
A System to Mark Programs Automatically

Ken Ngo-Pham, John Bigham, Julian Rodaway, Laurissa Tokarchuk

Department of Electronic Engineering, Queen Mary

University of London, London, UK

john.bigham@elec.qmul.ac.uk

Abstract
This paper describes a system to automatically mark

student programs. It is a real time examination system

that provides an environment for the compilation and

execution of software and then marks it according to

criteria and solutions provided by the examiner. It has

been designed as a client server system supporting many

simultaneous clients, with a modular structure that

provides flexibility, allowing components to be added for

new courses and kinds of questions without having to

change the existing core structure. It is hoped that by

sharing this software with others, a set of modules can be

constructed to examine a range of programming

questions. This report outlines the structure of the

system. It is currently being evaluated in class

assessments for software courses in network

programming.

1. Introduction

With increasing class sizes there is more pressure to

find effective ways of teaching software skills within the

resources provided. In response to this there has been a

rise in the use of multiple choice tests to assess software

skills and this is now common in universities and in the

accreditations of Microsoft and Sun. However, it is

arguable that such tests do not test the ability to create a

segment of software that can run. Additionally, students

who fail software courses are often those who have not

practiced enough. Automatic assessment can support such

students with graduated exercise, and be used as a way of

ensuring that the students are indeed doing the exercises

and not falling behind. It is not claimed that the tool

described here is a substitute for expert advice but it can

provide substantial assistance.

There has been a long history of tools to support

programming assessment, particularly for first

programming courses, e.g. University of Bristol, U.K [1].

Many such systems are static, in the sense that the student

submits the source and then it is checked by the marking

system offline. However, CourseMarker [2], which is one

of the best known systems, has a client server

architecture. CourseMarker was developed from the

previous Ceilidh system. Ceilidh has been evaluated (e.g.

[3]) and shown to be successful, significantly reducing the

burden of marking on the lecturer while not adversely

affecting the student.

Just as in CourseMarker, we want the students to

program exercises as they would normally do in the

laboratory, and get a mark immediately, but other

objectives differ. We want to provide support for a variety

of quite different software courses and to allow users of

the software to contribute modules geared to the software

and kind of assessments they want to make. We have been

testing the tool on network programming applications,

applications using XML, and HTML pages, as well as

introductory Java courses, and such examples are

illustrated. Other tests are possible. The motivation comes

from the recognition that software courses change all the

time along with changes in technology, with many

software courses now teaching e.g. TCP/IP, client server

architectures, web service architectures. A flexible open

source tool should allow users to specialize it to their

needs with modest effort. We want to encourage

contributions from lecturers around the world, so that a

repertoire of different questions for different applications

is available.

This paper describes some design aspects and the

implementation details behind the system; the process of

writing exam questions; the process of conducting an

examination; and the process of marking of the

examination. It also illustrates the application to a diverse

set of marking tasks and discusses the structure that

allows the system to be loosely coupled.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

2. General Overview of the System

Figure 1: The three interlinking parts of the system.

This exam system consists of three key parts as

indicated in figure 1:

- The QCA (Question Creation and Administration)

component represents the desktop application used

by lecturers to create questions and marking

schemes. The entities created are called exam

components.

- The EERTA (Examination Environment and Real

Time Assessment) component is a web application

that provides the web based examination and

marking functionality.

- The exam components are used by both the desktop

application and the web application. The QCA uses

the exam components to create persistent serialized

data in XML format (indicated as specifications in

figure 2) that are then de-serialized by the EERTA

and transformed into the required objects. This is

illustrated in figure 2.

Figure 2: Overview of the system in operation

The process of writing examination questions,

conducting an examination and the marking are modelled

by the system through the implementation of two main

parts, viz. the QCA and the EERTA. The QCA is used by

lecturers to generate implementations of questions and

implementations of various criteria to mark the question

through the creation of the exam components. These

components are then passed onto the EERTA – the web

application, and are used to create a web based

examination and the marking according to the

specification. The exam components form a library of

code used to model the exams, the questions and the

marking criteria. The importance of the exam

components is that they are independent of any front end.

They allow a GUI (of which the QCA is an example) or

web based interface to control and manipulate the library

elements. The questions, marking criteria and answers

are not hard coded into the system. This allows users to

create new ones, change existing or reuse existing ones

without modifying any pre-existing code used by the

system. The flexibility behind the system allows

contributors to add their own questions and criteria which

can be then be reused by others.

Every question is represented in the exam components

as a Question object. The Question class contains

accessors and mutators for the necessary attributes, such

as the text of the question and the total mark allocated to a

question. It also contains one or more marking schemes.

Each marking scheme consists of a set of marking criteria

corresponding to the facts that the answer should contain.

To allow flexibility it is possible for lecturers to offer

alternative marking schemes for a single question, as there

could be multiple approaches to the question. The system

will mark using all alternative marking schemes of a

single question and award the highest awarded mark.

The criteria used for marking varies quite substantially

across different subjects and are likely to change to match

evolving curricula. This changing factor has been

incorporated into the design by allowing lecturers to write

their own criteria depending on the needs of their

students. Each criterion is implemented using a small unit

of code that tests the student’s answer code on whether or

not it satisfies the encoded criterion. Each criterion is an

implementation of the Test interface. Our derived Test

API uses a Test interface (figure 3) to provide the

flexibility needed to handle the different context each test

requires in order for it to match each criterion. The Test

interface also provides the uniform method signature

needed by the system to process each Test sequentially.

The methods are described more fully in Table 1. Each

test is atomic in that it only tests for a single property

which can either be present or absent in the code. Tests

are independent of each other to allow a collection of

them to be processed sequentially. They allow answer

code to be examined and executed without any type of

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

modification. This maintains the integrity of other tests

and the answer code.

3. Examples

This section looks at two examples of tests, which

gives an idea of the capabilities of the system.

3.1 Java Bean Example

The following example illustrates how the tests derived

from the Test interface can be used to mark a question.

The exam question from figure 4 asks the student to write

a Java bean with specific methods and variable types. To

understand how a Java bean question can be marked it is

important to understand that a Java bean is similar to any

other Java class except it is written to a specific structure.

Figure 3: The Test interface

Method Purpose

getType Returns the name of this

test in String format

setMarks Mutator to set the

number of marks

awarded for this test

getMarks Accessor to the number

of marks awarded for

this test

getXML Converts the test into an

XML element for

serialization

setParameters Mutator to set all the

varying parameters

(attributes) needed for

this test

getParameters Accessor to all the

parameters (attributes)

used in this test

mark Performs the test and

return 0 (fail) or the

specified full marks

(pass)

Table 1: Purpose of the methods in the test interface

Every Java bean must:

- implement the java.io.Serializable interface

- be well encapsulated so that all instance variables

are private and methods are public

- provide accessor and mutator methods for each of

the instance variables with method names relating to

the variable names according to well defined rules.

- have a no-argument constructor

Figure 4: A part of a network programming course

exam question 2003. (The latter part involved the

creation of JSPs to use the bean developed).

 Marking

Scheme 1

Marking

Scheme 2
Criterion 1 (1 mark) public

no argument

constructor

(1 mark)

accessor/mutator

for “user”

Criterion 2 (1 mark)

encapsulated

variables

(1 mark)

accessor/mutator

for “email

address”

Criterion 3 (1 mark)

implement the

Serializable

interface

(1 mark)

accessor/mutator

for “age”

Criterion 4 (1 mark)

accessors/mutat

ors for one

instance

variable

(1 mark) toString

method

Criterion 5 (1 mark)

toString method

Table 2: Two alternative marking schemes for the

same question

Assuming that the five marks for the question in figure

4 are for each of the four properties of a Java bean listed

A user’s details consist of the name of the user

held as a String, the email address of the user

held as a String and the age of the user held as in

int.

Write a bean for the user details called UserData

that includes all the methods assumed for a bean

in a JSP. Also include a method toString() that

converts an instance of UserData into a

meaningful string. Any format is acceptable.

This will be used later to help output instances

of UserData.

[5 marks]

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

above plus one for writing the method “toString”, the

lecturer may award discretionary marks to some students

who score only a few marks but have written something

else of value. This can be modelled with the exam

components by defining two or more marking schemes

for this question as shown in table 2.

In table 2, if the student writes a class which

encapsulates the instance variables and provides three

pairs of accessors and mutators along with the ‘toString’

method and nothing more, then marking scheme 2 will

return the maximum number of marks of scheme 2 – 4

marks. In order for the student to score full marks for this

question, they are required to write code to fulfil the

marking scheme 1. It is important that the lecturer plans

out clearly how they would like a question to be marked

and to also consider alternative marking options. Because

of the discrete nature of the system, any unplanned

answers that can be considered correct will return zero

unless defined. The lecturer has the option to define as

many marking schemes they feel appropriate, in order to

offer a more flexible marking option to cater for the wider

range of students.

3.2 Deployment descriptor for Tomcat

The deployment descriptor in Tomcat is a XML file

used to define which URL requests a Servlet will respond

to within a particular web application. Additionally, the

deployment descriptor has the option to allow users to

implement a security policy to constrain resources within

the web application. The Tomcat deployment descriptor

opens the opportunity for students to learn and apply their

web and security knowledge through the implementation

of a security policy using XML syntax. How XML tags

are used to specify security constraints is summarized in

table 3.

If a student were asked to answer the question in figure

5, we can assume that a possible marking scheme is to

award 1 mark for each of the five points from table 3.

The question is asking the student to specify in the

deployment descriptor the constrained URL, the

constrained HTTP method, the authorized role, the

authentication method and the level of confidentiality.

Since there are no alternative tags to implement, a single

marking scheme suffices. However it is possible that

when students do write the code, they may misspell or

omit specific tags and the lecturer can accommodate this

by specifying alternative marking schemes that can search

for alternative properties. Table 4 lists the criteria for the

question in figure 5.

Figure 5: Possible Tomcat deployment

descriptor question.

It is clear from table 4 that there are several properties

that marks can be awarded for. Although security

constraint is defined using specific XML tags, marks can

be also be awarded for the structure of the XML

document which is just as important as the mark-up value

of the tags. Generally, the exam system offers the

flexibility of marking and its utilization can depend on the

goals of the lecturer.

Table 3: Sample XML tags used to display

 specific security constraints.

Write the deployment descriptor for Tomcat to only

allow access through the HTTP method ‘GET’ to the

URL “/member/documents/” so that only the role

‘members’ can have access. Make sure users are

authenticated using standard BASIC encoding and

the requested URL is delivered confidentially.

[5 marks]

XML Purpose Security Type

<url-pattern>

/aboutus/secret/

</url-pattern>

To state the URL

resource is

constrained

Constrained

<http-

method>GET

</http-method>

To state the

HTTP method to

access a resource

is constrained

Constrained

<auth-constraint>

<role-

name>Admin</ro

le-name></auth-

constraint>

To state that only

a particular role

has authorisation

and users must be

authenticated

Authorisation

<login-config>

<auth-

method>BASIC<

/auth-

method></login-

config>

To state which

mechanism is

used for

authentication

Authentication

<transport-

guarantee>

CONFIDENTIA

L

</transport-

guarantee>

To state that the

request resource

should be

transmitted with

confidentiality

Confidentiality

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

Table 4: Lists two possible marking schemes

to mark the question.

4. Marking Java Code

The technique used to mark questions is not

complicated. One approach would involve the process of

coding a compiler that would take a source file and

examine it line by line testing for the criteria defined.

Although this is a possibility, the performance of such a

technique would require high level hardware resources

when marking hundreds of student’s source code. The

difficulty of writing complex code in the ‘mark’ method

could well discourage many lecturers from writing their

own tests.

When a program source is compiled, information about

the structure of the code is lost as lower level code is

produced. However, Java preserves the structure

information as metadata with the generated code.

Programmers can access this metadata through a package

known as the reflection package. The reflection package

allows programmers to access information such as the

methods, the super classes, the variables of an object at

runtime. This package was designed to allow vendors to

create powerful and rich software development

environments to aid programmers. An example used in

such systems is to underline or highlight undeclared

variables written in these software development

environments, or to list as a table all the methods a

currently viewed segment of source code contains, on a

side panel. This unique property offered by Java is the

underlying mechanism we use to allow Java source code

to be marked.

To demonstrate how the criterion of ‘implements the

Serializable interface’ is implemented through the use of

java.reflection package, figure 6 demonstrates how the

‘mark’ method works.

Figure 6: IsSerializable test mark method

implementation. Note that the variable marks is

defined outside the method mark()

In figure 6, the ‘mark’ method has an argument of type

‘Object.’ This object will be the students answer code

compiled and instantiated. The ‘mark’ method then tests

the object to find out whether or not this object

implements the Serializable interface. If the object

contains the properties defined by the method then the

marks are awarded, otherwise nothing is awarded. The

use of the reflection package here allows us to check for

specific properties at runtime of any object; the only

requirement is that the student’s answer code becomes

instantiated before marking. This test can be re-used for

many different questions and is not bound to only Java

bean type questions. It is hoped that by using the

reflection package in this way, lecturers can code very

simple discrete tests that can be re-used by many for any

given situation.

5. 5 Summary and Future Developments

In the previous sections we have attempted to describe

the structure and capabilities of the marking system.

There are however, limitations. Key limitations of the

approach adopted are:

The approach to testing marks the program by

executing the students program in the context of data and

correct code provided by the lecturer. If the program

 Marking scheme 1 Marking scheme 2

Criterion 1 (1 mark)

‘/member/docume

nts/’ is marked up

by tag <url-

pattern>

(1 mark) tag <role-

name> is child of

tag <auth-

constraint>

Criterion 2 (1 mark) ‘GET’ is

marked up by tag

<http-method>

(1 mark) tag <auth-

method> is child of

tag <login-config>

Criterion 3 (1 mark)

‘members’ is

marked up by tag

<role-name>

(1 mark) tag <role-

name> is child of

tag <auth-

constraint>

Criterion 4 (1 mark) ‘BASIC’

is marked up by

tag <auth-method>

(1 mark) ‘BASIC’

is marked up by tag

<auth-method>

Criterion 5 (1 mark)

‘CONFIDENTIAL

’ is marked up by

tag <transport-

guarantee>

(1 mark)

‘CONFIDENTIAL’

is marked up by tag

<transport-

guarantee>

public class IsSerializable implements

Test{

…

public double mark(Object object) {

 Class c = object.getClass();

 Class[] theInterfaces = c.getInterfaces();

 for(int i=0;i<theInterfaces.length;i++){

if(theInterfaces[i].getName().equa

ls(“java.io.Serializable”))

 return marks;

}

return 0.0;
}

…

}

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

compiles correctly then the checks look for certain

patterns in the code, and make comparisons with e.g.

string or numerical output. There is no proof that the

program is logically correct or otherwise.

No account is taken of style. In fact some measures of

this are possible, but this has not been the focus of the

work.

However, many simple exercises can be tested.

Laboratory assessments are reasonably formulaic and

appear well suited to assessment by the scheme used. The

goal is not to have a system to mark large coursework, but

to give help with smallish structured questions, very

similar to end of year examination questions.

At present the system is being used to tests several

groups of students in topics such as XML applications,

HTML and many aspects of Java including Java beans,

Servlets and core Java programming. Further ‘tests’

currently in consideration include JSPs, extending the

XML to cover RDF and SOAP, web services, in particular

WSDL files and programming using the Java API for

XML remote procedure calls. This system can develop the

skills of students by allowing the opportunity to practice

their programming skills in a monitored way. Lecturers

can teach concepts in lectures and then use the system to

help the student apply these concepts in a program. How

well students apply these concepts can help lecturers

develop alternative strategies to teach them.

Looking ahead, it is possible with the help of

contributors, to turn the system architecture into a service

oriented architecture whereby a central registry is used to

list all the different tests from various contributors, the

purpose of each test, the parameters required, and to be

able to download the class file for local simulation.

During the marking process, the registry can be used to

locate which computer has the specific test deployed and

how that computer wants it’s request structured as a

mechanism to distribute processing across the network.

Further to this, if hopefully an increase of resources

becomes available, the system can be extended to cover

other languages such as C++, C#, Perl or Visual Basic

which without doubt is currently possible.

Having the examination and marking process

automated electronically will not only free more time for

the lecturer but can also provide the opportunity to

capture data that can then be processed and analysed

efficiently. Reports can be generated after exams which

show statistics that could for example, list the questions

that students spend the most time on, which students

failed to complete which questions, the question(s) that

the majority of students score badly in, the typical

compilation errors students made and in which questions

students do well in. The statistics provided by such a

report can help the lecturer to understand the weaknesses

and strengths of students and allow the course to be taught

more flexibly where the whole class is monitored and

their progress moves forward as a whole.

6. References

[1] http://www. cs.bris.ac.uk/software/mark/index.html

[2] University of Nottingham U.K.

http://www.cs.nott.ac.uk/CourseMarker/

[3] S. P. Foubister, G. J. Michaelson & N. Tomes Learning

Technology Centre, Department of Computing & Electrical

Engineering, Heriot Watt University “Automatic assessment of

elementary Standard ML programs using Ceilidh”, Journal of

Computer Assisted Learning, Volume 13 Issue 2 Page 99.

[4] Ingrid Marson (2005, April). Programming apprentice

scheme demanded. Retrieved April 22 2005, from UK Builder’s

website: http://uk.builder.com/manage/work/

[5] W3C HTML Home (modified 2005, March), Retrieved

March 29 2005, from W3C’s web site:

http://www.w3.org/MarkUp/

[6] Freeman & Freeman (2004). Keeping your objects in the

know. Head First Design Patterns (pp. 51). Sebastopol, CA:

O’Reilly (0596007124)

[7] Freeman & Freeman (2004). Well Managed Collections.

Head First Design.

Proceedings of the Fifth International Conference on Quality Software (QSIC’05)
1550-6002/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 10, 2009 at 06:11 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

