
SensingKit: Evaluating the Sensor Power Consumption in iOS devices

Kleomenis Katevas, Hamed Haddadi, Laurissa Tokarchuk
Queen Mary University of London, UK

{k.katevas, hamed.haddadi, laurissa.tokarchuk}@qmul.ac.uk

Abstract—Todays smartphones come equipped with a
range of advanced sensors capable of sensing motion, orien-
tation, audio as well as environmental data with high accu-
racy. With the existence of application distribution channels
such as the Apple App Store and the Google Play Store,
researchers can distribute applications and collect large scale
data in ways that previously were not possible. Motivated
by the lack of a universal, multi-platform sensing library,
in this work we present the design and implementation of
SensingKit, an open-source continuous sensing system that
supports both iOS and Android mobile devices. One of the
unique features of SensingKit is the support of the latest
beacon technologies based on Bluetooth Smart (BLE), such as
iBeaconTM and EddystoneTM. We evaluate and compare the
power consumption of each supported sensor individually,
using an iPhone 5S device running on iOS 9. We believe
that this platform will be beneficial to all researchers and
developers who plan to use mobile sensing technology in
large-scale experiments.

I. INTRODUCTION

The ubiquity of smartphones as well as the variety
of their on-board sensors have enabled the automated
acquisition of large scale data, inspiring a wealth of
research opportunities. Mobile operating systems such
as Android and iOS provide application programming
interfaces (APIs) to access these sensors. Lane et al.
[1] in a recent survey paper discussed the importance
of continuous sensing among different mobile platforms.
Various mobile sensing frameworks have been designed
that provide continuous sensing, like MobiSens [2], Emo-
tionSense [3], Funf [4] and AIRS [5]. However, these
platforms are currently limited to work on Android or
Nokia Maemo phones, limiting the sampling space of
users participating in different studies. Since Android and
iOS are the two main players in the mobile ecosystem,
there is a clear need for supporting continuous sensing in
these two mobile environments.

In 2014, we released an early prototype of SensingKit
framework [6]. SensingKit is a continuous sensing frame-
work compatible with both iOS and Android platforms that
enables capturing motion, orientation, location, proximity
between devices as well as environmental data from all
available sensors inside a smartphone device. Since the
two operating systems are equipped with sensor fusion
techniques, both raw measurements and fused data like
Linear Acceleration and Gravity are supported. Further-
more, SensingKit can also be configured to capture user’s
natively-labelled activity in supported devices, classified
as Stationary, Walking, Running, Driving and Cycling.

Beside the multi-platform characteristic, SensingKit has
some unique features that are not available in other sensing

libraries. It fully supports the Bluetooth Low Energy
(BLE) specification, branded as Bluetooth Smart (v4.0),
for capturing the proximity between devices or other
Bluetooth Smart beacons. This has significantly reduced
power consumption and highest sampling rate compared to
the classic Bluetooth. At this moment, it supports Apple’s
iBeaconsTM, as well as the new Google EddystoneTM bea-
cons. These are protocols developed by Apple and Google
respectively, that allow a device to broadcast its presence
to nearby devices. The receiver can estimate the proximity
of the beacon based on the Received Signal Strength
Indicator (RSSI) combined with the broadcast Measured
Power level, the beacon’s signal strength measured in 1
meter distance. That feature makes beacon technology
extremely useful for indoor localisation systems, allowing
smartphones to estimate their approximate location in
indoor environments.

In order to avoid timing issues when the user, or even
when the device itself changes the system time, the timing
in the sensor measurements depends on the device’s CPU
time base register rather than the system’s clock. The
library also makes use of the devices motion co-processor
for its motion activity recognition sensor, having only a
minimum affect on the device’s battery life. Finally, it
utilises all sensor fusion technology that is available into
the operating system, providing calibrated and accurate
sensor data.

The framework has already been used in various re-
search projects, including a study that investigates the sub-
conscious phenomenon of gait synchronisation between
individuals [7], as well as other Quantified Self applica-
tions [8]. A mobile app titled CrowdSense for iOS and
Android was also released that facilitates other researches
in Mobile Sensing area. By utilising SensingKit, it is
capable of collecting sensor data into the device’s memory
in CSV format.

In the first release, we introduced an early prototype of
SensingKit. In that version we only supported Accelerom-
eter, Gyroscope, Magnetometer, Location, Proximity (us-
ing iBeaconTM technology) and Battery sensors. The con-
figuration of these sensors was not possible and the data
was in fixed CSV format. Additionally, a universal API
between the two platforms was not available, and error
handling was limited, making the developing experience
difficult.

In this paper, we present the first stable version of
SensingKit framework (v0.5) for both iOS and Android
platforms. In this new version we have added support
for the latest mobile operating systems (Apple iOS 9

S
e
n

s
o
r

M
a
n

a
g

e
r

S
e
n

s
in

g
K

it
L
ib

Sensor
Modules

Sensor
Configuration

Sensor Data

Figure 1. SensingKit System Architecture

and Android Marshmallow) as well as for Apple’s new
Swift 2 programming language. A universal API now
exists and it is fully documented on SensingKit web-
site. We have added extended error handling based on
each platforms coding guidelines. Sensors can now be
dynamically configured and data can be extracted in both
CSV and JSON format. Finally, we have added support
for additional sensors including Google’s EddystoneTM,
Bluetooth Classic, Screen Status, Pedometer, Altimeter,
Microphone as well as other environmental sensors such
as Air Pressure and Humidity.

Our objective in this work is to provide an easy-to-use
sensing framework that developers and researchers can use
to provide continuous sensing in iOS and Android appli-
cations. In Section II, we present the System Architecture
and technical details of the framework. The system was
evaluated, as reported in Section III, by measuring the
battery consumption of each supported sensor separately,
running on an iPhone 5S mobile phone. In Section IV we
present the conclusions and discuss the future research in
this space.

II. PLATFORM ARCHITECTURE

SensingKit is a modular mobile framework developed in
the native programming language of each platform (Java
for the Android and Objective-C for the iOS version). It
supports mobile devices running iOS 8 and Android Jelly
Bean (v4.1) and above. At this moment, that corresponds
to 95% of all iOS and 95% of all Android devices available
today1.

Figure 1 gives an overview of the system architec-
ture. For every sensing category, a sensing module (e.g.
SKAccelerometer) exists in SensingKit, as well as a cor-
responded configuration (e.g. SKAccelerometerConfigura-
tion) and a data object (e.g. SKAccelerometerData). Each
sensor module provides access to the corresponding sensor
inside the device whereas a configuration object initialises
the sensor with custom configuration (e.g. custom sample
rate or accuracy). When new sensor data is available, a
data object is generated that represents the sensor data
in CSV or JSON format. SensingKitLib is the interface
that developers need to use in order to check for sensor

1As reported by Apple App Store and Google Play Store on March
7, 2016

Table I
SENSINGKIT: SUPPORTED SENSORS

Sensor Apple iOS Google Android
Accelerometer Yes Yes
Gravity Yes* Yes
Linear acceleration Yes* Yes
Gyroscope Yes Yes
Rotation Yes* Yes
Magnetometer Yes Yes
Pedometer Yes Yes
Altimeter Yes Yes
Humidity -** Yes
Light -** Yes
Ambient Temperature -** Yes
Location Yes Yes
Motion Activity Yes Yes
Battery Yes Yes
Screen Status Yes Yes
Microphone Yes Yes
Bluetooth R© Classic - Scanning only
iBeaconTM Proximity Yes Yes
EddystoneTM Proximity Scanning only*** Yes
*In SensingKit-iOS, these sensors are part of the Device Motion sensor.
**These sensors are either not available or access is not allowed on
iOS due to Apple’s restrictions.
***Broadcasting an EddystoneTM beacon signal is not allowed on iOS
due to Apple’s restrictions.

availability inside the device, initialise and configure a
sensor, provide the block function that will be called each
time new sensor data is available, and finally start or
stop continuous sensing operations. Sensor Manager is the
module that implements SensingKitLib interface and per-
forms all required operations to the sensor modules such as
memory allocation and deallocation, sensor configuration
etc. It is important to mention that due to the modular
design of this library, it is easy to develop a new module
and extend its sensing capabilities. Table I presents the
available sensing modules of the framework.

For proximity sensing, SensingKit uses the new Blue-
tooth Smart (4.0) proximity profile. This profile allows
to broadcast a device’s presence, scan for other devices
and most important, estimate the distance between them
using the Received Signal Strength Indicator (RSSI). Blue-
tooth Smart is only fully supported in Android Lollipop
(v5.0) mobile operating system. Android Jelly Bean (v4.3)
devices are only limited to scan and connect to other
devices (Observer and Central mode) and not to advertise
its presence to the nearby devices (Peripheral mode). Due
to Apple restrictions applied to iOS operating system,
it is not possible to broadcast a Bluetooth Smart signal
with custom service data blocks, making it impossible to
broadcast an EddystoneTM signal from an iOS device.

III. EVALUATING THE BATTERY CONSUMPTION

We measured the battery life performance while using
SensingKit in an iPhone 5S device running iOS 9.0.2
(Table II). The device was fully erased and restored
into the manufacturers default settings. No other third-
party applications ware installed or running in the back-
ground. The device was set to Flight Mode, having Wi-
Fi, Bluetooth and Cellular connectivity disabled. Finally,
the Background App Refresh setting was set to Off and

00 03 06 09 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

Time (hours)

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r
(%

)

iPhone 5S

Idle
Accelerometer (100Hz)
Gyroscope (100Hz)
Magnetometer (100Hz)
Device Motion (100Hz)
Location (Best Accuracy)
iBeacon Broadcast (1Hz)
iBeacon Scan (1Hz)
iBeacon Scan + Broadcast (1Hz)
Microphone (44100.0 Hz)

Figure 2. Battery consumption of SensingKit running on an iPhone 5S.

the Low Power Mode to On, in an attempt to minimise
the impact that the operating system has on the device’s
battery life.

Table II
DEVICE SPECIFICATION

Model iPhone 5S
Storage 32 GB
Operating System iOS 9.0.2
Processor 1.3 Ghz Dual-core
Memory 1GB LPDDR3
Battery 1560 mAh
Bluetooth 4.0

Figure 2 and Table III show the energy consumption
of SensingKit running on the mobile device described
above. We show the consumption of the library while
using the Accelerometer, Gyroscope, Magnetometer, De-
vice Motion (fused motion and orientation data), Location
(GPS), iBeaconTM and Microphone sensors. In the case
of iBeaconTM sensor, we first evaluate Broadcasting and
Scanning modes separately, and then a combination of
both of them together. In addition, we visualise the library
running in “idle” mode, when it only senses the battery
levels.

Table III
BATTERY CONSUMPTION USING SENSINGKIT FOR IOS

Sensor Sample Rate Hours Lasted
Idle - 51.27
Accelerometer 100 Hz 31.51
Gyroscope 100 Hz 28.15
Magnetometer 100 Hz 34.45
Device Motion 100 Hz 21.07
Location Best Accuracy 17.42
iBeacon Broadcast 1 Hz 46.43
iBeacon Scan 1 Hz 25.21
iBeacon Scan & Broadcast 1 Hz 25.26
Microphone 44100.0 Hz 35.41

The results show that the Location (GPS) sensor in
“Best Accuracy” mode is the most power expensive sensor
of all, as the device only lasted for 17.42 hours compared

to the “idle” mode that lasted for 51.27 hours. GPS sensor
is well known for its extensive power consumption, not
only because it receives signal from multiple satellites
simultaneously in order to estimate the devices distance
from them, but also because of the expensive trigonometric
operations (trilateration) that is performing in order to
estimate the device’s position on the surface of the earth.

From all motion and orientation sensors, Magnetometer
is the one that performed best, as the device lasted for
34.45 hours in 100 Hz sampling rate. Accelerometer
came next, sensing motion data in 100 Hz and lasting
for 31.51 hours, where as Gyroscope lasted for 28.15
hours in the same sampling rate. As expected, the Device
Motion sensor is the most expensive of all motion sensors,
lasting for 21.07 hours. The reason is that this sensor
is using a combination of Accelerometer, Gyroscope and
Magnetometer in order to provide calibrated and more
accurate data using sensor fusion techniques performed
entirely on hardware.

Recording audio using the Microphone sensor lasted for
35.41 hours, despite its high sampling rate of 44100.0 Hz.

Evaluating the iBeaconTM sensor in the three different
modes explained above showed interesting results. While
the sensor was set in the “broadcast” mode, the device
lasted 46.43 hours, highly comparable to the “idle” mode
(51 hours). More interestingly, there were only 5 minutes
difference between the “scan” and “scan and broadcast”
modes, as the devices lasted 25.21 and 25.26 hours re-
spectively. That proves that broadcasting an iBeaconTM

signal has almost no effect on the device’s battery, while
scanning for other iBeaconTM devices is quite expensive.
The reason is that iOS not only scans for the presence of
other devices, but is also “ranging” in 1 Hz sampling rate
in order to estimate the other beacon’s proximity based on
the RSSI explained above.

It is important to mention that Figure 2 only represents
the battery consumption on the specific mobile device
listed in Table II and should only be viewed as a compari-
son between the available sensors rather than an indicator

of each sensor’s power consumption.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented an extension on Sens-
ingKit, a continuous sensing system that works in both
Android and iOS environments. We evaluated the bat-
tery consumption while using Accelerometer, Gyroscope,
Magnetometer, Device Motion, Location, iBeaconTM and
Microphone sensors on an iPhone 5S smartphone. We plan
to continue the development of this framework and extend
its sensing capabilities. More specifically we plan to adopt
mobile health sensors by supporting HealthKit on iOS and
GoogleFit on Android. We believe that this work will be
beneficial for researchers willing to conduct large-scale
experiments using mobile sensing.

More information about SensingKit as well as the
complete source-code is available at www.sensingkit.org.

ACKNOWLEDGEMENT

This work is supported by funding from the UK Defence
Science and Technology Laboratory.

REFERENCES

[1] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A. T. Campbell, “A survey of mobile phone sensing,”
IEEE Communications Magazine, vol. 48, no. 9, pp. 140–
150, Sept 2010.

[2] P. Wu, J. Zhu, and J. Y. Zhang, “Mobisens: A versatile
mobile sensing platform for real-world applications,”
Mobile Networks and Applications, vol. 18, no. 1, pp.
60–80, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s11036-012-0422-y

[3] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow,
C. Longworth, and A. Aucinas, “Emotionsense: A mobile
phones based adaptive platform for experimental social
psychology research,” in Proceedings of the 12th ACM
International Conference on Ubiquitous Computing, ser.
UbiComp ’10. New York, NY, USA: ACM, 2010, pp.
281–290. [Online]. Available: http://doi.acm.org/10.1145/
1864349.1864393

[4] N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland,
“Social fmri: Investigating and shaping social mechanisms
in the real world,” Pervasive and Mobile Computing,
vol. 7, no. 6, pp. 643 – 659, 2011, the Ninth
Annual {IEEE} International Conference on Pervasive
Computing and Communications (PerCom 2011). [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S1574119211001246

[5] D. Trossen and D. Pavel, Mobile Wireless Middleware,
Operating Systems, and Applications: 5th International
Conference, Mobilware 2012, Berlin, Germany, November
13-14, 2012, Revised Selected Papers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, ch. AIRS: A Mobile
Sensing Platform for Lifestyle Management Research
and Applications, pp. 1–15. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-36660-4 1

[6] K. Katevas, H. Haddadi, and L. Tokarchuk, “Poster:
Sensingkit: A multi-platform mobile sensing framework
for large-scale experiments,” in Proceedings of the 20th
Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’14. New York, NY,
USA: ACM, 2014, pp. 375–378. [Online]. Available:
http://doi.acm.org/10.1145/2639108.2642910

[7] K. Katevas, H. Haddadi, L. Tokarchuk, and R. G.
Clegg, “Walking in sync: Two is company, three’s a
crowd,” in Proceedings of the 2Nd Workshop on Workshop
on Physical Analytics, ser. WPA ’15. New York,
NY, USA: ACM, 2015, pp. 25–29. [Online]. Available:
http://doi.acm.org/10.1145/2753497.2753502

[8] H. Haddadi, F. Ofli, Y. Mejova, I. Weber, and J. Srivas-
tava, “360-degree quantified self,” in Healthcare Informatics
(ICHI), 2015 International Conference on, Oct 2015, pp.
587–592.

http://www.sensingkit.org
http://dx.doi.org/10.1007/s11036-012-0422-y
http://dx.doi.org/10.1007/s11036-012-0422-y
http://doi.acm.org/10.1145/1864349.1864393
http://doi.acm.org/10.1145/1864349.1864393
http://www.sciencedirect.com/science/article/pii/S1574119211001246
http://www.sciencedirect.com/science/article/pii/S1574119211001246
http://dx.doi.org/10.1007/978-3-642-36660-4_1
http://dx.doi.org/10.1007/978-3-642-36660-4_1
http://doi.acm.org/10.1145/2639108.2642910
http://doi.acm.org/10.1145/2753497.2753502

