drawn in Section 4.

2. The hybrid compression method for HRTF

The classical compression method, principal component analy-
sis, is well known for its compression efficiency. It decomposes a
group of HRTFs into principal components and the corresponding
principal component weights, where principal components are
shared by the whole group and principal component weights re-
main unique for each HRTF. Although principal component analy-
sis may reduce the data size greatly, the weight vector of each
HRTF still consume much memory. Based on principal component
analysis, we employ vector quantization method for the weight
vector and curved surface fitting method for the interaural time
delay (ITD) data separately to get further compression.

First of all, each HRTF is minimum-phase reconstructed, which
results in a minimum-phase HRTF cascaded with an all pass filter
whose group delay equals the interaural time delay (ITD).

Second, principal component analysis is applied to the entire
minimum-phase HRTF magnitude set. A small set of basis func-
tions are derived from the principal component analysis. Each
spectrum can be approximated with a weighted sum of the basis
HRTF
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Fig. 1. Workflow diagram of the hybr
functions, and the weights define the relative contribution of each
basis function to the spectrum.

Third, the entire weight set is vector quantized, where a weight
vector can be represented as a vector index in the codebook, and
thus the storage space is saved.

At last, the ITD variation with direction is curved surface fitted
with a cosine series bivariate polynomial for each subject in the
database separately. Thus only a few polynomial coefficients need
to be stored instead of the ITD set.

The workflow of the proposed method is shown as in Fig. 1. The
basis functions and the vector codebook are shared by the entire
HRTF database, the ITD polynomial coefficients are calculated for
each subject, respectively, and the weight vector index is unique
for each HRTF direction. All these parameters have been computed
offline and stored in the memory beforehand. When binaural syn-
thesis, the HRTF can be reconstructed with its corresponding
parameters read from the memory. Because principal component
analysis, vector quantization and curved surface fitting are em-
ployed jointly to reduce the size of the HRTF data, we call the
new method a hybrid compression method. And the proposed hy-
brid compression method is described in detail as follows.

2.1. Minimum-phase reconstruction and principal component analysis

Generally, HRTF HðejxÞ can be approximated by a minimum-
phase sequence combined with a position-dependent interaural
time delay [18]:

HðejxÞ ¼ HminðejxÞHapðejxÞ ð1Þ

where Hmin is the minimum-phase function and Hap is an all pass
function with the group delay s ¼ ITD, the interaural time
difference.

HapðejxÞ ¼ ejxs ð2Þ

The phase of the minimum-phase function can be estimated
from the magnitude function. Thus only the magnitude of the min-
imum-phase HRTF is processed by principal component analysis
(PCA).

The key idea of principal component analysis is to reduce the
dimensionality of a data set while retaining the primary variation
in the data. It decomposes a set of magnitude spectra into
weighted combinations of basis functions. Suppose dk is the kth
magnitude spectrum of the data set, it can be represented as a lin-
ear combination of basis functions by PCA. This is described as

dk ¼
Xq

i¼1

wkici ð3Þ

where ci is the ith basis function, and wki is the ith weight for dk; q is
the total number of basis functions. The basis functions are shared
by the whole spectrum set and is called principal component (PC);
the weight define the relative contribution of each basis function to
the spectrum and is called principal component weight (PC weight),
rface Fitting
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it remains unique for each HRTF. The number of basis functions re-
quired to provide an adequate representation of the data depends
on the amount of redundancy or correlation presented in the data
set. Generally 5–10 PCs are required to account for approximately
90% of the variation in the HRTF magnitude functions. The detailed
process of principal component analysis is described in [15].

2.2. Vector quantization of the weight vector

The weights derived from principal component analysis repre-
sents the contribution of the basis functions to the spectrum.
Although principal component analysis reduces the HRTF data size
greatly, the total memory size of weight vectors is still huge when
there are a large number of HRTFs. As the variation of the weight as
a function of HRTF direction has no evident regularity, it is difficult
to fit it with a mathematical equation precisely. In this paper a vec-
tor quantization method is proposed to reduce the size of the en-
tire weight vector set.

Vector quantization is an efficient compression method, in
which the basic idea is to represent the set of scalars as a single
vector and quantize them jointly in the vector space. In vector
quantization, the N dimensional vector x ¼ ½x1; . . . ; xN� is repre-
sented by the nearest matching vector from the set of N dimen-
sional vectors Y ¼ ½y1; . . . ; yL�, where Y is referred to as the vector
codebook, L is the size of the codebook, and yi is the ith N dimen-
sional code vector in the codebook. The matching metric is to find a
code vector yindex in the codebook with the smallest distortion:

index ¼def min
i
fkx� yik

2g; i ¼ 1; . . . ; L ð4Þ

We say that x is quantized as yindex, and y index is the quantized value
of x. Only the index of the codebook is sent instead of the quantized
value. This can conserves space and achieves more compression.

The split vector quantization method is used to improve the
quantization precision, where the weight parameters are split into
a number of parts and each part is quantized separately using vec-
tor quantization [19,20]. The experiment in Section 3 will illustrate
the effectiveness of the split vector quantization method.

2.3. Curved surface fitting of ITD

ITD, the group delay of the all pass filter Hap in (1), is unique for
each HRTF. Curved surface fitting is employed to decrease the size
of the ITD data [21]. The variation of ITD as a function of azimuth
and elevation is fitted with the cosine series bivariate polynomial.
The cosine series bivariate polynomial is defined as

zðx; yÞ ¼
XQ

j¼0

XQ�j

v¼0

bjv cosðjxÞ � cosðvyÞ ð5Þ

where z is the fitted ITD, x and y are azimuth and elevation normal-
ized to ½0;p�, respectively, Q is the polynomial order and bjv is the
polynomial coefficient. Denote Eq. (5) as a matrix form

z ¼ cb ð6Þ

where b ¼ ½b0;0; . . . ;b0;Q ;b1;0; . . . ;b1;Q�1; . . . ;bQ ;0�
T is the coefficient

vector which consists of fbjvg arrayed in ascending order of j and
v, respectively, and c ¼ ½1; . . . ; cos y; cos x; . . . ; cos x cosðQ � 1Þy;
. . . ; cos Qx� according to the elements in b. The size of b is
L ¼ 1

2 ðQ þ 1ÞðQ þ 2Þ.
Suppose there are N ITD variables, we can get

Z ¼ Cb ð7Þ

where Z ¼ ½z1; . . . ; zN�T ;C ¼ ½c1; . . . ; cN�T and b is the coefficient vec-
tor. The least-squares solution to Eq. (7) is given by
b ¼ ðZT ZÞ�1ZT C ð8Þ

For each subject, the polynomial coefficient vector b is stored
instead of ITDs of all directions. This saves the storage space
greatly.

3. Experiments and analysis

In this section we carry out experiments for the proposed meth-
od in three aspects separately: principal component analysis, vec-
tor quantization, and surface fitting. The CIPIC HRTF database
(from CIPIC Interface Laboratory, University of California) is used
as the experimental data.

3.1. CIPIC HRTF database

A lot of research projects of institutions and universities have
collected some libraries of HRTF measurements in their anechoic
chamber. One of the famous libraries is called the CIPIC database,
which is available on the Internet [22]. The HRTF measurements
were made in the anechoic chamber of U. C. Davis CIPIC Interface
Laboratory. The database includes head-related impulse responses
for 45 subjects at 25 different azimuths (�80��80�) and 50 differ-
ent elevations (�45��231�) with approximately 5� angular incre-
ments (1250 positions totally). The impulse response of each
HRTF measurement is 200 taps long at the sample rate 44.1 kHz.
It is noticed that the HRTFs of the left and right ears are measured
separately for the subject. Since it is hypothesized that the left and
right ears of normal human being are symmetric, only the mea-
sured HRTFs of a single ear are enough for 3D sound processing.
Here we take the HRTFs of left ears as the experiment data, and
the storage of the HRTFs of all 45 subjects (a total of 56,250 HRTFs)
requires a large amount of memory.

3.2. Experiments on principal component analysis of HRTF

Principal component analysis is applied to the log-magnitude
functions of all the HRTFs (a total of 56,250 HRTFs) to derive the
basis functions, or principal components (PC). All the 200 log-mag-
nitudes in the full frequency region are included in the analysis.
The basis functions are the q eigenvectors with the q largest
eigenvalues of the magnitude covariance matrix, and the contribu-
tion of each basis function to data variation is proportional to its
eigenvalue. Fig. 2 depicts the percentage variance of HRTF repre-
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sented by the first M eigenvalues as a function of M, which is
given by

varðMÞ ¼
PM

i¼1kiPN
i¼1ki

� 100% ð9Þ

where the percentage variance varð�Þ is a function of M; ki is the
eigenvalue corresponding to the ith basis function, and N ¼ 200 is
the total number of eigenvalues. Fig. 2 shows that the first few
eigenvalues represent most of the variations contained in the
HRTFs. We choose 15 PCs to account for about 95% of the variation
in the HRTF magnitude. Fig. 3 depicts the percentage contributions
of the first 10 PCs to the variation of the data set, which is given by

coni ¼
kiPN
j¼1kj

� 100% ð10Þ

where coni is the percentage contribution of the ith PC, and ki is the
ith eigenvalue and N ¼ 200 is the total number of eigenvalues. Fig. 4
depicts the spectrum of PC 1–5, respectively. It is shown that the
first basis function and its weight (which we designate as PC 1) cap-
ture the majority of common variation presented in the data, and
the remaining basis functions and weights (PC 2, PC 3, etc.) reflect
decreasing common variation and increasing unique variation. To
display the variation of the weights, put PC 1 weight of all the
56,250 HRTFs into a big array, where the position of HRTFs are ar-
ranged according to the ascending order of subject, elevation, and
azimuth, respectively. And the same operation is applied to other
weights separately. The PC1–5 weights across all the HRTFs are
shown in Fig. 5 with the horizon axes representing the relative po-
sition of the weight in the vector, and the vertical axes representing
the weight value. The distribution exhibit no evident regularity ex-
cept PC 1 weight. Vector quantization is employed to compress the
weight set.

3.3. Experiments on vector quantization of the weight set

The entire weight set derived from principal component analy-
sis, which consists of 56,250 vectors of dimensionality 15, is used
for both training and testing. Split vector quantization for weight
vector is employed. We split the weight vector into 5 parts: PC 1,
PC 2–3, PC 4–6, PC 7–10, and PC 11–15 according to the contribu-
tion of each basis function to data variation. A 256-level vector
quantizer is designed separately for each part using the data in
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the training set. Thus each vector of 15 parameters can be repre-
sented with the codebook index of 40 bits. A classical vector quan-
tization design algorithm (often termed LBG-algorithm originated
by Linde, Buzo, and Gray [19]), is used here with the Euclidean dis-
tance measure for designing these vector quantizers. The quantiza-
tion results at 40 bits/vector are computed from the test data. To
evaluate the quantization performance of the vector quantization
method, we employ the spectral distortion (SD) measure in speech
coding. The spectral distortion for the ith weight vector, SDi, is de-
fined (in dB) as follows.

SD2
i ¼

1
p

Z p

0
½20log10jPiðxÞj � 20log10jbPiðxÞj�2dx ð11Þ

where PiðxÞ and bPiðxÞ are the unquantized and quantized HRTF
magnitude, respectively. Table 1 shows the quantization perfor-
mance of the split vector quantizer. Little quantization distortion
Table 1
Spectral distortion (SD) performance of the split vector quantizer.

Bits used Avg. SD (in dB) Outliers (in %)

2–4 dB >4 dB

40 0.91 0.32 0
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may be noticed with an average SD across all HRTFs of about
0.91 dB, about 0.32% outliers in the range 2–4 dB, and no outlier
with SD greater than 4 dB.

To evaluate the reconstruction precision of the hybrid compres-
sion method employing both PCA and vector quantization, we de-
fine the percent mean square error (PMSE) of the reconstructed
HRTF relative to the original one as

ei ¼
khi � ĥik2

khik2 % ð12Þ

where hi and ĥi are the ith original and reconstructed HRTF log-
magnitude, respectively, and k � k denotes 2-norm operation. For
convenience, we call the PCA reconstructed HRTF the unquantized
HRTF, and call the PCA and vector quantization reconstructed HRTF
the quantized HRTF. Table 2 presents the average PMSE across all
HRTFs, where eo u denotes the error of the unquantized HRTF rela-
tive to the measured one, eo q denotes the error of the quantized
HRTF relative to the measured one, and eu q denotes the error of
the quantized HRTF relative to the unquantized one. The relative er-
ror of quantized HRTF to measured HRTF (4.13%) is only a little lar-
ger than that of the unquantized HRTF to measured HRTF (3.62%),
which demonstrates that the error of the proposed method is nearly
identical to that of the PCA method. It also reveals that about 95% of
the variation is retained by PCA. On the other hand, the small rela-
tive error (0.75%) of the quantized HRTF to the unquantized HRTF
also demonstrates the transparent quantization quality of the quan-
tization method.

Fig. 6 compares the measured, quantized, and unquantized
HRTF magnitudes of subject ‘‘028” at three typical locations. The
solid lines represent measured HRTFs, the dashed lines represent
Table 2
Average PMSE between original and reconstructed HRTF.

avg. PMSE (%)

eo u 3.62
eo q 4.13
eu q 0.75
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quantized HRTFs, and the dotted lines represent unquantized
HRTFs. The azimuth and elevation of each HRTF is noted by sym-
bols ‘‘AZ=” and ‘‘EL=”, respectively. It can be seen from Fig. 6 that
the magnitude curves of the quantized HRTFs nearly coincide with
those of the unquantized ones, and both of them can capture the
primary variations in the measured HRTF magnitude.

The split vector quantization can obtain transparent quantiza-
tion quality, and thus the magnitude error between the proposed
method and the PCA method is unnoticeable. The magnitude dis-
tortion between the original data and the above two methods is
mainly determined by the number of the retained basis functions,
where 15 basis functions may obtain about 95% of the variation of
the magnitude and more reconstruction precision may be obtained
by increasing the number of the retained basis functions.

3.4. Experiments on surface fitting of ITD

The ITD variation with azimuth and elevation is surface fitted
for each subject using least-squares fitting method. The cosine ser-
ies bivariate polynomials of order 3–7 are used for fitting, respec-
tively. To evaluate the fitting performance, we define the mean
square error (MSE) of fitting as

E ¼ 1
N

XN

i¼1

ðzi � ẑiÞ2 ð13Þ

where N is the ITD number of each subject (1250 for each subject), zi

and ẑi are the ith original and fitted ITD, respectively. The average
MSE across 45 subjects is calculated for the fitting polynomial of or-
der 3–7, respectively. The result is presented in Table 3. It is shown
0 15 20
ncy (kHz)

Measured HRTF
Quantized HRTF
Unquantized HRTF

d quantized HRTFs at three locations.

Table 3
Average fitting mean square errors as functions of polynomial order.

Polynomial order Parameter number avg. MSE

3 10 1.82
4 15 1.37
5 21 1.24
6 28 0.53
7 36 0.50



Fig. 7. Original ITD variation as a function of azimuth and elevation.

Fig. 8. Fitted ITD variation as a function of azimuth and elevation.

Fig. 9. Fitted error variation as a function of azimuth and elevation.

Table 4
Memory consumption of the proposed method for CIPIC HRTF database.

Data class Parameter number Memory (bytes)

Polynomial coef. 45� 28 5040
Basis functions 15� 200 12,000
Vector indexes 45� 1250 281,250
Code book 256� 15 15,360
Total / 313,650
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in Table 3 that the fitting performance increases with the polyno-
mial order, and the increase becomes slowly at order 6. Taking
the performance and parameter number both into consideration,
we take 6 as the polynomial fitting order. Figs. 7–9, respectively,
display the original ITD variation, fitted ITD variation, and fitted
residual variation as the function of azimuth and elevation for sub-
ject ‘‘028”. It can be seen from Figs. 7–9 that the ITD variation can be
surface fitted with cosine series bivariate polynomial of order 6
with high precision, where the maximum absolute fitted error does
not exceed 1.5 sample points. Thus the error of the curving fitting
method is unnoticeable.

3.5. Subjective evaluation

The reconstruction precisions of the proposed method and the
PCA method are nearly identical, thus the two methods have sim-
ilar sound localization performances and subjective evaluation re-
sults. The sound localization performance is mainly related to the
number of the retained basis functions. The subjective evaluation
is not discussed in this paper. Researchers who are interested in
it may refer to [15] where the subjective evaluation is carried out
for the PCA method.
3.6. Comparison of memory consumption

To indicate the compression efficiency of the proposed method,
we compare the memory consumption between the original data
and the compressed data. Suppose the storage of a float-point
number requires 4 bytes. The storage of the original CIPIC requires
56;250� 200� 4 ¼ 4:5� 107 bytes, which consumes an extraordi-
nary large memory space. The principal component analysis meth-
od requires about 3:612� 106 bytes for 15 basis functions, 56,250
weight vectors and 56,250 ITDs. The memory consumption of the
data processed by the proposed method is shown in Table 4, in as-
pects of polynomial coefficients, basis functions, vector indexes,
and vector codebook, respectively. It is shown in Table 4 that the
total memory consumption of the data processed by the proposed
method is about 3:137� 105 bytes, which is about 0.7% of the ori-
ginal memory consumption, and 8.7% of that of principal compo-
nent analysis. Thus about 99.3% of storage space is saved
compared to the original one, and about 91.3% of the storage space
is saved compared to the principal component analysis method,
which is a remarkable compression result.

4. Conclusion

A hybrid compression method is proposed in the paper to re-
duce the large memory consumption of the HRTF database, which
consists of HRTF sets of multi-subjects. This method employs, prin-
cipal component analysis, vector quantization, and curved surface
fitting jointly to compress the HRTF data. Principal component
analysis decomposes the minimum-phase reconstructed HRTF
magnitudes into a set of basis functions and a weight vector set.
Vector quantization and surface fitting are applied to the weight
vector set and the ITD data set, respectively, for further compres-
sion. All the parameters have been computed offline and stored
in the memory beforehand. When binaural synthesis, the HRTF
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can be reconstructed with its corresponding parameters read from
the memory. The HRTF reconstruction process does not need much
computation. Simulation results demonstrate that the proposed
method can obtain similar HRTF reconstruction precision with only
8.7% of the memory space required by the principal component
analysis method. This is a remarkable compression result, and thus
the proposed method is potential for 3D sound processing. In addi-
tion, although this method is developed primitively for HRTF data
sets of multi-subjects, it can also be applied to the HRTF data of a
single subject with similar compression result.
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