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Abstract. Novelty search is an algorithm which proposes open-ended
exploration of the search space by maximising behavioural novelty, re-
moving the need for an objective fitness function. However, we show that
when applied to complex tasks, training through novelty alone is not suf-
ficient to produce useful controllers. Alongside this, the definition of phe-
notypic behaviour significantly effects the strategies of the evolved solu-
tions. Controller networks for the spaceship in the arcade game Asteroids
were evolved with five different phenotypic distance measures. Each of
these phenotypic measures are shown to produce controllers which adopt
different strategies of play than controllers trained through standard ob-
jective fitness. Combined phenotypic novelty and objective fitness is also
shown to produce differing strategies within the same evolutionary run.
Our results demonstrate that for domains such as video games, where
a diverse range of interesting behaviours are required, training agents
through a combination of phenotypic novelty and objective fitness is a
viable method.

1 Introduction

The training of agents through the promotion of diverse behavioural characteris-
tics is a recent area within Evolutionary Robotics (ER) that suggests promising
directions towards open-ended evolution [5,17,3,13]. In complex tasks, and when
faced with uncertainty, a range of differing behavioural strategies emerge. The
behavioural sciences observe in nature, not only a vast array of different species,
but also a scale of behavioural differences within the same species [14,24].

Varying both the phenotypic definition and the distance metric used in the
fitness assessment of an evolutionary task has been shown to produce widely dif-
ferent strategies amongst the population, suggesting the importance of domain
specificity and the assessment metric in measuring phenotypic distance [17,3].
However, there has been little research which addresses a series of behavioural
measures in order to highlight the effect that particular phenotypic definitions
play on both objective fitness and the resulting useful behavioural strategies of



the agents in the same domain. A series of experiments were undertaken to as-
sess the effect of varying phenotypic definitions on objective performance at an
uncertain task. Agent controllers for the spaceship in the video game Asteroids
were evolved on the same task, with fitness assessments based on a linear propor-
tion of objective fitness and phenotypic novelty over five definitions of behaviour.

A linearly mixed fitness assessment is shown to produce controllers which
adopt different strategies of play than controllers trained through standard ob-
jective fitness without significant effect on objective performance. A comparison
of the complete state-action pairings of high scoring agents was undertaken to
assess the diversity of the evolved solutions. Our results show that, dependant on
an ideal mixing ratio, the linear combination of objective fitness and phenotypic
novelty produces highly diverse solution populations.

2 Related Work

2.1 Novelty Search

Novelty search, as proposed by Lehman and Stanley [11,12], is an algorithm
which removes the need for an objective fitness function through the assignment
of high fitness values to novel behaviours in a population.

n(x) = 1
k

k∑
i=0

dist(x, µi) (1)

The behavioural novelty n(x) of an individual x is defined as the mean be-
havioural distance between x and its k nearest neighbours, where k is a user
defined parameter and µi is the ith nearest neighbor of x with respect to the
distance dist. The value of k includes both the behaviours of the current popu-
lation and an archive of previous novel behaviours. Individuals with a value of
n(x) above a predefined novelty threshold are added to the archive, Equation (1).

2.2 Phenotypic Diversity

It has been suggested that the success of ER to extend beyond simple tasks
will be dependant upon adaptable and open-ended evolutionary procedures [20].
Current definitions exist within the literature which draw separations between
genotypic space as the binary representation of genes in the population, phe-
notypic space as the topology of the networks produced by the genotype and
behaviour space as the actions produced by the agent [17]. Here, however, we
adopt a more biologically informed definition, in which the phenotype refers to
any observable characteristics of an organism, which may include both network



topology and the related behaviour of an agent [10].

The design of effective fitness functions in ER is a subjective process, there-
fore susceptible to human error and deception. If generalisable across domains,
the promotion of phenotypic diversity may alleviate this limitation [11]. However,
assessment methods based upon phenotypic diversity, which require a definition
of the particular behaviour to encourage or diversify in a given domain, strictly
translate rather than remove the human design process. Experiments which have
shown novelty search to outperform objective fitness have concentrated on do-
main specific behavioural metrics, such as maximising the distance of the end
navigation points of a robot within a maze [11]. Metrics have been proposed
to generalise phenotypic novelty, for example through measuring the distance
of output values from randomised input vectors given to the controller [6]. In
a comparison of generic behaviour based on motor actions, Gomez suggested
measuring a Normailized Compression Distance (NCD) of binary action vectors
as yielding the most promising method for translation to different domains [6].

Although not strictly a diversity maintenance algorithm, novelty search re-
ceives increasing interest within ER research for its unique way in expanding the
search space to multiple solutions in any given domain [11]. The introduction
of novelty search uncovered many of the stepping stones towards open-ended
evolution. Although novelty search may outperform objective fitness search in
specific tasks, especially when the design of an objective fitness function may
be difficult, it has been shown that the assessment of behavioural novelty alone
is insufficient as a generalisable evolutionary technique in many domains [2,16].
Due to its divergent nature, novelty search continues to produce new solutions
throughout the evolution, however these solutions may not be useful for the task
at hand. The combination of novelty search and objective fitness, in which the
diverse and expanding search space explored by novelty search is limited to use-
ful solutions is a promising direction for the application of the algorithm.

Alongside this, multiobjective optimisation of both novelty and objective fit-
ness has shown to outperform purely objective fitness in biped locomotion tasks
and maze navigation [13].

2.3 Neuro-Evolution Through Augmenting Topologies (NEAT)

Neuro-Evolution Through Augmenting Topologies (NEAT), developed by Stan-
ley and Miikkulainen in 2002 [22], is an Evolutionary Algorithm (EA) for the
evolution of Artifical Neural Networks (ANN). In addition to the mutation of
weights between neurons, NEAT evolves the networks’ topologies, creating phe-
notypically diverse populations. Increasing complexity is achieved by initialising
a population of networks with minimal topologies and adding genes as the evo-
lution progesses, leading to more diverse behaviour patterns. Neurons added to
the network may be either feed-foward or recurrent, allowing for the emergence



of a short term memory within networks. Additionally, in order to protect new
innovations, historical markings are used to assign species to the population.
Alongside evolutionary robotics tasks, NEAT has been widely applied to the
evolution of video game agents in multiple domains [21,7,9,1].

2.4 Video Games for Evolutionary Research

Classic 2D video games are generally played within basic grid type worlds, with
a limited number of agents and a small set of available actions. Although de-
ceptively simple, the dynamics within these worlds are often complex and un-
certain, requiring multiple diverse strategies and planning procedures for play.
Unlike traditional maze navigation or pole balancing tasks, classic video games
provide simulated worlds which require the acquisition of multiple skills, such
as path finding, fights for survival, evasion, goals and sub-goals. Due to these
rich worlds, there is a growing body of research in the application of EAs to
classic video games, both for agents evolved for particular games, for example
Ms-Pacman [23], and general games playing agents [9,8,15]. Typically within
the literature, fitness assessment of the population is achieved through objective
points scoring. However there are a number of games, including Montezuma’s
Revenge and Pitfall where points are not readily available. It has been recently
suggested that an intrinsically motivated assessment of the diversity of agents’
behaviours is a promising approach to allow evolution to continue in the absence
of points [9].

3 Experimental Domain

A bespoke version of the classic arcade game Asteroids was used as an exper-
imental domain (Figure 1). The aim of Asteroids is to score as many points
as possible by shooting asteroids and avoiding collisions. The player controls a
spaceship that has a left and right rotation, a forward thrust and the ability to
shoot. Due to Asteroids being set in deep space, the spaceship is not effected
by friction or gravity, therefore takes a long time to slow down after thrust is
applied. As the name suggests, the enemies in the game are asteroids, which
appear on the screen in waves, with random velocity and direction. Asteroids
appear in three different sizes: starting off as large, and when hit splitting into
two medium size asteroids, which in turn each split into a further two small
asteroids. The first wave consists of three large asteroids. After the player has
cleared all of the asteroids, the next wave begins, with one more large asteroid
than the last. The playing field in Asteroids is constructed as a toroidal space,
i.e. if asteroids or the ship move off the edge of the screen, they reappear on the
opposite side.



Fig. 1: Screenshot of the Asteroids video game

4 Agent Model

4.1 Perceptual Field

The perceptual field for the agent was constructed as a dartboard-style map
with binary inputs centred on its position and rotation, providing a discrete
representation of polar coordinates relative to the agent (Figure 2). Inputs to the
map were assigned a value of zero if no asteroids were present within the related
coordinate, and one if any number of asteroids appeared within the bounds. A
series of trial experiments were conducted using a range of input maps with
differing resolutions and sizes. The final perceptual field used consisted of 4
segments and 3 slices and a diameter of 0.8 of the world’s length. In order to
allow the agent the capacity to adapt to the toroidal nature of the playing space,
it was also decided to allow the agents’ perception to extend beyond the edges
of the screen, overlapping to the opposite side (Figure 2).

4.2 Controller Network

The NEAT algorithm was used to train the agents’ controllers throughout this
experiment. The dartboard state map was passed to the inputs of the network
as a 12 dimensional binary array (with a value of one if at least one asteroid
was detected in the position and zero otherwise) at each time step in the game.
The networks were assigned three floating point outputs used to control left
and right rotation and thrust, and one binary output for shooting. The NEAT



Fig. 2: Agent perceptual state map Fig. 3: GC phenotypic measurement

algorithm’s parameters were set to enable the evolution of recurrent nodes within
the networks, allowing for the possibility of a short term memory to develop
within the controllers.

5 Phenotypic Definitions

In the presented experiment, in order to determine the possibilities for a gener-
alised method of evolution based on behavioural novelty, we apply a combination
of both generic and domain specific behaviour measures. Although [6] suggests
a metric using NCD as being optimal, due to the computational complexity of
both NCD, which requires a compression to be calculated with each distance
measurement, and novelty search, which introduces its own computational load
due to the maintenance of an expanding archive, we forgo the NCD measure-
ment, comparing instead the Hamming distance of action vectors, which has
previously produced comparably similar results [6,17].

The following five differing phenotypic definitions were evaluated to establish
the significance of a fitness based evolution based on behavioural distance.

1. (AC) Action Count Due to the complexity of evaluating the behaviours
of the agents during online gameplay, an evaluation procedure was devised
to present each of the population with a randomly generated set of hypo-
thetical game states. A set of one hundred states was randomly produced
at the beginning of the evolutionary run and the set presented to the con-
trollers before gameplay began in each generation. The euclidean distances
between each of the resulting arrays of output vectors were then measured



to establish the novelty value of the agents1.

2. (GC) Ground Covered The play area was divided into a 20x20 matrix
and a counter was incremented the first time each time the agent was posi-
tioned within a square. The 1 dimensional euclidean distance was taken as
the measurement between agents in the population (Figure 3).

3. (MAD) Mean Asteroid Distance The average distance from the agent
to the asteroids in the playing field was taken at each time step during the
game. The mean of these distances was then measured between agents.

4. (MTR) Mean Thrust and Rotation The average thrust and rotation of
the agent was taken throughout game play. The euclidean distance of the
resulting two dimensional vector was measured.

5. (NA) N Actions Each game was initiated with the game state, i.e. iden-
tical asteroid positions and velocities. The first N actions was stored as a
string (L for left, R for Right etc) and the hamming distances between the
strings taken (in this experiment N = 100).

6 Evolutionary Criteria

6.1 Experimental Parameters

Although relatively simple for a human player to grasp, Asteroids is a partic-
ularly difficult domain for evolutionary techniques. The agents’ actions in the
game directly effect the trajectory of the task, therefore introducing a level of
uncertainty. The same controller can receive a wide range of scores in different
games, subsequently effecting fitness measures. In order to reduce this level of
noise, 10 games were played by each controller in each generation of the evolu-
tionary phase, and the objective fitness averaged. Due to the computationally
exhaustive nature of novelty search over multiple assessments, the behavioural
values were evaluated on one random game per generation.

Agents were allocated three lives in each round of the game. To remove the
possibility of an agent discovering a linear trajectory which avoids collisions with
all asteroids, therefore making the game last infinitely long, a timer was added
to the task, requiring agents to hit an asteroid every 1000 update loops, or ap-
proximately 15 seconds. Evolutionary runs were restricted to 1000 generations
throughout, with the winning average scores over 40 evolutionary runs presented
1 It may be noted that with this particular phenotypic definition, the behaviour is

measured hypothetically, before the task has been performed. Therefore when eval-
uating through novelty search alone (λ = 1.0), the game does not need to even be
played.



in Section 7.

6.2 Fitness Assessment

In each of the experiments the fitness of an individual x, where x ∈ P was
determined as a linear combination of behavioural novelty and points scored,
with the ratio of each dependant upon a multiplier, λ [0, 1]. The values assigned
for behavioural novelty xb and points scored xs were normalised n(xi) against
the maximum and minimum scoring individuals in P , to assign a final fitness
value f(x)[0, 1] (Equations 2, 3).

n(xi) = xi − min(Pi)
max(Pi) − min(Pi)

(2)

f(x) = λ(n(xb)) + (1− λ)(n(xs)) (3)

7 Findings

7.1 Objective Performance

Figure 4 outlines the maximum points achieved by an agent for the average
scores over 40 evolutionary runs of 1000 generations for varying mixing ratios
of objective fitness and novelty search (λ [0 : 1]). In each generation of the ex-
periments, the average score over 10 games was assessed. Our results show that
phenotypic definition directly effects the ability of the novelty search algorithm.
Although outperforming random search, pure novelty search (λ = 1) performs
significantly sub optimally over all tested behaviours compared to objective fit-
ness search.

The linear combination of novelty search and objective fitness increases the
performance of the agents compared with novelty search (λ < 1). The results
show no significant improvement in objective fitness with the addition of nov-
elty, however, of the five tested behaviours, AC, MAD, GC and MTR produced
median fitnesses which outperformed the median objective fitness for λ = 1

6 ,
with only NA under performing. Of all tested behaviours, MTR with a mixing
ratio of λ = 1

6 produced the most successful results. The ideal mixing ratio of
novelty search and objective fitness remained relatively consistent throughout
the experiments. A small ratio of novelty search to objective fitness (λ = 1

6 ) pro-
duced the highest results for GC, MTR, MAD and NA. AC, however, produced
comparable results for both λ = 1

6 and λ = 2
6 .
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Fig. 4: Mean points scored using a linear combination of objective fitness and
novelty search. (Error bars represent standard deviation)

7.2 State-Action Distance between Agents

Due to the tested domain being an interactive video game, good progress requires
the agent to constantly alter the trajectory of play (i.e. by shooting asteroids).
This makes the assessment of play strategies a difficult task. It was therefore
decided to compare the full state-action parings for agent controllers to indicate
the distance of actions between agents.

In order to assess the diversity of high performing strategies produced within
a single evolutionary run, the four highest scoring individuals were stored over
the course of one training cycle of 1000 generations for each phenotypic type,
using the optimally combined phenotypic-objective ratio (λ = 1

6 ) alongside a
separate, purely objective fitness run (λ = 0).

The actions performed for all combinations of the input state space were
compared for these high scoring agents in order to establish the diversity of
controller networks produced by the addition of phenotypic novelty. The state
input map used in the trials consisted of a 5 × 4 two dimensional binary input
matrix, giving 220 = 1048576 possible combinations. The resulting actions were
converted into action strings (e.g. “ULS”= {up, left, shoot}) and the Hamming
distances for each state-action pair between agents within the same phenotypic
definitions were compared as a percentage (Table 1).

All Agents across all of the phenotypic definitions (Tables 1a to 1e), with
the exception of agents one and three in the MTR phenotypic type (Table 1a),
produce state-action parings with equal or higher distances than the objectively



trained agents (Table 1f). This strongly indicates a more diverse set of actions
for input states within singular evolutionary runs.

Table 1: Hamming Distance of State-Action Mappings

(a) 1
6λ GC

1 2 3 4
1 0 80 73 55
2 80 0 68 80
3 73 68 0 77
4 55 80 77 0

(b) 1
6λ AC

1 2 3 4
1 0 75 66 76
2 75 0 75 59
3 66 75 0 76
4 76 59 76 0

(c) 1
6λ MAD

1 2 3 4
1 0 71 76 66
2 71 0 94 62
3 76 94 0 75
4 66 62 75 0

(d) 1
6λ MTR

1 2 3 4
1 0 100 9 61
2 100 0 99 84
3 9 99 0 61
4 61 84 61 0

(e) 1
6λ NA

1 2 3 4
1 0 84 78 95
2 84 0 79 94
3 78 79 0 69
4 95 94 69 0

(f) λ = 0

1 2 3 4
1 0 38 52 36
2 38 0 48 55
3 52 48 0 49
4 36 55 49 0

8 Limitations

Due to the nature of the tested domain, in which agents have the ability to
alter the environment and thus the trajectory of play, assessing the diversity of
strategies produced by agents is a difficult task. In this experiment, we chose
to highlight the distance between full state space to action mappings. Although
the Hamming distance of possible action strings may be applicable for domains
with a small, or unalterable state-space, e.g. a board game, it may not be suffi-
cient here to fully capture differing strategies of behaviour. Because of the highly
uncertain and changeable nature of the domain, methods developed in the be-
havioural sciences may be more applicable [14]. Assessment criteria could be
established, for example, through the qualitative human assessment of videos of
the agents playing the game.

9 Conclusion

As shown in Section 7, training through a combination of objective function and
novelty search is a viable method to produce controllers which are not only high



scoring, but also adopt multiple strategies. Alongside this, varying the particular
phenotypic definition or metric used may further increase the diversity of strate-
gies adopted. Our results indicate that training through a linear combination
of objective fitness and novelty search with multiple phenotypic definitions is a
viable methods to produce a range of useful controllers which adopt a diverse
range of strategies.

Sandbox [19] and open-world games [18] are recent video game genres which
promote exploratory and intrinsically motivated forms of play rather than fixed
objectives. Investigations could be undertaken to assess the applicability of train-
ing non-player character (NPC) behaviours in such games, using combined objec-
tive and phenotypic novelty, where a diverse range of unpredictable and unique
behavioural characteristics are required.

Although some of the possible sets of strategies which emerge through nov-
elty search are not directly useful to the domain at hand, it does not follow
that these strategies are without use for all domains. An interesting direction
to further extend studies analysing the diversity of strategies produced through
combined objective and phenotypic search, could assess the transferability of
trained agents or agent populations into either different domains, or domains
which alter over time.

Our results indicate that evolution through the combination of objective and
novelty search produces an extensive set of useful diverse strategies that have
potential application in two main areas; firstly, to both provide new and inter-
esting non-player characters (NPCs) and secondly, to further progress towards
creating transferable agents for general game playing.
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