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Ambient Light Sensor

NFC
GPS
Camera(s)
Barometer
Bluetooth Magnetometer
Microphone(s) Gyroscope
Water Sensor Accelerometer
Proximity Sensor Motion Coprocessor

Social Sensor (online social networks)









Social Networks and Social data

e Adaptive event data collection and real-time sub-event detection during event
scenarios from social media data.

Targeted twitter feed (i.e #Londonriots) , #itoriesoutnow)

MM Media Eye @AlIDigitalCoins - May 9
whss  anmobal : 24 hours after the election #ToriesOutNow
«ma Riot police shuffle in @medialens @hrw

protest erupts in London

May 9

fab tantrum ©fabtantrum
1: guardian hey guardian what about central London riot? No news?

0 9 caitlin carter @caitlinsawday - May 9
4 ‘'m all up for free speech but this is wrong “LondonRiot “getthetoriesout

Htoriesoutnow

ToriesOutNov
K“ ; Nonjob “nonjob1 - May 9
“hq It's kicking off in London.
londonprotest #londonriot #Tor|

P gabs @gabbywarr - May 9
The fact that there's a protest in London right now says it all really

ToriesOutNow

esOut #ToriesOutNow

Wang X., Tokarchuk L and Poslad S (2014). Identifying Relevant Event Content for Real-time Sub-Events Detection. Exploiting Hashtags for Adaptive Microblog

Crawling. IEEE/ACM. International Conference on Advances in Social Networks Analysis and Mining. ASONAM 2014.
Wang X, Tokarchuk L, Cuadrado F, and Poslad S. (2013) Exploiting Hashtags for Adaptive Microblog Crawling. IEEE/ACM. International Conference on Advances in Social

Networks Analysis and Mining. ASONAM 2013.



How do you get
meaningful content?

* How you collect these extra tags is important:

* Term frequency (TF-KwAA) -> garbage

e Statistical correlation (TP-KwAA) --> still
lots of garbage

e Content Similarity (CS-KwAA) -> Hooray!

* More content without overloading AND it is
relevant :

Baseline TF-KwAA TP-KwAA CS-KwAA
Event Relevant 201,683 191,096 232,797 260,897

Tweets (97.64%)  (5.47%) (42.60%) (90.82%)
Event Irrelevant 4,875 3,301,592 326,814 26,356
Tweets (2.36%)  (94.53%) (58.40%) (9.18%)

number of Tweets
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FIGURE 3.8: Tweet Volume for 2013 Glastonbury Music Festival



Q4% piecing together a (sub) event

/lnitial \

Real-time sub-event detection during event
scenarios from social media data.
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Tokarchuk L, Wang X, Poslad S (2017) Piecing together the puzzle: Improving event content coverage for real-time sub-event
detection using adaptive microblog crawling. PLOS ONE 12(11): e0187401. https://doi.org/10.1371/journal .pone.0187401

TV ad

Sub-event Time span | Summary tweet Descriptive terms

Ben Howard 16:20 to @benhowardmusic is some guy|[#amazing] [#jealous] [#wow]
16:50 #amazing #lovehit [#lovehim] [howard]

Laura Mvula |15:55 to Laura Mvula looks stunning!|[heatwave] [#sebheupdate]
16:20 #glastonbury [laura] [mvula] [6pm]
18:55 to|#Glastoshout please stop laura|[#festival] [#jealous] [laura]
19:35 mvula [manch] [#glastoshout]

Tibetan 16:20  to|Tibetan monk throat singing......|| [heatwave] [alongside]

Monk Throat|17:20 think you"d have to have been|[#silverhayes] [haircut]

|Singing | there #glastonbury [monk]

Elvis Costello |17:20  to Olivers Army are on their way|[deborah] [8ish] [hoop]
118:05 #elviscostello #glastonbury [tenda] [vanessa]

Noah and the 16:20 to Noah and The Whale!<3|[noah] [whale] [heatwave]

Whale 17:20 #glastonbury #wishiwasthere [heading] [#jealous]
18:55 to|Noah and the whale|[noah] [whale] [belongings]
19:55 #glastonbury #lovethem [door] [johnny]

Primal 19:35 to The crowd during|[whale] [#primalscream]

Scream 19:55 @screamofficial ~ #stonesglasto|[noah] [#goodtimes]

#primalscream [#noahandthewhale]

| | #therollingstones

Maverick 20:25 to Maverick Sabre #wow [maverick] [sabre] [#wow]

|Sabre 120:55 [wonderwall] [#amazing]

Glastonbury 19:55 to|#glastonbury badger badger|[badger] [sabre] [maverick]

founder 21:15 badger badger badger badger  |[wonderwall] [1965]

supports 21:15 to Wonder  will Eavis  get|[badger] [switch] [rudiment]

badger cull |21:40 "BADGERED"  tomorrow  at|[1965] [petition

#Glastonbury? - "BADGER

| | BADGER BADGER!”

Two Door 21:10 to|Two Door Cinema rock and they|[cinema] [door] [margaret]

Cinema Club 21:35 look like they could do your|[#leftfield] [invite]

| | accounts...f#bbcglasto

Example 21:35 to|is there anybody, completely off|[#example] [#proud] [#nffc]
22:05 their nut? #example [#jealous] [cinema]

Rollingstones 22:15 to Oh dear the #Stones at|[wonga] [#stones]
23:30 #glastonbury look like a Wonga| [#glastonbury2013live]

[careworker] [#physiotherapy]



https://doi.org/10.1371/journal.pone.0187401

Mobile Sensing and Groups/Crowds
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Mobile Sensing of Groups

e Use of mobile sensors (proximity, accelerometer,
etc) to detect social groups in crowd without video.

e Build proximity graphs and detect group
composition (number, size and trajectory) based on
only mobile sensors.

O 5 SensingKit http://www.sensingkit.org/ : A Multi-Platform

NFC  Gps Ambient Light Sensor
. Camersty _Position |
WiFi

Barometer

Mobile Sensing Framework for Large-Scale Experiments

Bluetooth :’:".; . Magnetometer [>
Microphone(s) = Gyroscope I ;
Environment |
o s M v’ Used in crowd detection experiments, health
| Audio-video |

Online Social Sensor

platforms and mobile sensing games.

Katevas K., Haddadi H. and Tokarchuk L. (2014). Poster: SensingKit—A Multi-Platform Mobile Sensing Framework for Large-Scale Experiments. ACM MobiCom.

Katevas K., Haddadi H., Tokarchuk L and Clegg R (2016). "Detecting Group Formations using iBeacon Technology", 4th International Workshop on Human Activity Sensing
Corpus and Application (HASCA2016) in conjunction with UbiComp2016, September 2016, Heidelberg, Germany.


http://www.sensingkit.org/
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Traditional Machine Learning Pipeline

time consuming

Feature Classical Machine

Extraction

Input Data

(raw)

Learning

. Accelerometer Q0 and Max Acceleration . Logistic Regression
. Battery level . Battery OTam =lewates: B last hour . SVM

. Network data activity . Data received during the day . Random Forests
. Noise level . Average ambient noise level during the . XGBoost

. Call logs last five minutes .

. Location . Time since the last outgoing call

. Screen Status . Current distance from home

. . Number of device unlocks

231 combinations of the participant pairs!



Features features everywhere...
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Detecting Social Interactions

Precision
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XGBoost (consistently outperformed all others tested)
* maximize Average Precision (AP) performance
S * Predicts, for all pairs, if they are interacting.

= Normalised Proximity (AP = 0.682)
== Naive Probabilistic Classifier (AP = 0.156)
0.0 T

0.0 0.2

0.4

0.6 0.8

Recall

1.0

Community Detection

G(V, E(w)) (E(w) edges weighted by XGBoost prediction)

e Detects: interactive groups of various sizes
(77.8% precision, 86.5% recall and 94.0 accuracy).

e 77.8% of participants the model discovered as
interacting were correctly detected

* 86.5% of all interactions that actually took place during
the event were detected by the model.

Katevas, Kleomenis; Hénsel, Katrin; Clegg, Richard; Leontiadis, llias; Haddadi, Hamed; Tokarchuk, Laurissa; Finding Dory in the Crowd:
Detecting Social Interactions using Multi-Modal Mobile Sensing; arXiv preprint arXiv:1809.00947; 2018.



https://arxiv.org/pdf/1809.00947

Mobile Sensors and Synchrony




Gait Synchronization and Accelerometers

* Analyse this phenomenon in
pedestrians existing in a group
of two or three people.

Magnitude (g)
5 15 25
L L L 1 Al

Time (seconds)

-0.5

Correlation
05 1.0
L l 1 1

Lag (seconds)

* |s there detectable
synchronization? Yes

Katevas K., Haddadi H., Tokarchuk L and Clegg R (2015). Walking in Sync: Two is Company, Three’s a Crowd. ACM MobiSys 2nd Workshop on
Physical Analytics (WPA). Florence, Italy, May 2015.



http://www.sigmobile.org/mobisys/2015/index.php
http://www.sigmobile.org/mobisys/2015/workshops/wpa/index.html
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Royal Institution Christmas Lectures at BBC Four.
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Sensors and Behaviour




What is the role of movement and behaviour in how

we interact with our devices?




Augmented Reality (AR) and sensors

Treasure Hunter:
e Collect AR treasure (puzzle pieces)

* Solve puzzle.

e Games differ on amount of treasure and size

Data Collected:

o ' _ . PUZZLE-

* Pairwise Comparison questionnaire
(4AFC protocol)

e Player Movement data during the game
(@64Hz)

e Player Score through the game.




People are greedy and lazy!

Challenge and Frustration —> Highly Accurate
Boredom, Excitement and Fun —> Show signs of overfitting

* Players like large amount of rewards,
* They do not like to walk a lot for this

Questions

* Can player experience predict their enjoyment?
e Can we determine what kind of person (player) they are?
* (Can we use player behavioral characteristics to tailor content?

Warriar, Vivek; Woodward, John Tokarchuk, Laurissa. Modelling Player Preference in AR Mobile Games. To appear: IEEE Conference on Games (2019)



(or sensors)

-~
Gettingeinformation off the
Internet is like taking a

. drink from a fire hydrant.

Mitchell Kapor

justiniskandar.com



http://justiniskandar.com/information-overload-how-to-overcome-too-much-input/

Collaborators

e Xinyue Wang
(CSC and EU FP 7 Tridec project)

* Kleomenis Katevas
(DSTL)

* Vivek Warriar
(MAT CDT)




