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Abstract 
This paper investigates two different approaches to 
learning using an agent electronic marketplace as test bed. 
The types of learning considered in this paper include the 
temporal difference (TD) learning algorithm Sarsa, and 
two new fuzzified versions of this algorithm, FQ Sarsa 
and Fuzzy Sarsa. We implement the three learning 
algorithms in an agent test bed in order to determine their 
usefulness in the context of an electronic marketplace. 
We present the results of various tests demonstrating that 
the Fuzzy Sarsa algorithm, while having the smallest 
state space, is also the more effective method of learning. 
 
Keywords: Fuzzy logic, Reinforcement Learning, Agent 
Systems. 

1. Introduction 
Over the last few years there has been continued 

interest in developing systems based on autonomous 
agents. These systems often have complex and dynamic 
environments where fixed or stationary strategy agents 
have difficulty competing because of their inflexibility. 
Furthermore, fixed strategy agents become increasingly 
difficult to manage as the range of required agent 
behaviors multiplies. Therefore, it has become important 
that agents are capable of learning about and adapting to 
their environment. Learning agents reason about their 
surroundings by utilizing an online learning method such 
as one of those offered by the family of algorithms 
available in reinforcement learning [1]. These types of 
agents typically do better and need less supervision than 
those that do not learn. 

A further specialization of self adapting agents is 
presented in the areas of agent coevolution and agent 
modelling. These areas focus on the possibility that a 
learning agent may be able to gain added benefit from 
observing and thus predicting the behaviour of the other 
agents in its environment. There have been several 
attempts to address this problem including methods based 
on game theory, such as the recursive modelling method 

algorithm (RMM) [2] and Vidal’s extended framework 
[3]. Both these methods make the assumption of 
knowledge of other’s value functions, and are also 
computationally very complex. Modelling techniques 
based on an agent’s knowledge of another agent’s value 
functions are difficult in many competitive environments. 
One approach that does make this assumption is a 
method of modelling suggested by genetics, namely 
coevolution. [4]. Coevolution allows a learner to evolve 
in response to new information. In other words, if a 
learner in some environment changes its strategy, a 
coevolutonary learner would observe that change, and 
evolve in response to it. 

Reinforcement learning does not immediately present a 
solution for providing agent coevolution, as the size of 
the state space an agent must reason about becomes 
computationally too large in even moderately sized 
problem domains. Specifically there has been significant 
work using linear functional approximation [1], 
particularly in association with Tile Coding [5]. Another 
possible approach to the state space explosion problem is 
favoured by the control systems community. This 
approach is derived from fuzzy set theory. A fuzzy set is 
a mapping from a set of real numbers to a set of symbolic 
labels. A fuzzy state consists of a set of symbolic labels, 
to which a discrete number can be mapped. The basic 
principle of fuzzifying reinforcement learning is to utilise 
fuzzy sets in state representation. In this manner, we can 
represent many states with only a few fuzzy states. There 
have been several algorithms that utilise this idea and are 
presented as fuzzy reinforcement learning [6, 7, 8]. This 
approach has reported favourable results, however 
algorithms presented are off-policy algorithms, which has 
been shown to diverge with function approximation [9].  

This paper presents an analysis of two fuzzy temporal 
difference (TD) algorithms. It compares implementations 
of both fuzzy TD algorithms with their founding 
algorithm, the TD reinforcement learning algorithm Sarsa. 
The first part of this paper reviews the Sarsa algorithm 
and presents the two new fuzzy reinforcement learning 
algorithms; FQ-Sarsa, a fuzzy learning accelerator for 
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Sarsa learning, and Fuzzy Sarsa, a fuzzy reinforcement 
learner using the framework presented by Bonarini. 
Finally, we present the results of a variety of different 
tests conducted on the three algorithms in an agent 
marketplace testbed. 

2. Learning Algorithms 
In the following sections, we briefly present the three 

implemented learning algorithms, Sarsa, FQ Sarsa and 
Fuzzy Sarsa. We revisit the Sarsa algorithm, discussing 
state representation in using Fuzzy set theory 
terminology. We follow that by presenting FQ Sarsa, a 
reduced state space algorithm that utilizes only fuzzy 
states in its fuzzification. Finally, we supply the full 
fuzzy Sarsa algorithm, Fuzzy Sarsa, an on-policy fuzzy 
leaner which utilizes the full fuzzification of fuzzy states 
and actions.  

Sarsa 
The general principle of the Sarsa algorithm can be 

summarized best by its name: State, Action, Reward, 
State, Action. In Sarsa, an agent starts in a given state and 
executes an action. After the action, the agent transitions 
to a new state and receives a reward based on the value of 
that new state. A state consists of a set of discrete or crisp 
values that represent its current circumstance. Figure 1 
illustrates potential states for a marketplace agent. In this 
case, these values are the amount of money left, and the 
number of auctions remaining.  

  

State Money_Left Auctions_Left 
S1 12 3 
S2 5 1 

  

Figure 1: State (Crisp State) Representation  

An agent recognizes the state it is currently in (say 
state S1), and executes some action. This action causes a 
translation to another state. The Sarsa algorithm attempts 
to learn the value, or Q-Value, of a state-action pair- 
Q(s,a). For the example state S1 in Figure 1 there would 
be several entries corresponding to the state and all 
available actions from that state. If the available actions 
are bid 8, bid 6, and bid 4, our entries for S1 become:  

 State Action 
Money_Left Auctions_Left Bid 

12 3 8 
12 3 6 
12 3 4 

  

Figure 2: State action (crisp) pairs. 

Executing an action from S1, results in the agent 
moving into a new state. As with all reinforcement style 
algorithms, there must be a trade off between exploration 
and exploitation. An exploratory action or exploiting 
action is chosen as a result of the current policy. One type 
of selection policy is the ε greedy selection policy. This 
selection policy operates on the simple guideline of 
choosing the most optimal action based on the current 
known rewards or Q-values for all possible actions. The 
agent chooses which action to take based on maximising 

its reward. For every selection there is some probability ε 
that rather than choosing the optimal greedy action, the 
algorithm will choose randomly to explore other actions 
in the hope that they may lead to a more optimal solution. 
After an agent has executed an action in a particular state, 
the agent receives a reward based on whether or not they 
have achieved their objective. Sarsa is an on-policy 
algorithm. This means that the learning occurs only from 
the experience of the policy actually being followed. An 
on-policy learner selects an action, receives a reward and 
observes the new state. Full details on the Sarsa 
algorithm are provided by Sutton and Barto[1].  

FQ Sarsa 
The FQ Sarsa algorithm is based on the Sarsa 

algorithm. Essentially, it reduces the state space by 
storing the state representation in fuzzy sets. In all other 
respects, it behaves exactly like the Sarsa. The algorithm 
does not consider fuzzy actions or goal states, leaving 
these in their original crisp representation and thus cannot 
be considered a truly fuzzy algorithm. In this approach, a 
crisp state s matches a set of fuzzy states and these fuzzy 
states are paired with crisp action values. To determine 
the fuzzy state, a mapping from the set of real numbers 
representing the current state to a set of symbolic state 
labels is created. Consider the world descriptor 
Money_Left from the states described Figure 1.  

The value of Money_Left in a crisp state consists of a 
discrete number, say ML(x), x∈Z  = [0..15]. However, in 
a fuzzy state, the same value x maps to one or more of 
the fuzzy labels associated with Money_Left = 
[Lots_Money, Little_Money]. X’s degree of belonging to 
any particular fuzzy label is defined by the membership 
function (µ) associated with the fuzzy set Money_Left. 
So for example, the µMoney_Left might be described as: 
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Figure 3: Membership function of Money_Left  

The crisp values are then fuzzified using these 
membership functions. Each crisp value will belong to 
some degree, to one or more fuzzy set labels. In Figure 1, 
the fuzzification of Money LeftS1 = 12 results in 
µLots_Money (12) = 0.87 and µLittle_Money (12) = 0.13. To 
fuzzify a crisp state, the membership of each state item is 
fuzzified, and, typically, the AND is calculated to obtain 
the state’s membership or degree of matching. In the case 
of state S1 of Figure 1, crisp state S1 belongs to fuzzy 
states Ŝ1b and Ŝ1d with membership 0.87 and 0.13 
respectively. All possible membership calculations for S1 
are depicted in Figure 4. 
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Fuzzy 
 State 

Money Left µMoney  

Left 
Auctions Left µAuctions 

Left 
µS1 

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0 
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87 
Ŝ1c Little_Money 0.13 Few_Auctions 0 0 
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13 

 

Figure 4: Fuzzification of Crisp State S1 

In FQ Sarsa, the actions are not fuzzified. As a result, 
the selection mechanism operates greedily rather than 
utilising any sort of fuzzy calculation mechanism, such as 
the centre of mass approach presented in the next 
algorithm. At any given time t, the action that is selected 
is the best action (the one with the highest FQ value) for 
the most fit fuzzy state (max µ(ŝt), where µ is the degree 
of matching of crisp state s to fuzzy state ŝ).  

Rather than take the max of future rewards, we replace 
it with the FQ value of the new state action pair reached 
by applying the current policy - . We choose a),ˆ( tt asFQ t 
using the policy derived from FQ. In other 
words, , is the state with the highest degree of 
matching (max µ(ŝ

),ˆ( tt asFQ

t)) and the action chosen follows the 
current policy (i.e. ε-greedy). We follow Berenji’s 
example and take the fuzzy AND (or minimum) of 

and µ(ŝ),ˆ( tt asFQ t).  

All Q(s,a) values initialised (to 0 in our case). 
Repeat for each episode (or auction game){ 
Initialize ŝt (start state for the auction 
game). 

 Choose at from ŝt using ε greedy policy. 
 Repeat for each step(auction) in the  
                  episode(auction game){ 
  Take action at, observe r and ŝt+1  
  Choose at+1 from ŝt+1 using ε greedy policy  

    += −−−− ),ˆ(),ˆ( 1111 tttt asFQasFQ
         )),ˆ()ˆ()^,ˆ(( 11 −−−+ ttttt asFQsasFQr µλα  

ŝt = ŝt+1, at = at+1 

 } 
} 

Figure 5: FQ Sarsa Algorithm 

Fuzzy Sarsa 
The FQ Sarsa algorithm presented above does not 

utilise fuzzy principles to combine actions, it only selects 
them. This approach is problematic in that essentially the 
FQ Sarsa algorithm only concentrates on reducing the 
state space and is not capable of fuzzy rule interaction. 
To that effect, we now examine the Fuzzy Q Learning 
algorithm presented by Bonarini and extend it in order to 
implement an on-policy learner. 

Fuzzy Sarsa uses fuzzy representation of both states 
and actions. Its state/action entries do not include crisp 
actions like FQ Sarsa. Figure 6 illustrates the fully fuzzy 
state/ action pair used by the Fuzzy Sarsa algorithm. The 
degree of matching is still based on the fuzzy state, 
however membership functions for the fuzzification and 
defuzzification of fuzzy actions are now also required.  

 Fuzzy State Fuzzy Action 
Money Left Auctions Left Bid 
Lots_Money Many_Auctions Bid_High 
Lots_Money Many_Auctions Bid_Low  

Figure 6: Fuzzy state action pairs 

For example, Bid_High might defuzzify to the crisp 
action Bid 8. This type of fuzzy state action pair is 
referred to as a fuzzy rule where the fuzzy state 
corresponds to the antecedent of the rule and the fuzzy 
action proposed is the consequent. All fuzzy rules have a 
strength associated with them. It is this strength (FQ 
value) that most fuzzy reinforcement algorithms attempt 
to learn. In the action selection portion of a system, if a 
crisp state s matches a sub-populations’ antecedent, the 
rule that is chosen is the rule with the highest strength 
value. However, since a crisp state s might match a 
number of fuzzy states (set ) as seen in Figure 4 
(Both Ŝ1

)(sFS
b and Ŝ1d match the fuzzy state S1), a method is 

needed in order to determine what action to take when all 
rules could be proposing different actions. For all 

)(ˆ sFSs∈ , there will be at least one matching fuzzy state 
action pair, or fuzzy rule (r). The action proposed for 
each ŝ, will be the greedy action (highest QS-value) 
proposed by the fuzzy rule. The final action proposed, is 
a weighted average of the actions proposed by each rule 
triggered. These actions are weighted in terms the degree 
of matching of the crisp state s, with the antecedent of the 
rule. The weighted average is computed using the centre 
of mass approach:  

∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

µ

µ
        (1) 

where n is the number of fuzzy states matching crisp 
state s, and  is the best action (having been de-
fuzzified) proposed by any rule matching ŝ

isa ˆ

i. Any fuzzy 
state with membership > 0 is considered in the action 
calculation. 

  Fuzzy State Fuzzy Action   
µ  Money Left Auctions Left Bid  FQ(ŝ,â) 

 Lots_Money Many_Auctions Bid_High  0.4 0.7 
 Lots_Money Many_Auctions Bid_Low  0.1 
 Little_Money Few_Auctions Bid_High  0.2 0.4 
 Little_Money Few_Auctions Bid_Low  0.6 

 

Figure 7: Fuzzy state action pairs 
Consider the crisp state s, which matches the two 

fuzzy states [Lots_Money, Many_Auctions] with degree 
0.7 and [Little_Money, Few_Auctions] with degree 0.4. 
Each of these two fuzzy states has 2 rules associated with 
them. For the state [Lots_Money, Many_Auctions], the 
greedy action will be to Bid_High, since that rule has the 
highest FQ(ŝ, â) value. Similarly for the state 
[Little_Money, Few_Auctions], Bid_Low will be 
selected. The fuzzy actions are now defuzzified to obtain 
a crisp output. Bid_High is translated as bid 8 and 
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Bid_Low as bid 4. Thus the actual action taken is 
calculated as follows: 

( ) ( )( ) 5.6
)4.07.0(

4*4.08*7.0
=

+
+

=a  

For Fuzzy Sarsa, the Q value update formula is 
modified as follows: 

+= −−−− )ˆ,ˆ()ˆ,ˆ( 1111
i
t

i
t

i
t

i
t asFQasFQ       (2) 
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where FQ values are the value of being in of fuzzy 
state and suggesting a fuzzy action, and is the 
fuzzification factor or the degree of belonging (µ) of the 
crisp state  to the fuzzy state . This is calculated 
as: 

i
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ts 1ˆ −

∑
=

−

−−
=

ni
i

s
as

i
t

i
t

i
t

..1

)ˆ(
)ˆ,ˆ(

1

11 µ

µ
ξ .        (3) 

We also have used  rather than i
t

i
t as 11 ˆ,ˆ −− r , since the 

current fuzzy state and suggested action is the definition 
of a fuzzy rule and r is already used in reference to the 
reward. In Q-learning, Q is updated using the largest 
possible reward (or reinforcement) from the next state, 
whereas in Sarsa, Q is updated with the value of the 
actual next state action pair as defined by the current 
policy. The change in the future contributions section to

 
 
is again a result of the difference 

between Q-Learning and Sarsa. Rather than take the max 
of future rewards, we sum all rewards for all fuzzy states 
actions and multiply by the fuzzification factor. This is 
done for all FQ values where the fuzzy state has some 
degree of matching to the next crisp state s, and the 
suggested action  is the action that would be applied 
using the current policy.  

∑
∀i

i
ii asFQ ξγ )ˆ,ˆ(

j
tŝ

j
tâ

For these experiments we elected to ε-greedy action 
selection policy. However, it is not immediately clear 
how the algorithm should proceed in the exploratory case. 
In the crisp version of Sarsa, the exploratory action is 
chosen, say bid 8, and then the state action pair 
corresponding to the current state and bid 8 is used 
directly in learning. As discussed earlier, in fuzzy 
learning our crisp state matches n fuzzy states. Therefore, 
there are two possible ways of making an exploratory 
move. The first way, is that for each match made, a 
random move is generated and then the centre of mass of 
all the random moves is calculated to determine the 
actual action. The second way is to instead make a 
random move and consider the set of state/action pairs to 
be updated the set of all matching fuzzy state/action pairs 
(ŝt, ât), where ât is the fuzzified crisp action, bid 8. Since 
we are trying to learn the specific action required with 
regards to the total set of matching fuzzy states, we elect 
to use the second method of exploratory action selection. 
Although only empirically tested, early experiments 
using both of these two methods indicated that the first 
method is tends cause instabilities in convergence. The 
remainder of fuzzy action selection is relatively 
straightforward: If a greedy action is taken, the algorithm 
observes the results and updates all fuzzy state/action 

pairs that contributed to the selection of ât. For example, 
in the random case if ŝ1a, ŝ1b match our state and we 
randomly choose to do â3, the algorithm updates (ŝ1a, 
â3),(ŝ1b, â3). If however, we chose the greedy action, then 
we would calculate the centre of mass of the actions 
proposed by ŝ1a, ŝ1b. Suppose ŝ1a proposed â1, and ŝ1b 
proposed â3 and that the centre of mass calculation 
returned â2. The pairs that are updated in the greedy case 
are the contributing pairs, ie. (ŝ1a, â1)(ŝ1b, â3). After that 
is completed, the world is in a new state, and the 
algorithm repeats the above process for the new fuzzy 
state(s). The Fuzzy Sarsa algorithm [10] is presented as:  

All Q(s,a) values initialised (to 0 in our case). 
Repeat for each episode (or auction game){ 
Initialize ŝt(start state for the auction game). 
Choose ât from ŝt by calculating the 
centre of mass using all ŝt that match 
crisp s and ât following ε greedy 
selection policy. 

Repeat for each step(auction) in the  
episode(auction game){ 
Take action ât, observe r and ŝt+1  
Choose ât+1 from ŝt+1 using ε greedy selection 
policy for all ŝt+1 match st+1. 

iiii +=−− )ˆ,ˆ( 11 tt asFQ
         −− )ˆ,ˆ( tt asFQ 11

 
 

∑
∀

−−−−+
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ(( 111)ˆ,ˆ( )ˆ,ˆ(11
ξγαξ

  ŝt = ŝt+1, ât = ât+1 

} 
} 

Figure 8: Fuzzy Sarsa Algorithm 

3. An Agent Marketplace Test Bed 
The marketplace used for this experiment is a first 

price sealed bid auction where the task for any agent is to 
win some number of items (i) during (n) auctions. Time 
is broken up into equal periods, each termed an episode. 
During each episode, a certain quantity q of items is 
available in n auctions. The algorithms that are 
implemented in this experiment attempt to learn a 
strategy over the episode of auctions. In the following 
discussion the terms auction and auction game have 
particular meaning. An auction refers to one event of 
auctioning an item within an episode, whereas an auction 
game refers to the set of auctions that take place during 
an episode.  

In previously published work [10], we indicated that 
the algorithm Fuzzy Sarsa was the more powerful 
algorithm. However, this work did not go far enough in 
analysing the performance of the three learning 
algorithms. It only investigated the algorithms under a 
single learning situation. To determine whether Fuzzy 
Sarsa actually provides a better solution to Sarsa, we 
have implemented all three algorithms; Sarsa, FQ-Sarsa 
and Fuzzy Sarsa in an agent marketplace and conducted 
expanded tests with the three learning algorithms. 

In the case of the Sarsa algorithm, we consider that the 
state of the world consists of 3 major categories: 
Money_Left, Auctions_Left and Items_Left. Actions 
included bids ranging from the offer price to the agent’s 
maximum price and abstaining. Fuzzy States consisted of 
the same state categories as Sarsa. However, rather than 
storing the crisp representation of the state, states are 
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stored as fuzzy labels rather than discrete values. Unlike 
the work we previously presented, we elected to use three 
labels, since work currently being conducted on the 
efficacy of various different numbers of label 
combinations indicates that three labels is the most 
effective in this situation. Bonarini has indicated that 
additive membership functions, Σi =1 to n  µi(x) = 1, are 
more robust under learning, thus the membership 
functions used here are triangular (rather than trapezoidal, 
etc), since triangular membership functions are popular 
and easy to design additive functions with. The general 
membership function used is given in Figure 9. This 
function is applied to the fuzzification of the state 
parameters [Money_Left, Auctions_Left, Items_Left] and, 
for Fuzzy Sarsa, Bid_Price. 
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Figure 9: Fuzzy Membership Functions for the Test bed 

In all tests conducted, to maximise exploration at the 
beginning of the simulation, an annealing factor is 
applied to ε and α until they reach a predefined minima 
(0.01). γ is set to 0.1 and the rewards used in this 
simulation were based on overall achievement of the 
agents’ goal. They can be summarized as follows: 

POSITIVE REWARD = )(
0=t

t

M
MI   

NEGATIVE REWARD = NeededI−  

DEFAULT REWARD  =  0
Where I  is the number of items, M is the amount of 

money at time t . The agent receives a positive reward at 
the end of the episode if it has achieved its goal (bought 
the required items) and a negative reward if it has not. At 
all other non-terminating state-actions, the agent receives 
the default reward. All tables are initialised to 0. 
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Figure 10: Large Game – Fixed Strategy Test 

Since we altered the fuzzification parameters, our 
initial experiment which is a large scale test against a 
fixed strategy agent, is intended to determine how these 
changes affect the results presented in [10]. In this test, 
each agent is required to purchase 10 items from 20 
auctions. Each agent is given enough money to purchase 
all 10 items at their maximum price. In all cases, the 
results presented represent an average over 10 games.  

Figure 10 presents the results of our learning agents 
against a fixed strategy agent. As expected, the Fuzzy 
Sarsa agent finds a more optimal solution than either the 
FQ Sarsa Agent or the Sarsa Agent. In comparison with 
the results presented by Tokarchuk, the change in the 
number of fuzzification labels has indeed improved the 
performance of both the FQ Sarsa agent and the Fuzzy 
Sarsa agent. In fact, the FQ Sarsa agent seems to perform 
as well as the Fuzzy Sarsa agent. In order to determine 
the flexibility of the learning agents, they were next put 
into direct competition with each other. For this test, we 
kept all parameters (auction size, start money, rewards, 
etc) the same as in the first test. Each learning algorithm 
was tested against the other competitive algorithms in 
turn. 

0 2 4 6 8 10 12

Fuzzy Sarsa
vs Sarsa

Fuzzy Sarsa
vs FQ Sarsa

Sarsa vs FQ
Sarsa 

End Price
Sarsa Fuzzy Sarsa FQ Sarsa

 

Figure 11: Large Game - Direct Competition Test 

As shown in Figure 11, given the same learning 
parameters, Fuzzy Sarsa achieves a more optimal price 
than its competitors when in direct competition with 
either the Sarsa algorithm or the FQ Sarsa algorithm. The 
reason the Fuzzy Sarsa agent in the Fuzzy Sarsa vs. Sarsa 
game achieves a better price than that of the agent in the 
Fuzzy Sarsa vs. FQ Sarsa game is explained by Sarsa’s 
inability to explore large state spaces sufficiently under 
these conditions. FQ Sarsa, because of its reduced state 
space, is more able to react to the Fuzzy Sarsa algorithm. 
In the Sarsa vs. FQ Sarsa test, it is interesting to note that 
Sarsa and its reduced state version, FQ Sarsa achieve an 
almost identical end price. While this result may initially 
seem encouraging for FQ Sarsa algorithm, more can be 
learned by examining the convergence data from the 
Sarsa vs. FQ Sarsa game as presented in Figure 12. 
Convergence, in this case, is measured as the ability of an 
agent to achieve the state goals of the game, to win 10 
items from 20 auctions. Although Sarsa and FQ Sarsa 
both achieve equally good prices, FQ Sarsa is more prone 
to taking a risk with its bidding and thus failing to meet 
its stated objective.  
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Figure 12: Large Game Convergence – Sarsa vs FQ Sarsa 

In our final test, we put all 3 learning algorithms into 
the same game. In this test, each agent must still win 10 
items, however in order to provide the same framework 
as the previous test, 30 auctions are now available.  
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Figure 13: Sarsa vs FQ Sarsa vs Fuzzy Sarsa 

In this final test, it is clear that Fuzzy Sarsa once again 
is the most optimal and flexible of the three algorithms. 
When competing directly with either of the other two 
algorithms it is able to consistently achieve a better price 
with minimal variability in end price. These results are 
significant because they demonstrate Fuzzy Sarsa’s 
ability to learn effectively against a moving target, the 
other two learning agents. Under these settings the 
generalisation powers of Fuzzy Sarsa enable it to quickly 
take advantage of the current market conditions. 
Although not presented here for the sake of brevity, 
Fuzzy Sarsa experiences none of the convergence 
difficulties that FQ Sarsa encounters, as demonstrated in 
Figure 12. 

4. Conclusions and Future Work 
We have presented two fuzzy reinforcement learning 

algorithms. We have found that in relatively large scale 
state space, a pure fuzzy logic approach to reinforcement 
learning as presented in Fuzzy Sarsa allows for a more 
robust and correct solution than that presented by either 
Sarsa or than the reduced state space algorithm FQ Sarsa. 

This is a significant result since Fuzzy Sarsa works with a 
significantly smaller state space than Sarsa.  

We intend to analyse this algorithm with respect to 
other forms of linear approximation algorithms 
specifically with SMDP Sarsa(λ) with linear tile-coding 
function approximation presented in [5]. After this has 
been completed we plan to test the algorithm against the 
tile coding approach in coevolutionary scenario.  

The primary weakness we expect to see in future 
comparisons is a degradation of performance in 
comparison to tile coding in domains where the state 
space is described by many state variables. This 
degradation is expected because of the explosion in 
number of possible matching fuzzy state/action pairs. In 
tile coding, the number of features triggered stays the 
same irrespective of the number of state variables. 
However, since Fuzzy Sarsa generalises around 
membership boundaries, it is expected that it will be able 
to adapt to other learners in a coevolutionary scenario 
quicker than tile coding.  
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