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ABSTRACT
Multiple assessment directed novelty search (MADNS), in-
troduced by the authors in [20], is an extension to the nov-
elty search algorithm which exploits the observation that
populations optimised for phenotypic novelty may contain
solutions to multiple independent and conflicting objectives.
It has been shown that, through the application of MADNS,
an evolutionary trajectory may be simultaneously directed
towards multiple conflicting objectives. Previous results
from a series of simulated maze navigation experiments have
shown that MADNS may significantly outperform novelty
search in domains where the potential for phenotypic ex-
ploration is high [20]. In this paper we further explore the
MADNS algorithm, assessing the effect upon the diversity
and performance of the population as the phenotypic land-
scape increases. A series of experiments in domains with
multiple conflicting objectives and expanding areas of ir-
relevant space show that the relative performance gain of
MADNS increases alongside the potential for exploration.
We conclude that, as the potential for exploration within
a domain expands, the importance of directing novelty be-
comes ever more necessary.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Evolutionary
robotics;

Keywords
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1. INTRODUCTION
Novelty search [9, 12, 18] is an evolutionary approach

which promotes phenotypic diversity within a population.
Novelty search is applied by replacing an objective fitness as-
sessment with a behavioural distance metric, which is most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931654

commonly domain specific [9], however there have been stud-
ies which suggest the use of domain independent measures
[7], or altering the metric during an evolutionary run [3].
Studies have also aimed to determine the effect that the in-
dividual heuristic parameters have on novelty search [5, 8].
Due to its exploratory nature, novelty search has been

shown to outperform fitness based search, particularly in de-
ceptive domains [9]. Extensions of novelty search have been
applied to a range of tasks, including the evolution of pro-
grams [10], diverse sets of virtual creatures [13], procedural
content generation in video games [14, 17] and training di-
verse video game playing agents [19]. However, to date, pro-
posed novelty search variants have generally concentrated on
novelty search as a diversity preservation mechanism, utilis-
ing the algorithm to produce diverse sets of solutions for a
particular objective.
However, if the phenotypic state space is large, an evo-

lutionary trajectory optimised through novelty search may
focus upon areas of the landscape which are without use to
the particular task. Without directing the search towards
particular areas of interest, novelty search may be unable
to provide solutions to the intended objective(s). Therefore,
a method for directing novelty search could potentially al-
low the trajectory to focus upon areas of the landscape of
interest to the particular task at hand.
Multiple assessment directed novelty search (MADNS) is

an extension to the novelty search algorithm which utilises
the diversity of potential solutions produced by optimisation
through novelty [20]. MADNS exploits the observation that
populations optimised through novelty search may contain
solutions to multiple independent and conflicting objectives,
and that the evolutionary trajectory may be optimised to-
wards these objectives. Unlike multi-objective algorithms,
which aim to optimise individual solutions to perform well
over a number of objectives [2], and multi-modal algorithms,
which aim to provide sets of solutions to objectives with
multiple optima [4], MADNS utilises the diversity of a pop-
ulation optimised through novelty search to simultaneously
provide individual solutions to multiple, potentially conflict-
ing objectives. We believe that through directing popula-
tions of candidate solutions towards multiple objectives, the
potential behavioural abilities of a genotypic representation
becomes further uncovered — for example, simultaneously
assessing the capacity of a robot controller to exhibit pur-
suit, evasion and foraging behaviours.
In this paper, we initially highlight the unsuitability of

current fitness-based variants of novelty search to extend
either beyond a single objective, or towards conflicting ob-



jectives. In section 3.1 we demonstrate how the linear com-
bination of objective fitness is unsuitable for directing search
towards multiple conflicting objectives.
In section 4 we further explore the MADNS algorithm,

our method for directing novelty towards multiple objec-
tives. We suggest variants of the MADNS algorithm based
on both traditional novelty search and minimal criteria nov-
elty search (MC-MADNS), highlighting the suitability to ex-
tend to unbounded domains
In section 5 we experimentally assess the relative effect

that increasing the potential for exploration has upon the
performance and diversity of populations optimised through
novelty search and MADNS. We present a series of maze
navigation domains with multiple exits and differing levels
of irrelevant space; namely, space within the maze which
encourages phenotypic exploration and divergence from the
objectives. Our results, presented in section 6, indicate that
increasing the phenotypic landscape has significantly less
effect upon the performance of MADNS compared to novelty
search.

2. BACKGROUND

2.1 Novelty Search
Novelty search, as proposed by Lehman and Stanley [11],

is an algorithm which removes the need for an objective fit-
ness function through the assignment of high fitness values
to novel behaviours in a population. The traditional objec-
tive fitness function is replaced by a behavioural distance
metric, which is used to determine the novelty of an indi-
vidual in a population. The behavioural distance metric
measures phenotypic traits of the particular solution, and
may be domain specific or a generalised, domain indepen-
dent measurement.

fnov(ρ) = 1
k

k∑
i=0

dist(ρ, µi) (1)

The behavioural novelty fnov(ρ) of an individual ρ, given
by equation (1), is defined as the mean behavioural distance
between ρ and its k nearest neighbours, where k is a user
defined parameter and µi is the ith nearest neighbour of ρ
with respect to the distance dist. The neighbours µi include
both the behaviours of the current population and an archive
of previous novel behaviours. Individuals with a value of
fnov(ρ) above a predefined novelty threshold are added to
the archive.
Novelty search receives increasing interest within evolu-

tionary robotics research for its unique way in expanding
the search space to multiple solutions in any given domain
[9]. The introduction of novelty search uncovered many of
the stepping stones towards open-ended evolution.
Although novelty search may outperform objective fitness

search in specific tasks, especially when the design of an ob-
jective fitness function may be difficult, it has been shown
that the assessment of behavioural novelty alone is insuffi-
cient as a generalisable evolutionary technique in many do-
mains [1, 15]. Due to its divergent nature, novelty search
continues to produce new solutions throughout the evolu-
tion, however these solutions may not be useful for the task
at hand. Solutions which are sub-optimal for one particu-

lar objective may, however, be useful solutions to separate
objectives. In this paper, we focus on the potential of the
diversity of solutions provided by novelty search to be of use
to a wide range of conflicting objectives.

2.2 Novelty Search Variants
Since the introduction of novelty search, various hybrid

variants have been proposed to assist the phenotypic explo-
ration potential of the algorithm towards particular objec-
tives. Hybrid novelty search variants include minimal crite-
ria novelty search [11], progressive minimal criteria novelty
search [6], novelty search with local competition [13] and
constrained novelty search [14]. Novelty search has also been
combined with objective fitness search, both through linear
mixing of the novelty and objective fitness values [19] and
as separate objective in a multi objective algorithm, such as
NSGA-II [15].
As minimal criteria novelty search (MCNS) was intro-

duced in [11] to address the inability of novelty search to
scale to domains with large phenotypic landscapes, this vari-
ant was selected as the most relevant for comparison in our
experiments.

2.2.1 Minimal Criteria Novelty Search
MCNS was introduced to restrict the exploration poten-

tial of novelty search in domains with large phenotypic land-
scapes, [11]. Through restricting solutions which do not
meet a predefined criteria, MCNS directs exploration to-
wards useful areas of the phenotypic landscape. In domains
where the potential for exploration is high, MCNS has been
shown to outperform traditional novelty search [11]. MCNS
is identical to novelty search, with the addition of a mini-
mal criteria that each solution must meet, fmc(p) : P 7→ B.
Any solution which does not meet this criteria, is assigned
a novelty score of 0.

fmcns(p) =
{
fnov(p) if fmc(p) is true
0 if fmc(p) is false (2)

3. APPROACH
In this section we outline the approach taken to develop

an algorithm capable of directing novelty search toward mul-
tiple conflicting objectives. We begin by highlighting the
unsuitability of linear combination, due to the assessment
criteria simultaneously assigning a high score to a partic-
ular agent which performs well at one objective and a low
score to a conflicting objective.

3.1 Linear Combination of Objective Values
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Figure 1: 1-dimensional domain

Here we demonstrate that the linear combination method
is unsuitable for the directed optimisation of novelty search



towards multiple conflicting objectives. Figure 1 illustrates
a simple 1-dimensional domain with 2 directly conflicting
objective destinations (figure 1, circles). The fitness of a
particular solution, fk(ρ), is calculated through the linear
combination of the distances from the position of the solu-
tion (figure 1, triangles, ρ) to each destination. The fit-
nesses to each objective are defined as: f1(ρ) = (c−a)/c,
f2(ρ) = (c−b)/c. The overall fitness, flin(ρ), is calculated
as the linear combination of the objectives, f1(ρ)/2 + f2(ρ)/2.
Through substitution, flin = (2(a+b)−a−b)/(2(a+b)). There-

fore, for all ρ, flin(ρ) = 1/2. Due to the fitness assignments
all collapsing to the same value, optimisation would be un-
able to progress.
In agreement with our reasoning, the linear combination

method is shown to be unsuccessful in our experiments
(OBJ-LIN in section 5).

3.2 Maximum Objective Value
As highlighted above, the linear combination of fitness

values is unable to extend towards multiple conflicting ob-
jectives. However, assigning the solutions’ maximum fitness
value for all of the objectives may allow the population to
be optimised towards multiple conflicting objectives. This
method, which can be linearly combined with novelty search,
are defined as fmax(ρ) and fns−max(ρ), equation (3):

fmax(ρ) = max
1≤i≤k

{fi(ρ)}

fns−max(ρ) = fnov(ρ)
2 + fmax(ρ)

2

(3)

Both fmax(ρ) (OBJ-MAX) and fns−max(ρ) (NS-MAX)
are assessed in section 5.

4. MULTIPLE ASSESSMENT DIRECTED
NOVELTY SEARCH

MADNS [20] is an extension to the novelty search algo-
rithm that rewards high performing solutions over a num-
ber of predefined objectives. MADNS is identical to novelty
search, with the addition of a set of assessments — tra-
ditional objective fitness functions. Unlike hybrid novelty-
objective variants which utilise Pareto efficiency or lin-
ear combination, the mechanism for fitness assignment in
MADNS does not involve comparison between any of the
assessments, which allows the functions to be partially or
directly conflicting without negative effect on any particu-
lar assessment. Specifically, the MADNS fitness assignment,
defined in equation (4), retains the novelty score for all mem-
bers of the population other than the current highest ranking
solutions for each of the assessments. These highest rank-
ing solutions are assigned a score equal to the most novel
solution in the current population.
Formally, let the set P denote the current population,

with an individual solution defined as ρ ∈ P . Next, for a
given domain with k objectives, defined by the functions
a1(ρ), a2(ρ), . . . , ak(ρ), where ak : P 7→ R, let the set
A = {a1(ρ), a2(ρ), . . . , ak(ρ)}. Let the subset Q ⊂ P
contain the maximal solutions for each objective, where:

Q = arg max
ρ∈P

a1(ρ)
⋃

arg max
ρ∈P

a2(ρ)
⋃
...
⋃

arg max
ρ∈P

ak(ρ).

Let fnov(p), as defined in equation (1), be the novelty of
a solution and the maximal novelty value for the current
population be defined as α = max

ρ∈P
fnov(ρ). Finally, let

fmad(ρ) be the fitness of an individual solution, calculated
as in equation (4):

fmad(p) =
{
fnov(p) if p /∈ Q,
α if p ∈ Q. (4)

A minimal criteria variant of this (MC-MADNS) may
be defined through the replacement of novelty search with
MCNS (section 2.2.1):

fmc−mad(p) =
{
fmcns(p) if p /∈ Q,
α if p ∈ Q. (5)

5. EXPERIMENT

5.1 Domain
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Figure 2: Maze domains tested in experiment.

Our experimental domain is based upon previous studies
which have assessed novelty search and variants of the al-
gorithm [9, 12, 5]. The task domain is a simulated maze,
in which an agent controller must navigate from an initial
starting-point to one of a possible number of exit points
within a fixed time limit.
In this paper, we further explore 2 of the domains previ-

ously presented in [20], the SCALED and SCALED-U do-
mains:

(a) SCALED — A divergent maze with 6 exits. The
distance between the exits and the edges of the maze
(figure 2a, w = 1000+l) is altered in each evolutionary
trial. Triangle indicates start position. Circles repre-
sent exits. The values tested are l = {0, 4000, 9000}.
Values were tested in 50 evolutionary trials for each
algorithm

(b) SCALED-U — A varying scale maze identical to
SCALED with unbounded exploration potential, (fig-
ure 2b). This unbounded domain is a much more diffi-



cult task for divergent evolution, as the potential space
for exploration is potentially infinite

Each of the mazes range from 1000-10,000 units, depen-
dant upon the trial. The agent has a size of 20 units and
the exits require the agent to be within 20 units of them.
Each agent is given 4000 time steps to complete the maze.

5.2 Agent Model

Figure 3: Agent vision

The agent controllers in the
maze experiments are neural
networks, evolved using the
NEAT algorithm [21]. In a
similar manner to previous
maze navigation experiments
[9, 12, 5], the agent’s percep-
tion (figure 3) utilises 6 range-
finding sensors, which return
the distance to the nearest ob-
stacle.
The range-finding sensors

are mapped to [0, 1], where 1
is equivalent to the diagonal
distance of the full maze.
In addition to this, the agent has 4 inputs which act as

pie-slice sensors. The pie-slice which contains the line be-
tween the agent and the exit is activated with a value of 1.
For multiple exit mazes, the closest exit from the agent at
any particular time step is used. The agent network has 4
outputs which control rotation left and right, and positive
and negative thrust respectively.

5.3 Objective and Behavioural Definitions
The objective fitness function in maze domain tasks typi-

cally reward candidate solutions for a smaller euclidean dis-
tance between the ending position of the agent and the exit
[9, 12, 5]. In line with previous studies, each of our objective
fitness functions assesses the ending position of an agent to
a particular exit. For the algorithms which compute a lin-
ear combination (NS-MAX, OBJ-LIN) all values must fall
within the same range to avoid one value overpowering an-
other. Therefore we scale the maximum distance of a maze
with width w and height h to

√
w2 + h2 7→ 1.

A single objective fitness of a particular agent ρ is given
as fi(ρ) = 1 − dist(ρ, ei), where ei is a single exit. The
fitness for each of the exits is calculated and assigned to each
agent in a manner dependant upon the particular algorithm
used. In the unbounded domains the end position of an
agent may fall outside of the maze boundary, resulting in
a distance greater than the defined size. To avoid negative
fitness values, a constant is added to all solutions.
Again, in line with previous maze navigation tasks, the

behavioural distance metric is calculated from the ending
positions of the agent, β = (ρx, ρy).

5.4 Evolutionary Criteria
In each evolutionary run, populations of 100 neural con-

trollers were optimised for 1000 generations. The algorithms
were run in each domain 50 times and were given a different
random seed value for each run. In order to ensure con-
sistency between algorithms, identical random seed values
were given to each of the algorithms in each trial.
The simulation was performed using a bespoke domain

written in the C++ programming language, developed to

be similar to the original maze domain experiments in [9,
12]. The implementation of the NEAT algorithm used was
developed as an extension to the MultiNEAT software in the
C++ language 1

5.5 Algorithms Tested
The following algorithms were tested in each of the maze

domains:

(a) NS — Standard novelty search, as defined by fnov(ρ),
(section 2.1 and equation (1)).

(b) MCNS — Minimal criteria novelty search, as defined
by fmcns(ρ), (section 2.2.1 and equation (2)).

(c) MADNS — Multiple assessment directed novelty
search, as defined by fmad(ρ), (section 4 and equa-
tion (4)).

(d) MC-MADNS — Multiple assessment directed minimal
criteria novelty search, as defined by fmc−mad(ρ),
(section 4 and equation (5)).

(e) OBJ-LIN — A linearly combined fitness of the
distance to each of the exits in the domain, as defined
by flin(ρ), (section 3.1).

(f) OBJ-MAX — The maximum fitness value for each
of the exits, i.e. the fitness to the closest exit at the
end of the trial, as defined by fmax(ρ), (section 3.2
and equation (3)).

(g) NS-MAX — A linear combination of NS and
OBJ-MAX as defined by fns−max(ρ), (section 3.2
and equation (3)).

5.6 Calculating Performance
The performance of each algorithm was determined by the

probability of it to locate all solutions in the domain within
a predetermined number of generations. If solutions to all
of the exits were not found after 1000 generations, the trial
was deemed unsuccessful. The probability of success for each
algorithm in each of the domains was calculated by measur-
ing the cumulative probability to discover all solutions to
the exists within a single trial after n generations. figure 4
shows the probability of success for the algorithms in each
of the domains tested. Comparisons of significant difference
between two algorithms were calculated throughout using a
two-tailed Mann-Whitney U test.

5.7 Calculating Population Diversity
In order to calculate the diversity of a particular algo-

rithm, the domain is divided into a 2-dimensional matrix
M , where |M | = n×n. In our experiments, n = 30. The fi-
nal position of an individual ρ, pos(ρ) = (ρx, ρy), is mapped
to the corresponding region of M . In a similar manner to
[5], the exploration uniformity is calculated to determine di-
versity. However, we calculate diversity of the current pop-
ulation in each generation rather than the cumulative ex-
ploration uniformity over the whole evolutionary run. Let
Pt be the set of individuals in the population at generation
1 c© 2012 Peter Chervenski.
http://multineat.com/index.html
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Figure 4: Performance results for SCALED domain

t and let Ψt be the distribution of Pt over M . The diver-
sity of the population, D(Pt), is calculated as the similarity
between Ψt and the uniform distribution U . As in [5] the
distance metric used is the Jensen-Shannon distance (JSD).
The population diversity for a single generation is therefore
defined as:
D(Pt) = 1− JSD(Ψt, U), where :

Ψt =
(
|I1|
|Pt|

, ...,
|I|Pt||
|Pt|

)
, Ir = {i ∈ Pt|region(i) = r}

U =


n2 times︷ ︸︸ ︷

1
|M | × · · · ×

1
|M |


(6)

6. RESULTS
Here we present the probability of success (section 6.1,

figure 4) as calculated in section 5.6 and the diversity (sec-
tion 6.2, figure 5) as calculated in section 5.7 for each of
the algorithms. In sections 6.1.1 and 6.2.1 we present the
results for the bounded domain (SCALED). Our results for
the unbounded domain (SCALED-U) are presented in sec-
tions 6.1.2 and 6.2.2.

6.1 Performance

6.1.1 Bounded Domain
As the SCALED maze is a bounded domain, the results

for NS and MADNS are identical to their respective minimal
criteria variants, MCNS and MC-MADNS.
Figure 4 shows the probability of success for each algo-

rithm in the SCALED domain over 50 evolutionary runs,
calculated as outlined in section 5.6. Figure 4a illustrates the
probability of success for the smallest domain (w = 1000).
There is no significant difference between NS and MADNS
in this domain, with both algorithms locating all exits in all
trials within 400 generations. MADNS slightly outperforms

NS on both the maximum number of generations taken to
locate all exits, (MADNS = 387, NS = 390) and the median
value (MADNS = 71.0, NS = 90.0).
However, as shown in figure 4b, MADNS significantly out-

performs NS in the SCALED domain when w = 10000. The
results for NS in the largest domain are similar in perfor-
mance to OBJ-MAX. The difference in performance between
MADNS and NS can be seen to increase as the domain size
increases, as shown in figure 4c. NS-MAX performs similarly
to NS, with no significant difference between the algorithms
in any of the domain sizes (figures 4a to 4c).

6.1.2 Unbounded Domain

number of exits located
Algorithm 0 1 2 3 4 5 6

NS 25 20 2 2 1 0 0
MADNS 6 28 11 3 0 0 2
MCNS 2 25 17 3 2 1 0

MC-MADNS 0 5 25 9 6 2 3

Table 1: Frequencies of the number of exits located within
1000 generations. SCALED-U, w = 1000.

The probability of success is lower for the SCALED-U do-
main (probs) over the 1000 generations. In our previous ex-
periment, presented in [20], many of the trials required over
1000 generations to locate all of the exits in the SCALED-U
domain. We therefore expect that a longer evolutionary run
would increase the number of trials which are successful in
locating all exits. Tables 1 and 2 presents the number of
exits the algorithms managed to locate within the allocated
1000 generations. In the smaller domain (w = 1000, ta-
ble 1) only MADNS and MC-MADNS manage to locate all
exits in any of the trials. MADNS significantly outperforms
NS (p ≤ 0.01 2 tailed Mann-Whitney U) and MC-MADNS
significantly outperforms MCNS (p ≤ 0.01). MC-MADNS
performs most optimally, locating at least 1 exit in all trials.
In the larger domain (w = 10000), all algorithms perform

sub-optimally. However, NS and MCNS are more severely
affected. Surprisingly, MCNS has the worst performance
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(c) SCALED 10000

Figure 5: Uniformity exploration within the population at each generation (SCALED)

number of exits located
Algorithm 0 1 2 3 4 5 6

NS 34 12 4 0 0 0 0
MADNS 21 21 6 0 2 0 0
MCNS 41 4 3 2 0 0 0

MC-MADNS 20 18 10 2 0 0 0

Table 2: Frequencies of the number of exits located within
1000 generations in the unbounded SCALED-U

domain (w = 10000).

out of all of the algorithms, locating no exits in 41 out of 50
trials. Similarly, NS locates no exits in 34 out of 50 trials.
As previously noted, is it expected that these results would
improve with a longer evolutionary trail length. This may
be due to a large number of solutions being drawn outside
of the bounds of the domain (figure 7d).

6.2 Diversity

6.2.1 Bounded Domain
Figure 5 shows the exploration uniformity for the

SCALED domains for w = 1000 (figure 5a), w = 5000 (fig-
ure 5b) and w = 10000 (figure 5c). As expected, in a similar
manner to section 6.1, results for the minimal criteria vari-
ants are identical for this domain, therefore have been ex-
cluded from discussion. In all cases, populations optimised
through NS exhibit greater diversity in the population than
MADNS. As in section 6.1.1, NS-MAX performs similarly
to NS, with no significant difference between the algorithms
in any of the domain sizes. The relative difference between
the levels of exploration uniformity for NS and MADNS in-
creases alongside domain size (figures 5a to 5c).

6.2.2 Unbounded Domain
The diversity is extremely unstable in the SCALED-U do-

main for all sizes of w (figure 6). However, due to solutions
falling outside of the domain being penalised in the minimal
criteria variants, the effect upon these algorithms is less se-
vere. MCNS and MC-MADNS perform relatively similarly
throughout all domain sizes. However, as the domain size in-
creases, the benefit gained by the minimal criteria decreases

(figures 6a and 6c). In a similar manner to performance, all
algorithms still seem to be optimising at the end of the 1000
generations, therefore a longer trial period may be necessary
in the unbounded domain.

7. DISCUSSION
Figure 7 illustrates a series of full evolutionary runs in the

SCALED (figures 7a and 7b) and SCALED-U (figures 7c
and 7d) domains. The figures indicate the final resting po-
sitions of every agent over the course of the full trial. As we
can see, in the bounded domain both NS and MADNS ex-
plore the full area of the maze. However, in the unbounded
domain, SUBSET-U, the divergent nature of NS pushes the
search to focus upon areas of the landscape outside of the
domain. MADNS resists this pressure for exploration (and
high novelty), by constantly attracting the search towards
the areas of interest.
The algorithms struggle to optimise all exits in the un-

bounded domain. We suggest that, in the bounded domain,
the borders of the maze act as not only barriers, but also
as reference points to the agent, aiding the controller to po-
sition itself in novel areas of the maze. Without this frame
of reference and with the added potential for a controller to
leave the edges of the maze in all directions, the divergent
evolution struggles.
As we have shown in section 6, as the phenotypic land-

scape increases, the divergent evolutionary trajectory pur-
sued by NS requires more assistance to focus upon areas of
interest. This is hardly surprising, as NS purposefully has
no concept of an objective built within the algorithm. In
fact, NS was introduced with the specific desire to aban-
don objectives [12], alleviating the tendency for search to be
drawn towards local optima, particularly in deceptive do-
mains. This divergent exploration technique has proved suc-
cessful in domains with small phenotypic landscapes, how-
ever, as the landscape expands, the search for pure novelty
often requires assistance to focus the optimisation. While
MCNS goes somewhat towards restricting the exploration,
as we have shown, specifically directing the search through
MC-MADNS assists further still, without fully removing the
benefits of divergent exploration.
Our experiments also indicate that, potentially any area

of the phenotypic landscape could be used as an attractor,
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(b) SCALED-U 5000
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Figure 6: Uniformity exploration within the population at each generation (SCALED-U)

regardless of the objective assigned to it. However, further
studies in domains where the mapping between the pheno-
typic landscape and the objective function are less direct
would be needed to fully establish the relationship between
phenotypic exploration and objective functionality.

8. CONCLUSION
In this paper, we further explored the MADNS algorithm

to ascertain whether increasing the potential for exploration
would have a negative effect upon the performance of the
algorithm. Our results have shown that, in domains which
have a low exploration potential, NS is an effective method
for the optimisation of populations towards multiple con-
flicting objectives. However, in domains which have high
exploration potential, NS and MCNS are severely negatively
effected. The MADNS and MC-MADNS algorithms have a
higher probability of success than both NS and MCNS in
such domains.
Our results also show that directing towards multiple ob-

jectives through our proposed method has little negative ef-
fect on the population diversity, rather that the diversity
within the population is focused towards areas of the land-
scape of interest to the particular objectives. We have also
shown that the particular objectives may be independent
and directly conflicting, without any negative effect on the
performance of the MADNS algorithm.
Previous studies have indicated that a high probability

of success in maze navigation domains is generally transfer-
able to more complex scenarios [5, 16]. Further testing of
the MADNS algorithm in more complex domains may be
necessary to conclude this.
Possible further scenarios which may be suitable for the

algorithm’s application include the evolution of predator-
prey dynamics simultaneously in a single population, or the
evolution of non-player-character video game agent popu-
lations which act as both enemies and companions to the
player.
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