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Due to the ambient noise, interferences, reverberation, and the speakers moving and talking concurrently, it is a challenge to extract a
target speech in a real cocktail-party environment. Emulating human auditory systems, this paper proposes a two-stage target speech
extraction method which combines fixed beamforming and blind source separation. With the target speaker remaining in the vicinity of
a fixed location, several beams from a microphone array point at an area containing the target, then the beamformed output is fed to a
blind source separation scheme to get the target signal. The fixed beamforming preprocessing enhances the robustness to time-varying
environments and makes the target signal dominant in the beamformed output and hence easier to extract. In addition, the proposed
method does not need to know the knowledge of source positions. Simulations have verified the the effectiveness of the proposed method.

INTRODUCTION
Extracting a desired speech signal from its corrupted

observations is essential for tremendous applications of
speech processing and communication [1]. One of the hardest
situations to handle is the extraction of a desired speech signal
in a “cocktail party” condition - from mixtures picked up by
microphones placed inside a noisy and reverberant enclosure.
In this case, the target speech is immersed in ambient noise
and interferences, and distorted by reverberation. Further
more, the environment may be time-varying. Generally, there
are two well-known techniques that may achieve the objective:
blind source separation (BSS) and beamforming.

Assuming mutual independence of the sources, BSS is
a technique for recovering them from observed signalss
with the mixing process unknown [2, 3]. Nevertheless,
BSS may not appropriate for target signal extraction in a
cocktail-party condition. First, under-determined situations
can result from the fact that there is only a limited number
of microphones. Second, BSS processes the target signal
and interference equally; it can be difficult to separate many
signals simultaneously and also a waste of computational
power if we want only one target. Third, BSS performs poorly
in high reverberation, where the mixing filters are very long.

With a microphone array, beamforming is a well known
technique for target extraction. It can be implemented as
a data-independent fixed beamforming or data-dependent
adaptive one [4, 5]. Fixed beamforming is more preferred in
complicated environments due to its robustness. It achieves
a directional response by coherently summing signals from
multiple sensors based on a model of the wavefront from
acoustic sources. It can enhance signals from the desired

direction while suppressing ones from other directions. Thus,
fixed beamforming can be used for both noise suppression
and dereverberation. However, its performance also degrades
in cocktail-party conditions. First, the performance is closely
related to the microphone array size - a large array is
usually required to obtain a satisfactory result but may not
be practically feasible. Second, beamforming cannot reduce
reverberation coming from the desired direction.

Because of the reasons above, few methods proposed in
recent years have good separation results in a real cocktail-
party environment. In contrast, a human has a remarkable
ability to focus on a specific speaker in that case. This selective
listening capability is partially attributed to binaural hearing.
Two ears work as a beamformer which enables directive
listening [6], then the brain analyzes the received signals to
extract sources of interest from the background, just as blind
source separation does. Stimulating this principle, we propose
to extract the target speech by combining beamforming and
blind source separation. In fact, the idea of combining both
technologies has been proposed by several researchers [7, 8].
In [8], the beamforming as a preprocessor of BSS, forms
a number of beams each pointing at a source. This makes
subsequent separation easier. However, it requires that prior
knowledge of all source positions, which is seldom available
in real life. We extend the work in [8] by applying it to
a special case of blind source extraction problem in noisy
cocktail party environments, where only one source is of
interest. Instead of focusing on all the sources, the proposed
method forms just several fixed beams at an area containing
the target source. The beamforming enhances the robustness
of the algorithm to time varying environments. After that, the
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Figure 1. Illustration of the proposed method

target source becomes dominant in the beamformed output
and it is easier for a blind source separation algorithm to
extract it. Since the proposed method only needs the position
of the target to do beamforming, it can be more practical.

PROPOSED METHOD
In a cocktail party, each speaker may move and talk freely.

While this is a most difficulty for source separation, it is often
in such case that the target speaker stays in a position or
moves slowly and the noisy environment around it is time-
varying, e.g., moving interfering speakers and the ambient
noise. For this specific situation, a target speech extraction
method with a microphone array is proposed. It is illustrated
in Fig. 1, where the target source S and N-1 interfering sources
I1, · · · , IN−1, are convolutively mixed and observed at an array
of M microphones. To extract the target, Q beams (Q ≤ N) are
formed at an area containing it, with a small separation angle
between adjacent beams; then the Q beamformed outputs
are fed a blind separation scheme. Using beamforming as a
preprocessor for BSS, the method possesses the advantages of
both while complementing their weakness. In particular,
1) the residuals of interference at the output of beamforming

are further reduced by BSS;
2) the poor separation performance of BSS in reverberant

environments is compensated for by beamforming, which
deflates the reflected paths and shortens the mixing filters;

3) the beamformer enhances the source that is in its path and
suppresses the ones outside. It provides a cleaner output for
the BSS to process; and

4) the fact that there are fewer beams than sources reduces the
dimensionality of the problem and saves computation.
In a word, the target signal becomes dominant in the

beamformed output and is hence easier to extract. Meanwhile,
as seen in Fig. 1, the beams are pointing at an area containing
the target, as opposed to the interfering sources. This is
very important for operation under a time-varying condition,
because
1) when the target speaker remains in a constant position

while others move, it is impractical to know all speakers’
positions and steer a beam at each of them;

2) there is no need to steer the beams at individual speakers
since only the target speaker is of interest;

3) the target signal is likely to become dominant in at least
one of the beamformed output channels if the beams point
at an area containing the target speaker. Thus, it is possible
to extract it as an independent source even if the number
of beams is less than the sources [1]. This feature is very
important for the proper operation of the proposed method;
and

4) a seamless beam area will be formed by several beams with
each covering some beamwidth. It is possible to extract
the target signal even if it moves slightly inside this area.
This feature may improve the robustness of the proposed
method.
In a nutshell, beamforming makes primary use of

spatial information while BSS utilizes statistical information
contained in signals, and combining both technologies may
help get a better extraction result. The signal flow of the
proposed method is shown in Fig. 2. The implementation
details are given in the two subsections to follow.

Beamforming

A superdirective fixed beamformer is designed in the
frequency domain, using a circular microphone array. The
principle of a filter-and-sum beamformer is shown in Fig.
3. Suppose a beamformer model with a target source r(t)
and background noise n(t), the components received by the
l’th sensor is ul(t) = rl(t) + nl(t) in the time domain. In
the frequency domain the term is ul( f ) = rl( f )+ nl( f ). The
beamformer’s output in the frequency domain is

x( f ) =
M

∑
l=1

b∗l ( f )ul( f ) = bH( f )u( f ) (1)

where b( f ) = [b1( f ), · · · ,bM( f )]T is the beamforming weight
vector composed of beamforming weights for each sensor, and
u( f ) = [u1( f ), · · · ,uM( f )]T is the vector composed of outputs
from each sensor, and (·)H denotes conjugate transpose. The
b( f ) depends on the array geometry and source directivity, as
well as the array output optimization criterion such as a signal-
to-noise ratio (SNR) gain criterion.

Suppose r( f ) = [r1( f ), · · · ,rM( f )]T is the source vector
composed of the target source signals picked up by the
sensors, and n( f ) is the noise vector composed of the spatially
diffused noises also picked up by the sensors. Being a
measure of improvement in signal-to-noise ratio, the array
gain is defined as the ratio of the SNR at the output of the
beamforming array to that at a single reference microphone.
The reference SNR is defined, as in [9], to be the ratio of
average signal power spectral densities over the microphone
array, σ2

r ( f ) = E{rH( f )r( f )}/M, to the average noise power
spectral density over the array, σ2

n ( f ) = E{nH( f )n( f )}/M.
By derivation, the array gain at frequency f is expressed as

G( f ) =
bH( f )Rrr( f )b( f )
bH( f )Rnn( f )b( f )

(2)

where Rrr( f ) = r( f )rH( f )/σ2
r ( f ) is the normalized

signal cross-power spectral density matrix, and
Rnn( f ) = n( f )nH( f )/σ2

n ( f ) is the normalized noise cross-
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Figure 2. Signal flow of the proposed method combining beamforming and BSS
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Figure 3. Principle of a filter-and-sum beamformer

power spectral density matrix. Provided that Rnn( f ) is
nonsingular, equation (2) is maximized by the weight vector

bopt( f ) = R−1
nn ( f )r( f ) (3)

Rnn( f ) and r( f ) in equation (3) depend on the array geometry
and the target source direction. Readers may refer to [8] for
details on calculating Rnn( f ) and r( f ) for a circular array.

After calculating equation (3) at all frequency bins, the
time-domain beamforming filter b(n) is obtained by inverse
Fourier transforming the bopt( f ).

Blind source separation

Frequency-domain BSS is employed here due to its
fast convergence and low computation. The mixed time-
domain signals are converted into the time-frequency domain
by short-time Fourier transform (STFT); then instantaneous
independent component analysis (ICA) is applied to each
frequency bin; after permutation alignment and scaling
correction, the separated signals of all frequency bins are
combined and inverse-transformed to the time domain.

For instantaneous ICA, we use a complex-valued Scaled
Infomax algorithm, which is not sensitive to initial values,
and is able to converge to the optimal solution within 100
iterations [10]. The scaling ambiguity problem is solved by
using the Minimum Distortion Principle [11].

Permutation ambiguity inherent in frequency-domain BSS
is a challenge problem. Generally, there are two approaches
to solve it. One is to exploit the dependence of separated
signals across frequencies [13, 12], and the other is to exploit
the position information of sources: the directivity pattern
of the mixing/unmixing matrix provides a good reference
for permutation alignment [14]. However, in the proposed
method, the directivity information contained in the mixing
matrix does not exist any longer after beamforming. Even if
the source positions are known, they are not much helpful
to permutation alignment in the subsequent blind source
separation. Consequently, what we can use for permutation is
merely the first reference: the inter-frequency dependence of
separated signals. Ref. [13] proposes a permutation alignment

approach based on the power ratio measure. Bin-wise
permutation alignment is applied first across all frequency
bins, using the correlation of separated signal powers; then
the full frequency band is partitioned into small regions based
on the bin-wise permutation alignment result. Finally, region-
wise permutation alignment is performed, which can prevent
the spreading of the misalignment at isolated frequency bins
to others and thus improves permutation. This permutation
alignment algorithm is employed here.

EXPERIMENT AND ANALYSIS
We evaluate the performance of the proposed method in

simulated conditions. A typical cocktail party environment
with moving speakers and ambient noises is shown in Fig.
4. The room size is 7m × 5m × 3m, and all sources and
microphones are 1.5m high. Four loudspeakers S1-S4 placed
near the corners of the room play various interfering sources.
Loudspeakers S5, S6 and S7 play speech signals concurrently.
S5 and S6 remain in fixed positions, while S7 moves back and
forth at a speed of 0.5 m/s. As the target, S5 is placed at either
position P1 or P2. S5 simulates a female speaker, while S6 and
S7 simulate male speakers. An 8-element circular microphone
array with a radius of 0.1 m is placed as shown.

In blind source separation, the Tukey window is used
in STFT, with a shift size of 1/4 window length, which
is 2048 samples. The iteration number of instantaneous
Scaled Infomax algorithm is 100. The permutation alignment
algorithm in [13] is employed. In beamforming, a beamformer
is designed with the algorithm presented in Section 2.1, using
the circular array in Fig. 4. Three beams are formed towards
S5, with the separation angle between two adjacent beams
being 20˚. The room impulse responses are obtained by using
the image method, with the reverberation time controlled
by varying the absorption coefficient of walls [15]. The test
signals last 8 seconds with a sampling rate of 8 kHz. The
extraction performance is evaluated in terms of signal-to-
interference ratio (SIR) for where the signal is the target
speech.

With so many speakers in such a time-varying
environment, BSS alone fails to work. Now we compare
the performance of beamforming alone and the proposed
method with reverberation RT60 of 130 ms and 300 ms
respectively. The results are given in Table 1. As an example,
for the close target case (P1) under RT60 = 300 ms, the input
SIR is around -9 dB – the target is almost completely buried
in noises and interference. The enhancement by beamforming
alone is minimal. On the other hand, the proposed two-stage
method improves the SIR by 15.1 dB. In the far target case
(P2) of RT60 = 300 ms, the target signal received at the
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microphones is much weaker with an input SIR around only
-11 dB. The proposed method is still able to extract the
target signal with an output SIR of 3.3 dB and a total SIR
improvement of 13.5 dB.

For the close target (P1) with RT60 = 300 ms, Fig. 5
shows the waveforms at various processing stages: sources,
microphone signals, beamformer outputs, and finally the BSS
outputs. It can be seen that, the target signal S5 is totally buried
in noises and interference in the mixture signals; it is enhanced
to a certain degree after beamforming but is still difficult to tell
from the background; and after blind source separation, the
target signal is clearly exhibited at the channel Y2. In addition,
an interference signal (S6) is observed at the output channel
Y1, and the noise-like output Y3 is mainly composed of the
interfering speech S7 and other noises. The extraction result
also verifies that the validity of the proposed method in noisy
cocktail-party environments.

The good performance of the proposed method in such
time-varying environments is due to two reasons. First,
fixed beamforming can enhance target signals even in time-
varying environments. Second, the spectral components of
the target and (moving or static) interfering signals are still
independent after beamforming; besides, the target signal
becomes dominant in the beamformed output. This helps the
subsequent blind source separation.

The proposed method is under the assumption that the
target source stays in a fixed position. For a moving target,
it is possible that time-varying beamforming and sample-by-
sample blind source separation algorithms are better choices.
This can be a topic for future research.

CONCLUSIONS
It is challenging to extract a target speech in a time-

varying, noisy, and reverberant environments. Emulating
the human auditory system, the paper proposes a target
speech extraction method for such a difficult condition
by combining beamforming and blind source separation.
The proposed method integrates the advantages of both
technologies and complements their weakness. In addition,
a special beamforming processing style is employed to deal
with time-varying environments. Simulations verify that, the
proposed method performs well in a time-varying cocktail-
party-like situation where any of the two methods alone fails
to work efficiently.
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Table 1. Comparison of beamforming and the proposed method in terms of signal-to-interference ratio (SIR)

Target S5 P1 (close) P2 (far)
RT60 130 ms 300 ms 130 ms 300 ms
Input SIR -8.2 dB -9.1 dB -10.7 dB -10.8 dB
Beamforming 4.6 dB 0.6 dB 2.5 dB -2.3 dB
Proposed method 11.9 dB 6.0 dB 9.1 dB 3.3 dB
SIR improvement 20.1 dB 15.1 dB 29.8 dB 13.5 dB
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Figure 4. Simulated room environment

0 8
−0.5

0
0.5

S
ou

rc
e

S5

0 8
−0.5

0
0.5

S6

0 8
−0.5

0
0.5

S7

0 8
−0.5

0
0.5

M
ix

U1

0 8
−0.5

0
0.5

U2

0 8
−0.5

0
0.5

B
ea

m
fo

rm

X1

0 8
−0.5

0
0.5

X2

0 8
−0.5

0
0.5

X3

0 8
−0.5

0
0.5

B
S

S

Y1

0 8
−0.5

0
0.5

Time (s)

Y2

0 8
−0.5

0
0.5

Y3

U3 − U8

Figure 5. Waveforms at various processing stages




