Poster: SensingKit — A Multi-Platform Mobile Sensing
Framework for Large-Scale Experiments

Kleomenis Katevast, Hamed Haddadito, Laurissa Tokarchuks
+Queen Mary University of London, «Qatar Computing Research Institute

{k.katevas, hamed.haddadi, laurissa.tokarchuk}@qgmul.ac.uk

ABSTRACT

With the rapid rise in variety of available smartphones to-
day and their rich sensing capabilities, there is an increasing
interest in using mobile sensing in large-scale experiments
and commercial applications. Motivated by the lack of a
universal, multi-platform library, in this paper we present
SensingKit, an efficient, open-source, client-server system
that supports both iOS and Android mobile devices. Sens-
ingKit is capable of continuous sensing the device’s motion
(Accelerometer, Gyroscope, Magnetometer), location (GPS)
and proximity to other smartphones (Bluetooth Smart). The
data are temporarily saved to the device’s memory and trans-
mitted to a server for further analysis over any Internet con-
nection. We believe that this platform will be beneficial to
all researchers and developers who need to perform mobile
sensing in their applications and experiments.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques;

D.2.13 [Software Engineering]: Reusable Software—Reusable

libraries

General Terms

Experimentation, Measurement, Performance

Keywords

Mobile sensing, Spatio-temporal data, Motion data, iOS,
Android

1. INTRODUCTION

The ubiquity of smartphones as well as the variety of their
onboard sensors have enabled the automated acquisition of
large scale data, inspiring a wealth of research opportuni-
ties. Mobile operating systems such as Android and iOS
provide application programming interfaces (APIs) to ac-
cess these sensors. Lane et al. [2] in a recent survey paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

MobiCom’14, MobiCom’14, Sep 07-11 2014, Maui, HI, USA

ACM 978-1-4503-2783-1/14/09.

http://dx.doi.org/10.1145/2639108.2642910.

discussed the importance of continuous sensing among dif-
ferent mobile platforms. Various mobile sensing frameworks
have been designed that provide continuous sensing, like Mo-
biSens [4], EmotionSense [3] and Funf [1]. However, these
platforms are currently limited to work on Android or Nokia
Maemo phones, limiting the sampling space of users partic-
ipating in different studies. Since Android and iOS are the
two main players in the mobile ecosystem, there is a clear
need for supporting continuous sensing in these two mobile
environments.

In this work, we present an early prototype of SensingKit,
a new mobile sensing framework compatible with iOS and
Android devices. SensingKit enables capturing motion (Ac-
celerometer, Gyroscope and Magnetometer), location (GPS)
and proximity (Bluetooth Smart) data and transmitting them
to a server over any Internet connection. Since the two op-
erating systems are equipped with sensor fusion techniques,
both the raw measurements, and fussed data like Linear Ac-
celeration, Gravity and Rotation are supported. Further-
more, SensingKit can also be configured to capture user’s
natively-labelled activity in supported devices, classified as
standing, walking, running, driving in iOS, with the addition
of cycling in Android.

To achieve this, we have developed two open-source li-
braries, SensingKit-iOS and SensingKit-Android, that re-
searchers can include into their custom made applications
with only a few lines of code. In addition, a server frame-
work has been developed, referred to as the SensingServer,
which is responsible for receiving the data, synchronising
them and finally exporting them into CSV or JSON format.

Beside the multi-platform characteristic, SensingKit has
some unique features that are not available in other sensing
libraries. It supports the Bluetooth Smart (4.0) specifica-
tion for capturing the proximity between devices, a feature
that has significantly reduced power consumption and high-
est sampling rate compared to the classic Bluetooth. Fur-
thermore, in order to avoid timing issues when the user, or
even when the device itself changes the system time, the
timing in the sensor measurements depends on the device’s
CPU time base register rather than the system’s clock. In
some modern devices like the iPhone 55 and Nexus S5 that
are equipped with a motion co-processor, the library is ca-
pable of using the processor’s activity recognition, having
only a minimum affect on the device’s battery life. Finally,
the server framework is equipped with a plug-in architec-
ture that can automate some of the usual data processing
before the extraction (e.g., perform data interpolation, pro-
duce magnitude vector, etc).

Our objective in this work is to provide an easy-to-use
sensing framework that developers and researchers can use
to provide continuous sensing in iOS and Android applica-
tions. In Section [2] we present the System Architecture and
technical details of the framework. The system was eval-
uated, as reported in Section [3] by measuring the battery
consumption of SensingKit running on three mobile phones.
In Section 4] we present the conclusions and discuss the fu-
ture research in this space.

2. PLATFORM ARCHITECTURE

SensingKit Server
4 © 3
Sensor | =
Modules|i7 | § 3 w
E: = O .
-------------------- . = S
2 e =1l @© -
Model || & \‘ % g'y“s%e'r?q
Manager [| -2 o)
C
:) q)
£ =
Data g Data
O Extraction

-

Figure 1: SensingKit System Architecture

SensingKit is a client /server system, consisting of two sep-
arate software frameworks: the client library, located in the
users mobile devices and the server framework. Figure [I]
gives an overview of the system architecture.

Client libraries for Android and iOS

SensingKit is a modular mobile framework developed in the
native programming language of each platform (Java for the
Android and Objective-C for the iOS version). It supports
mobile devices running iOS v7.0 and Android v2.3.3°| and
above.

For every sensing category, a sensing module exists in
SensingKit. Table [1| presents the available sensing modules
of the framework. It is important to mention that due to
the modular design of this library, it is easy to develop a
new module and extend its sensing capabilities.

Table 1: Modules of SensingKit

Module Information sensed

Motion Linear Acceleration, Gravity, Rotation,
Activity Classification.”

Location Outdoor location using GPS sensor.

Proximity Proximity sensing using Bluetooth Smart
(4.0).
Battery Power consumption of the device.

“Raw data from the 3-axis Accelerometer, Gyroscope and
Magnetometer sensors are also provided.

For proximity sensing, SensingKit uses the new Bluetooth
Smart (4.0) proximity profile. This profile allows to broad-

! Android L/iOS 7 and Bluetooth 4.0 radio is required to use
Bluetooth Smart proximity sensing.

cast a device’s presence, scan for other devices and estimate
the distance between them. Bluetooth Smart is only fully
supported in the latest Android L mobile operating system.
Android 4.3 devices are only limited to scan and connect to
other devices (Observer and Central mode) and not to ad-
vertise its presence to the nearby devices (Peripheral mode).

The library collects the data from the sensing modules
and saves them to the device’s memory using ModelManager
module. When a Wi-Fi connection is available it submits
them on the server through CommunicationManager. If the
data remain to the memory for longer than 24 hours, it will
try to submit them over a Cellular network.

Server platform

The server platform is built using the Python programming
language. It is responsible for collecting the data captured
from a client app, over an Internet connection. It consists of
three main components: the web-services, the plug-in system
and the data extraction module.

The web-services component is responsible for providing
the appropriate communication methods to the client li-
braries. It provides methods for assigning a unique iden-
tification to each client, for sending the server’s time so that
the data can easily be synchronised later, and finally, for
receiving the collected data.

The plug-in system provides a Python interface for writing
custom plug-ins that pre-process the data before extraction.
This is useful for the researcher as it can perform some ini-
tial automated data processing. The mandatory data-sync
plug-in is pre-installed and processes the data so that they
have the same timing with minimum delay between devices.
Further optional plug-ins such as the interpolation and mag-
nitude are also available.

Finally, the data extraction module is used to extract the
data in various formats such as JSON and CSV.

3. USE-CASE DEMONSTRATION

In order to demonstrate a sample use of our sensing plat-
form, we measured the battery life performance while us-
ing SensingKit in three mobile devices: an iPhone 5S run-
ning iOS 7.1.2, a Google Nexus 4 running Android KitKat
4.4.4 and a Samsung Galaxy S2 running Android Jelly Bean
4.1.2. All devices were set into Flight Mode, having Wi-Fi
and Cellular connectivity disabled. No application or pro-
cess rather than SensingKit was running in the background.
Since Galaxy S2 devices are not equipped with a Bluetooth
Smart (4.0) radio, proximity sensing was not possible with
that device. Finally, due to limitations of the current An-
droid platform (Android KitKat 4.4.4) the Nexus 4 device
was only able to scan for other devices and not to broadcast
its presence. Tableshows the specifications of each device,
including the highest sampling rate that is supported.

Figure[2]shows the energy consumption of SensingKit run-
ning for 24 hours on the three mobile devices described
above. For each device, we show the consumption of the
library while sensing motion, proximity and battery levels.
In addition, we visualise the library running in “idle” mode,
when it only senses the battery levels. Due to limitations
in the iOS platform, it is only possible to read the iPhone’s
battery level with a 5% resolution whereas in Android the
resolution is 1%.

The results show that the Galaxy S2 lasted for 13.1 hours
while capturing motion in 100Hz but not proximity. The

Table 2: Device Specification

Device Op. System Processor Memory Battery Bluetooth Max Sampling
iPhone 55 i0OS 7.1.2 1.3 Ghz Dual-core 1GB 1560 mAh 4.0 100Hz
Nexus 4 KitKat 4.4.4 1.5 Ghz Quad-core 2GB 2100 mAh 4.0 200Hz
Galaxy S2 Jelly Bean 4.1.2 1.2 Ghz Dual-core 1GB 1650 mAh 3.04+HS 100Hz

iPhone 58

-
—— Motion (100Hz) 90
—— Motion (100Hz) + Proximity (1Hz)

)
3
)
3

Google Nexus 4

Samsung Galaxy S2

Power (%)
Power (%)

2
—1die < Tdie
—— Motion (200Hz) o 50
Motion (200Hz) + Proximity (1Hz, Scan only) H Motion (100Hz)
o

00 03 06 09 12 15 18 21 00 00 03 06 09
Time (hours)

(a)

Time (hours)

15 18 21 00 00 03 06 09 12 15 18 21 00
Time (hours)

()

Figure 2: Battery consumption of SensingKit running on an iPhone 5S, Google Nexus 4 and Samsung Galaxy S2 smartphone.

iPhone 5S was capturing motion in the same sampling rate
(100Hz), and lasted 11.5 hours with proximity sensing en-
abled (1Hz) and 20.3 hours with proximity sensing disabled.
Finally, the Nexus 4 device was measuring motion with dou-
ble the sampling rate of the other two devices (200Hz), and
lasted 6.1 hours with proximity sensing enabled (1Hz) and
6.4 hours with proximity sensing disabled.

The effect of SensingKit in the iPhone’s battery life is
quite noticeable when it runs in “idle” mode, as the library
keeps the device’s CPU usage to 6-7%, just for monitoring
the battery in the background. In addition, proximity sens-
ing also has an impact on the battery life, showing a 43.3%
decrease on the iPhone 5S whereas in the case of Nexus 4,
the device only works in Observer mode and the battery
slightly decreases by 4.7%.

It is important to mention that Figure [2[only represents
the battery consumption of the specific mobile devices listed
in Tableand should not be viewed as a comparison between
the three devices.

4. CONCLUSIONS AND FUTURE WORK

In this work, we have presented an early implementation
of a continuous sensing system that works in both Android
and iOS environments. A first prototype of this system has
already been developed and is being used in related crowd-
sensing experiments. We plan to continue the development
of this framework, extend its sensing capabilities, evaluate
it and release it to the public in open-source in the near
future. We believe that this work will be beneficial for re-
searchers willing to conduct large-scale experiments using
mobile sensing.

More information about SensingKit as well as the com-

plete source-code will be made available on www.sensingkit.org.

S. ACKNOWLEDGEMENTS

This work is supported by funding from the UK Defence
Science and Technology Laboratory.

6. REFERENCES

[1] N. Aharony, W. Pan, C. Ip, I. Khayal, and
A. Pentland. Social fMRI: Investigating and shaping
social mechanisms in the real world. Pervasive and
Mobile Computing, 7(6):643—659, 2011.

[2] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles,

T. Choudhury, and A. T. Campbell. A survey of mobile
phone sensing. Communications Magazine, IEEE,
48(9):140-150, 2010.

[3] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J.
Rentfrow, C. Longworth, and A. Aucinas.
EmotionSense: a mobile phones based adaptive
platform for experimental social psychology research. In
Ubicomp ’10: Proceedings of the 12th ACM
international conference on Ubiquitous computing, page
281, New York, USA, Sept. 2010.

[4] P. Wu, J. Zhu, and J. Y. Zhang. MobiSens: A Versatile
Mobile Sensing Platform for Real-World Applications.
Mobile Networks and Applications, 18(1):60-80, Nov.
2012.

http://www.sensingkit.org

	Introduction
	Platform Architecture
	Use-case Demonstration
	Conclusions and future work
	Acknowledgements
	References

