

Fuzzy Sarsa: An approach to linear function approximation

in reinforcement learning

L. Tokarchuk, J. Bigham, and L. Cuthbert
Electronic Engineering, Queen Mary, University of London,

Mile End Road, London, E1 4NS
[l.n.tokarchuk,j.bigham, laurie.cuthbert]@elec.qmul.ac.uk,

http://www.elec.qmul.ac.uk

Abstract
This paper investigates two different approaches to
learning using an agent electronic marketplace as test bed.
The types of learning considered in this paper include the
temporal difference (TD) learning algorithm Sarsa, and
two new fuzzified versions of this algorithm, FQ Sarsa
and Fuzzy Sarsa. We implement the three learning
algorithms in an agent test bed in order to determine their
usefulness in the context of an electronic marketplace.
We present the results of various tests demonstrating that
the Fuzzy Sarsa algorithm, while having the smallest
state space, is also the more effective method of learning.

Keywords: Fuzzy logic, Reinforcement Learning, Agent
Systems.

1. Introduction
Over the last few years there has been continued

interest in developing systems based on autonomous
agents. These systems often have complex and dynamic
environments where fixed or stationary strategy agents
have difficulty competing because of their inflexibility.
Furthermore, fixed strategy agents become increasingly
difficult to manage as the range of required agent
behaviors multiplies. Therefore, it has become important
that agents are capable of learning about and adapting to
their environment. Learning agents reason about their
surroundings by utilizing an online learning method such
as one of those offered by the family of algorithms
available in reinforcement learning [1]. These types of
agents typically do better and need less supervision than
those that do not learn.

A further specialization of self adapting agents is
presented in the areas of agent coevolution and agent
modelling. These areas focus on the possibility that a
learning agent may be able to gain added benefit from
observing and thus predicting the behaviour of the other
agents in its environment. There have been several
attempts to address this problem including methods based
on game theory, such as the recursive modelling method

algorithm (RMM) [2] and Vidal’s extended framework
[3]. Both these methods make the assumption of
knowledge of other’s value functions, and are also
computationally very complex. Modelling techniques
based on an agent’s knowledge of another agent’s value
functions are difficult in many competitive environments.
One approach that does make this assumption is a
method of modelling suggested by genetics, namely
coevolution. [4]. Coevolution allows a learner to evolve
in response to new information. In other words, if a
learner in some environment changes its strategy, a
coevolutonary learner would observe that change, and
evolve in response to it.

Reinforcement learning does not immediately present a
solution for providing agent coevolution, as the size of
the state space an agent must reason about becomes
computationally too large in even moderately sized
problem domains. Specifically there has been significant
work using linear functional approximation [1],
particularly in association with Tile Coding [5]. Another
possible approach to the state space explosion problem is
favoured by the control systems community. This
approach is derived from fuzzy set theory. A fuzzy set is
a mapping from a set of real numbers to a set of symbolic
labels. A fuzzy state consists of a set of symbolic labels,
to which a discrete number can be mapped. The basic
principle of fuzzifying reinforcement learning is to utilise
fuzzy sets in state representation. In this manner, we can
represent many states with only a few fuzzy states. There
have been several algorithms that utilise this idea and are
presented as fuzzy reinforcement learning [6, 7, 8]. This
approach has reported favourable results, however
algorithms presented are off-policy algorithms, which has
been shown to diverge with function approximation [9].

This paper presents an analysis of two fuzzy temporal
difference (TD) algorithms. It compares implementations
of both fuzzy TD algorithms with their founding
algorithm, the TD reinforcement learning algorithm Sarsa.
The first part of this paper reviews the Sarsa algorithm
and presents the two new fuzzy reinforcement learning
algorithms; FQ-Sarsa, a fuzzy learning accelerator for

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

http://www.elec.qmul.ac.uk/

Sarsa learning, and Fuzzy Sarsa, a fuzzy reinforcement
learner using the framework presented by Bonarini.
Finally, we present the results of a variety of different
tests conducted on the three algorithms in an agent
marketplace testbed.

2. Learning Algorithms
In the following sections, we briefly present the three

implemented learning algorithms, Sarsa, FQ Sarsa and
Fuzzy Sarsa. We revisit the Sarsa algorithm, discussing
state representation in using Fuzzy set theory
terminology. We follow that by presenting FQ Sarsa, a
reduced state space algorithm that utilizes only fuzzy
states in its fuzzification. Finally, we supply the full
fuzzy Sarsa algorithm, Fuzzy Sarsa, an on-policy fuzzy
leaner which utilizes the full fuzzification of fuzzy states
and actions.

Sarsa
The general principle of the Sarsa algorithm can be

summarized best by its name: State, Action, Reward,
State, Action. In Sarsa, an agent starts in a given state and
executes an action. After the action, the agent transitions
to a new state and receives a reward based on the value of
that new state. A state consists of a set of discrete or crisp
values that represent its current circumstance. Figure 1
illustrates potential states for a marketplace agent. In this
case, these values are the amount of money left, and the
number of auctions remaining.

State Money_Left Auctions_Left
S1 12 3
S2 5 1

Figure 1: State (Crisp State) Representation

An agent recognizes the state it is currently in (say
state S1), and executes some action. This action causes a
translation to another state. The Sarsa algorithm attempts
to learn the value, or Q-Value, of a state-action pair-
Q(s,a). For the example state S1 in Figure 1 there would
be several entries corresponding to the state and all
available actions from that state. If the available actions
are bid 8, bid 6, and bid 4, our entries for S1 become:

 State Action
Money_Left Auctions_Left Bid

12 3 8
12 3 6
12 3 4

Figure 2: State action (crisp) pairs.

Executing an action from S1, results in the agent
moving into a new state. As with all reinforcement style
algorithms, there must be a trade off between exploration
and exploitation. An exploratory action or exploiting
action is chosen as a result of the current policy. One type
of selection policy is the ε greedy selection policy. This
selection policy operates on the simple guideline of
choosing the most optimal action based on the current
known rewards or Q-values for all possible actions. The
agent chooses which action to take based on maximising

its reward. For every selection there is some probability ε
that rather than choosing the optimal greedy action, the
algorithm will choose randomly to explore other actions
in the hope that they may lead to a more optimal solution.
After an agent has executed an action in a particular state,
the agent receives a reward based on whether or not they
have achieved their objective. Sarsa is an on-policy
algorithm. This means that the learning occurs only from
the experience of the policy actually being followed. An
on-policy learner selects an action, receives a reward and
observes the new state. Full details on the Sarsa
algorithm are provided by Sutton and Barto[1].

FQ Sarsa
The FQ Sarsa algorithm is based on the Sarsa

algorithm. Essentially, it reduces the state space by
storing the state representation in fuzzy sets. In all other
respects, it behaves exactly like the Sarsa. The algorithm
does not consider fuzzy actions or goal states, leaving
these in their original crisp representation and thus cannot
be considered a truly fuzzy algorithm. In this approach, a
crisp state s matches a set of fuzzy states and these fuzzy
states are paired with crisp action values. To determine
the fuzzy state, a mapping from the set of real numbers
representing the current state to a set of symbolic state
labels is created. Consider the world descriptor
Money_Left from the states described Figure 1.

The value of Money_Left in a crisp state consists of a
discrete number, say ML(x), x∈Z = [0..15]. However, in
a fuzzy state, the same value x maps to one or more of
the fuzzy labels associated with Money_Left =
[Lots_Money, Little_Money]. X’s degree of belonging to
any particular fuzzy label is defined by the membership
function (µ) associated with the fuzzy set Money_Left.
So for example, the µMoney_Left might be described as:

0

0.2

0.4

0.6

0.8

1

0 5 10 15
Money Left

M
em

be
rs

hi
p

 Little_Money Lots_Money

Figure 3: Membership function of Money_Left

The crisp values are then fuzzified using these
membership functions. Each crisp value will belong to
some degree, to one or more fuzzy set labels. In Figure 1,
the fuzzification of Money LeftS1 = 12 results in
µLots_Money (12) = 0.87 and µLittle_Money (12) = 0.13. To
fuzzify a crisp state, the membership of each state item is
fuzzified, and, typically, the AND is calculated to obtain
the state’s membership or degree of matching. In the case
of state S1 of Figure 1, crisp state S1 belongs to fuzzy
states Ŝ1b and Ŝ1d with membership 0.87 and 0.13
respectively. All possible membership calculations for S1
are depicted in Figure 4.

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

Fuzzy
 State

Money Left µMoney

Left
Auctions Left µAuctions

Left
µS1

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87
Ŝ1c Little_Money 0.13 Few_Auctions 0 0
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13

Figure 4: Fuzzification of Crisp State S1

In FQ Sarsa, the actions are not fuzzified. As a result,
the selection mechanism operates greedily rather than
utilising any sort of fuzzy calculation mechanism, such as
the centre of mass approach presented in the next
algorithm. At any given time t, the action that is selected
is the best action (the one with the highest FQ value) for
the most fit fuzzy state (max µ(ŝt), where µ is the degree
of matching of crisp state s to fuzzy state ŝ).

Rather than take the max of future rewards, we replace
it with the FQ value of the new state action pair reached
by applying the current policy - . We choose a),ˆ(tt asFQ t
using the policy derived from FQ. In other
words, , is the state with the highest degree of
matching (max µ(ŝ

),ˆ(tt asFQ

t)) and the action chosen follows the
current policy (i.e. ε-greedy). We follow Berenji’s
example and take the fuzzy AND (or minimum) of

and µ(ŝ),ˆ(tt asFQ t).

All Q(s,a) values initialised (to 0 in our case).
Repeat for each episode (or auction game){
Initialize ŝt (start state for the auction
game).

 Choose at from ŝt using ε greedy policy.
 Repeat for each step(auction) in the
 episode(auction game){
 Take action at, observe r and ŝt+1
 Choose at+1 from ŝt+1 using ε greedy policy

 += −−−−),ˆ(),ˆ(1111 tttt asFQasFQ
)),ˆ()ˆ()^,ˆ((11 −−−+ ttttt asFQsasFQr µλα

ŝt = ŝt+1, at = at+1

 }
}

Figure 5: FQ Sarsa Algorithm

Fuzzy Sarsa
The FQ Sarsa algorithm presented above does not

utilise fuzzy principles to combine actions, it only selects
them. This approach is problematic in that essentially the
FQ Sarsa algorithm only concentrates on reducing the
state space and is not capable of fuzzy rule interaction.
To that effect, we now examine the Fuzzy Q Learning
algorithm presented by Bonarini and extend it in order to
implement an on-policy learner.

Fuzzy Sarsa uses fuzzy representation of both states
and actions. Its state/action entries do not include crisp
actions like FQ Sarsa. Figure 6 illustrates the fully fuzzy
state/ action pair used by the Fuzzy Sarsa algorithm. The
degree of matching is still based on the fuzzy state,
however membership functions for the fuzzification and
defuzzification of fuzzy actions are now also required.

 Fuzzy State Fuzzy Action
Money Left Auctions Left Bid
Lots_Money Many_Auctions Bid_High
Lots_Money Many_Auctions Bid_Low

Figure 6: Fuzzy state action pairs

For example, Bid_High might defuzzify to the crisp
action Bid 8. This type of fuzzy state action pair is
referred to as a fuzzy rule where the fuzzy state
corresponds to the antecedent of the rule and the fuzzy
action proposed is the consequent. All fuzzy rules have a
strength associated with them. It is this strength (FQ
value) that most fuzzy reinforcement algorithms attempt
to learn. In the action selection portion of a system, if a
crisp state s matches a sub-populations’ antecedent, the
rule that is chosen is the rule with the highest strength
value. However, since a crisp state s might match a
number of fuzzy states (set) as seen in Figure 4
(Both Ŝ1

)(sFS
b and Ŝ1d match the fuzzy state S1), a method is

needed in order to determine what action to take when all
rules could be proposing different actions. For all

)(ˆ sFSs∈ , there will be at least one matching fuzzy state
action pair, or fuzzy rule (r). The action proposed for
each ŝ, will be the greedy action (highest QS-value)
proposed by the fuzzy rule. The final action proposed, is
a weighted average of the actions proposed by each rule
triggered. These actions are weighted in terms the degree
of matching of the crisp state s, with the antecedent of the
rule. The weighted average is computed using the centre
of mass approach:

∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

µ

µ
 (1)

where n is the number of fuzzy states matching crisp
state s, and is the best action (having been de-
fuzzified) proposed by any rule matching ŝ

isa ˆ

i. Any fuzzy
state with membership > 0 is considered in the action
calculation.

 Fuzzy State Fuzzy Action
µ Money Left Auctions Left Bid FQ(ŝ,â)

 Lots_Money Many_Auctions Bid_High 0.4 0.7
 Lots_Money Many_Auctions Bid_Low 0.1
 Little_Money Few_Auctions Bid_High 0.2 0.4
 Little_Money Few_Auctions Bid_Low 0.6

Figure 7: Fuzzy state action pairs
Consider the crisp state s, which matches the two

fuzzy states [Lots_Money, Many_Auctions] with degree
0.7 and [Little_Money, Few_Auctions] with degree 0.4.
Each of these two fuzzy states has 2 rules associated with
them. For the state [Lots_Money, Many_Auctions], the
greedy action will be to Bid_High, since that rule has the
highest FQ(ŝ, â) value. Similarly for the state
[Little_Money, Few_Auctions], Bid_Low will be
selected. The fuzzy actions are now defuzzified to obtain
a crisp output. Bid_High is translated as bid 8 and

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

Bid_Low as bid 4. Thus the actual action taken is
calculated as follows:

() ()() 5.6
)4.07.0(

4*4.08*7.0
=

+
+

=a

For Fuzzy Sarsa, the Q value update formula is
modified as follows:

+= −−−−)ˆ,ˆ()ˆ,ˆ(1111
i
t

i
t

i
t

i
t asFQasFQ (2)

 ∑
∀

−−−−+
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ((111)ˆ,ˆ()ˆ,ˆ(11
ξγαξ

where FQ values are the value of being in of fuzzy
state and suggesting a fuzzy action, and is the
fuzzification factor or the degree of belonging (µ) of the
crisp state to the fuzzy state . This is calculated
as:

i
tc 1−

ξ

1−ts i
ts 1ˆ −

∑
=

−

−−
=

ni
i

s
as

i
t

i
t

i
t

..1

)ˆ(
)ˆ,ˆ(

1

11 µ

µ
ξ . (3)

We also have used rather than i
t

i
t as 11 ˆ,ˆ −− r , since the

current fuzzy state and suggested action is the definition
of a fuzzy rule and r is already used in reference to the
reward. In Q-learning, Q is updated using the largest
possible reward (or reinforcement) from the next state,
whereas in Sarsa, Q is updated with the value of the
actual next state action pair as defined by the current
policy. The change in the future contributions section to

is again a result of the difference

between Q-Learning and Sarsa. Rather than take the max
of future rewards, we sum all rewards for all fuzzy states
actions and multiply by the fuzzification factor. This is
done for all FQ values where the fuzzy state has some
degree of matching to the next crisp state s, and the
suggested action is the action that would be applied
using the current policy.

∑
∀i

i
ii asFQ ξγ)ˆ,ˆ(

j
tŝ

j
tâ

For these experiments we elected to ε-greedy action
selection policy. However, it is not immediately clear
how the algorithm should proceed in the exploratory case.
In the crisp version of Sarsa, the exploratory action is
chosen, say bid 8, and then the state action pair
corresponding to the current state and bid 8 is used
directly in learning. As discussed earlier, in fuzzy
learning our crisp state matches n fuzzy states. Therefore,
there are two possible ways of making an exploratory
move. The first way, is that for each match made, a
random move is generated and then the centre of mass of
all the random moves is calculated to determine the
actual action. The second way is to instead make a
random move and consider the set of state/action pairs to
be updated the set of all matching fuzzy state/action pairs
(ŝt, ât), where ât is the fuzzified crisp action, bid 8. Since
we are trying to learn the specific action required with
regards to the total set of matching fuzzy states, we elect
to use the second method of exploratory action selection.
Although only empirically tested, early experiments
using both of these two methods indicated that the first
method is tends cause instabilities in convergence. The
remainder of fuzzy action selection is relatively
straightforward: If a greedy action is taken, the algorithm
observes the results and updates all fuzzy state/action

pairs that contributed to the selection of ât. For example,
in the random case if ŝ1a, ŝ1b match our state and we
randomly choose to do â3, the algorithm updates (ŝ1a,
â3),(ŝ1b, â3). If however, we chose the greedy action, then
we would calculate the centre of mass of the actions
proposed by ŝ1a, ŝ1b. Suppose ŝ1a proposed â1, and ŝ1b
proposed â3 and that the centre of mass calculation
returned â2. The pairs that are updated in the greedy case
are the contributing pairs, ie. (ŝ1a, â1)(ŝ1b, â3). After that
is completed, the world is in a new state, and the
algorithm repeats the above process for the new fuzzy
state(s). The Fuzzy Sarsa algorithm [10] is presented as:

All Q(s,a) values initialised (to 0 in our case).
Repeat for each episode (or auction game){
Initialize ŝt(start state for the auction game).
Choose ât from ŝt by calculating the
centre of mass using all ŝt that match
crisp s and ât following ε greedy
selection policy.

Repeat for each step(auction) in the
episode(auction game){
Take action ât, observe r and ŝt+1
Choose ât+1 from ŝt+1 using ε greedy selection
policy for all ŝt+1 match st+1.

iiii +=−−)ˆ,ˆ(11 tt asFQ
 −−)ˆ,ˆ(tt asFQ 11

∑
∀

−−−−+
−−

j

i
t

i
tt

j
t

j
ttas asFQasFQr

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ((111)ˆ,ˆ()ˆ,ˆ(11
ξγαξ

 ŝt = ŝt+1, ât = ât+1

}
}

Figure 8: Fuzzy Sarsa Algorithm

3. An Agent Marketplace Test Bed
The marketplace used for this experiment is a first

price sealed bid auction where the task for any agent is to
win some number of items (i) during (n) auctions. Time
is broken up into equal periods, each termed an episode.
During each episode, a certain quantity q of items is
available in n auctions. The algorithms that are
implemented in this experiment attempt to learn a
strategy over the episode of auctions. In the following
discussion the terms auction and auction game have
particular meaning. An auction refers to one event of
auctioning an item within an episode, whereas an auction
game refers to the set of auctions that take place during
an episode.

In previously published work [10], we indicated that
the algorithm Fuzzy Sarsa was the more powerful
algorithm. However, this work did not go far enough in
analysing the performance of the three learning
algorithms. It only investigated the algorithms under a
single learning situation. To determine whether Fuzzy
Sarsa actually provides a better solution to Sarsa, we
have implemented all three algorithms; Sarsa, FQ-Sarsa
and Fuzzy Sarsa in an agent marketplace and conducted
expanded tests with the three learning algorithms.

In the case of the Sarsa algorithm, we consider that the
state of the world consists of 3 major categories:
Money_Left, Auctions_Left and Items_Left. Actions
included bids ranging from the offer price to the agent’s
maximum price and abstaining. Fuzzy States consisted of
the same state categories as Sarsa. However, rather than
storing the crisp representation of the state, states are

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

stored as fuzzy labels rather than discrete values. Unlike
the work we previously presented, we elected to use three
labels, since work currently being conducted on the
efficacy of various different numbers of label
combinations indicates that three labels is the most
effective in this situation. Bonarini has indicated that
additive membership functions, Σi =1 to n µi(x) = 1, are
more robust under learning, thus the membership
functions used here are triangular (rather than trapezoidal,
etc), since triangular membership functions are popular
and easy to design additive functions with. The general
membership function used is given in Figure 9. This
function is applied to the fuzzification of the state
parameters [Money_Left, Auctions_Left, Items_Left] and,
for Fuzzy Sarsa, Bid_Price.

0

0.5

1

0 n
3 Labels

M
em

be
rs

hi
p

`

Zero Some Lots

Figure 9: Fuzzy Membership Functions for the Test bed

In all tests conducted, to maximise exploration at the
beginning of the simulation, an annealing factor is
applied to ε and α until they reach a predefined minima
(0.01). γ is set to 0.1 and the rewards used in this
simulation were based on overall achievement of the
agents’ goal. They can be summarized as follows:

POSITIVE REWARD =)(
0=t

t

M
MI

NEGATIVE REWARD = NeededI−

DEFAULT REWARD = 0
Where I is the number of items, M is the amount of

money at time t . The agent receives a positive reward at
the end of the episode if it has achieved its goal (bought
the required items) and a negative reward if it has not. At
all other non-terminating state-actions, the agent receives
the default reward. All tables are initialised to 0.

9

10

11

12

0 10000Episodes

A
ve

ra
ge

 P
ric

e

Sarsa Fuzzy Sarsa FQ Sarsa

Figure 10: Large Game – Fixed Strategy Test

Since we altered the fuzzification parameters, our
initial experiment which is a large scale test against a
fixed strategy agent, is intended to determine how these
changes affect the results presented in [10]. In this test,
each agent is required to purchase 10 items from 20
auctions. Each agent is given enough money to purchase
all 10 items at their maximum price. In all cases, the
results presented represent an average over 10 games.

Figure 10 presents the results of our learning agents
against a fixed strategy agent. As expected, the Fuzzy
Sarsa agent finds a more optimal solution than either the
FQ Sarsa Agent or the Sarsa Agent. In comparison with
the results presented by Tokarchuk, the change in the
number of fuzzification labels has indeed improved the
performance of both the FQ Sarsa agent and the Fuzzy
Sarsa agent. In fact, the FQ Sarsa agent seems to perform
as well as the Fuzzy Sarsa agent. In order to determine
the flexibility of the learning agents, they were next put
into direct competition with each other. For this test, we
kept all parameters (auction size, start money, rewards,
etc) the same as in the first test. Each learning algorithm
was tested against the other competitive algorithms in
turn.

0 2 4 6 8 10 12

Fuzzy Sarsa
vs Sarsa

Fuzzy Sarsa
vs FQ Sarsa

Sarsa vs FQ
Sarsa

End Price
Sarsa Fuzzy Sarsa FQ Sarsa

Figure 11: Large Game - Direct Competition Test

As shown in Figure 11, given the same learning
parameters, Fuzzy Sarsa achieves a more optimal price
than its competitors when in direct competition with
either the Sarsa algorithm or the FQ Sarsa algorithm. The
reason the Fuzzy Sarsa agent in the Fuzzy Sarsa vs. Sarsa
game achieves a better price than that of the agent in the
Fuzzy Sarsa vs. FQ Sarsa game is explained by Sarsa’s
inability to explore large state spaces sufficiently under
these conditions. FQ Sarsa, because of its reduced state
space, is more able to react to the Fuzzy Sarsa algorithm.
In the Sarsa vs. FQ Sarsa test, it is interesting to note that
Sarsa and its reduced state version, FQ Sarsa achieve an
almost identical end price. While this result may initially
seem encouraging for FQ Sarsa algorithm, more can be
learned by examining the convergence data from the
Sarsa vs. FQ Sarsa game as presented in Figure 12.
Convergence, in this case, is measured as the ability of an
agent to achieve the state goals of the game, to win 10
items from 20 auctions. Although Sarsa and FQ Sarsa
both achieve equally good prices, FQ Sarsa is more prone
to taking a risk with its bidding and thus failing to meet
its stated objective.

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

0

25

50

75

100

0 10000Episodes

W
in

s

Sarsa FQ Sarsa

Figure 12: Large Game Convergence – Sarsa vs FQ Sarsa

In our final test, we put all 3 learning algorithms into
the same game. In this test, each agent must still win 10
items, however in order to provide the same framework
as the previous test, 30 auctions are now available.

7

8

9

10

11

12

13

0 10000Episodes

A
ve

ra
ge

 P
ric

e

Sarsa FQ Sarsa Fuzzy Sarsa

Figure 13: Sarsa vs FQ Sarsa vs Fuzzy Sarsa

In this final test, it is clear that Fuzzy Sarsa once again
is the most optimal and flexible of the three algorithms.
When competing directly with either of the other two
algorithms it is able to consistently achieve a better price
with minimal variability in end price. These results are
significant because they demonstrate Fuzzy Sarsa’s
ability to learn effectively against a moving target, the
other two learning agents. Under these settings the
generalisation powers of Fuzzy Sarsa enable it to quickly
take advantage of the current market conditions.
Although not presented here for the sake of brevity,
Fuzzy Sarsa experiences none of the convergence
difficulties that FQ Sarsa encounters, as demonstrated in
Figure 12.

4. Conclusions and Future Work
We have presented two fuzzy reinforcement learning

algorithms. We have found that in relatively large scale
state space, a pure fuzzy logic approach to reinforcement
learning as presented in Fuzzy Sarsa allows for a more
robust and correct solution than that presented by either
Sarsa or than the reduced state space algorithm FQ Sarsa.

This is a significant result since Fuzzy Sarsa works with a
significantly smaller state space than Sarsa.

We intend to analyse this algorithm with respect to
other forms of linear approximation algorithms
specifically with SMDP Sarsa(λ) with linear tile-coding
function approximation presented in [5]. After this has
been completed we plan to test the algorithm against the
tile coding approach in coevolutionary scenario.

The primary weakness we expect to see in future
comparisons is a degradation of performance in
comparison to tile coding in domains where the state
space is described by many state variables. This
degradation is expected because of the explosion in
number of possible matching fuzzy state/action pairs. In
tile coding, the number of features triggered stays the
same irrespective of the number of state variables.
However, since Fuzzy Sarsa generalises around
membership boundaries, it is expected that it will be able
to adapt to other learners in a coevolutionary scenario
quicker than tile coding.

References
[1] Richard S. Sutton, Andrew Barto, Reinforcement

Learning: An Introduction; MIT Press, Cambridge,
MA, 1998.

 [2] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A
decision-theoretic approach to coordinating multi-
agent interations. In Proc. Int. Joint Conf. on Artif.
Intell., pages 62--68, 1991.

[3] J.M. Vidal and E.H. Durfee, Agents learning about
agents: A framework and analysis; In AAAI-97
Workshop on Multiagent Learning; 1997.

[4] Melanie Mitchell, An Introduction to Genetic
Algorithms, MIT Press, Cambridge, MA, 1998.

[5] Peter Stone, Richard S. Sutton, Gregory Kuhlmann,
Reinforcement Learning for RoboCup-Soccer
Keepaway, Adaptive Behavior, 2005.

[6] Hamid R Berenji, Fuzzy Q-Learning: A new approach
for fuzzy dynamic programming, IEEE World
Congress on Computational Intelligence.,
Proceedings of the Third IEEE Conference on , 26-29
June 1994.

[7] Andrea Bonarini, Delayed Reinforcement, Fuzzy Q-
Learning and Fuzzy Logic Controller, In Herrera, F.,
Verdegay, J. L. (Eds.) Genetic Algorithms and Soft
Computing, (Studies in Fuzziness, 8), Physica-Verlag,
Berlin, D, 447-466, 1996.

[8] Andrea Bonarini, Reinforcement distribution for fuzzy
classifiers: a methodology to extend crisp algorithms,
Proceedings of the IEEE World congress on
Computational Intelligence (WCCI) - Evolutionary
Computation, IEEE Computer Press; Piscataway, NJ;
51-56; 1998.

[9] Christopher J. C. J. Watkins, Learning from Delayed
Rewards, PhD thesis, King’s College, Cambridge,
UK., 1989.

[10] L Tokarchuk, J Bigham, and L Cuthbert, Fuzzy Sarsa:
An approach to fuzzifying Sarsa Learning,
Proceedings of the International Conference on
Computational Intelligence for Modeling, Control and
Automation, 2004

AIML 05 Conference, 19-21 December 2005, CICC, Cairo, Egypt

	Introduction
	Learning Algorithms
	Sarsa
	FQ Sarsa
	Fuzzy Sarsa

	An Agent Marketplace Test Bed
	Conclusions and Future Work
	References

