

FUZZY AND TILE CODING FUNCTION APPROXIMATION IN AGENT
COEVOLUTION

ABSTRACT

Reinforcement learning (RL) is a machine learning
technique for sequential decision making. This approach
is well proven in many small-scale domains. The true
potential of this technique cannot be fully realised until it
can adequately deal with the large domain sizes that
typically describe real world problems. RL with function
approximation is one method of dealing with the domain
size problem. This paper investigates two different
function approximation approaches to RL: Fuzzy Sarsa
and gradient-descent Sarsa(λ) with tile coding. It presents
detailed experiments in two different simulation
environments on the effectiveness of the two approaches.
Initial experiments indicated that the tile coding approach
had greater modelling capabilities in both testbed
domains. However, experimentation in a coevolutionary
scenario has indicated that Fuzzy Sarsa has greater
flexibility.

KEY WORDS

Machine Learning, Fuzzy Logic, Reinforcement
Learning, Function Approximation, Tile Coding,
Coevolution.

1. Introduction

In order to move reinforcement learning (RL) out of “toy”
domains, and realize its full potential in “real world”
applications, RL must be able to efficiently cope with
large state spaces. In the past few years there has been
considerable research in the area of function
approximation for RL. This is a particularly important
area, as function approximation techniques are able to
collapse the state space into a manageable size, and use
their abilities to generalize between similar states and
actions, to speed the learning process.
There has been significant work using linear function
approximation, particularly in association with tile coding
[1]. While a variety of different encoding techniques have
been proposed, a good deal of success has been reported
by the machine learning community with the method
called tile coding [2][3][4]. This linear encoding
technique collapses the state space down into a large
feature vector and learns the associated weights of each
feature. Another related solution, popular in the control
system domain, is suggested by fuzzy set theory. A fuzzy
set is a mapping from a set of real numbers to a set of
symbolic labels. This approach stores states as fuzzy

states. The basic principle of fuzzifying reinforcement
learning is to utilise fuzzy sets in state representation. In
this manner, many states can be represented with only a
few fuzzy states. There have been several algorithms that
utilise this idea and are presented as fuzzy reinforcement
learning [5][6][7].
The primary contribution of this paper is the identification
of a scenario in which the type of function approximation
used makes a large difference. As shown, both methods
perform reasonably well in stationary worlds, however in
a coevolutionary context, Fuzzy Sarsa out performs tile
coding.
The remainder of this paper is organized as follows. In
Section 2, a review of the basic RL principles, fuzzy RL
and tile coding is presented. Section 3 presents the two
testbed domains. Section 4 presents the results of some
experiments in these domains and Section 5, concludes
with a summary and further areas for investigation.

2. Learning Algorithms

The following section begins with a brief overview of the
principles of RL. Finally, it presents a synopsis of the two
implemented function approximation algorithms, Fuzzy
Sarsa and gradient-descent Sarsa(λ) with tile coding.

2.1 Reinforcement Learning

RL belongs to a family of unsupervised learning
algorithms. Unsupervised algorithms force the learner to
try to learn from its experiences. RL learners learn from
simulated data. These algorithms build a mapping of
situations to actions. A RL algorithm observes the current
state of its world, and learns the best possible action from
that state. The learner is never told what actions to take
but rather what results are desired. It is up to the learner
how they achieve the result. Reinforcement learners have
4 main elements: a policy, a reward function, a value
function and optionally, a model of the environment. [1].
The typical objective for the learner is to develop a policy
that maximizes long term return.
Basic RL is generally described as tabular, since its
state/action space can be stored in table. Basic RL
algorithms are limited when dealing with large, possibly
continuous, state spaces. The size of lookup table that
would be required, is not only computationally difficult,
but results in very slow learning. A solution to this
problem has been addressed by various different methods
of function approximation.

2.2 Fuzzy Sarsa

Fuzzy Sarsa is based on the original Sarsa algorithm using
fuzzification techniques presented in Bonarini’s Fuzzy Q-
Learning [8]. This algorithm is presented in full in [9].
This section will first review the principles of fuzzy logic
applicable to Fuzzy Sarsa, before reviewing the Fuzzy
Sarsa algorithm.
In fuzzy, reduction of the state space is based on storing
the state/action space in fuzzy sets. Fuzzy sets are an
extension of set theory that utilizes a set of fuzzy
descriptors in place of the traditional set of crisp values. A
fuzzy descriptor consists of a descriptor label to represent
a range of crisp values. In the fuzzification process, a
crisp state s matches a set of fuzzy states. To determine
the fuzzy state, a mapping from the set of real numbers
representing the current state to a set of symbolic state
labels is created. Consider a world descriptor
Money_Left. The value of Money_Left in a crisp state
consists of a discrete number, say ML(x), x∈Z = [0..15].
In a fuzzy state, the same value x maps to one or more of
the fuzzy labels associated with Money_Left =
[Lots_Money, Little_Money]. X’s degree of belonging to
any particular fuzzy label is defined by the membership
function (µ) associated with the fuzzy set Money_Left.
For example, the µMoney_Left might be described as:

0

0.2

0.4

0.6

0.8

1

0 5 10 15
Money Left

M
em

be
rs

hi
p

Little_Money Lots_Money

Figure 1: Membership function of Money_Left

The crisp values are fuzzified using these membership
functions. Each crisp value will belong, to some degree,
to one or more fuzzy set labels. The fuzzification of
Money Left = 12 results in µLots_Money (12) = 0.87 and
µLittle_Money (12) = 0.13. To fuzzify a crisp state, the
membership of each state item is fuzzified, and, typically,
the AND is taken to obtain the overall state membership
or degree of matching. In the case of a crisp state
S1={Money_Left = 12, Auctions_Left = 3}, crisp state S1
belongs to fuzzy states Ŝ1b and Ŝ1d with membership 0.87
and 0.13 respectively. All possible membership
calculations for S1 are depicted in Figure 2.

Fuzzy
 State

Money Left µMoney

Left
Auctions Left µAuctions

Left
µS1

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87
Ŝ1c Little_Money 0.13 Few_Auctions 0 0
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13

Figure 2: Fuzzification of crisp state S1
Fuzzy Sarsa uses fuzzy representation of both states and
actions. The degree of matching is still based on the fuzzy
state, however membership functions for the fuzzification

and defuzzification of fuzzy actions are also required. For
example, Bid_High might defuzzify to the crisp action
Bid 8. This fuzzy state action pair is referred to as a fuzzy
rule. In a fuzzy rule, the fuzzy state corresponds to the
antecedent of the rule and the fuzzy action is the
consequent. All fuzzy rules have a strength associated
with them. It is this strength, fuzzy Q (FQ) value that this
type of fuzzy RL learns.
Greedy action selection for a fuzzy RL algorithm matches
the crisp state s to one or more sets, sub-population, of
fuzzy rules. Each sub-population is identified by having a
common antecedent. The rule that is chosen from this
sub-population, is the rule with the highest strength value.
Since a crisp state s might match a number of fuzzy states
(set)(sFS) as seen in Figure 2 (Both Ŝ1b and Ŝ1d match
the fuzzy state S1), a method of combination is needed to
determine what action to take when all rules could be
proposing different actions. For all)(ˆ sFSs∈ , the action
proposed for each ŝ, is the greedy action (highest FQ-
value) proposed by the fuzzy rule. The final action
proposed is a weighted average of the actions, in terms
the degree of matching to the crisp state s, proposed by
each rule triggered. The weighted average is computed
using the centre of mass approach:

∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

µ

µ

where n is the number of fuzzy states matching crisp state
s, and

isa ˆ is the best action (having been de-fuzzified)
proposed by any rule matching ŝi.

 Fuzzy State Fuzzy Action
µ Money Left Auctions Left Bid FQ(ŝ,â)

 Lots_Money Many_Auctions Bid_High 0.4 0.7
 Lots_Money Many_Auctions Bid_Low 0.1
 Little_Money Few_Auctions Bid_High 0.2 0.4
 Little_Money Few_Auctions Bid_Low 0.6

Figure 3: Fuzzy state action pairs
To clarify greedy action selection, consider the example
from Figure 3. Some crisp state s, matches the two fuzzy
states [Lots_Money, Many_Auctions] with degree 0.7 and
[Little_Money, Few_Auctions] with degree 0.4. Each of
these two fuzzy states has 2 rules associated with them.
For the state [Lots_Money, Many_Auctions], the greedy
action will be to Bid_High, since that rule has the highest
FQ(ŝ, â) value. Similarly, for the state [Little_Money,
Few_Auctions], Bid_Low will be selected. The fuzzy
actions are now defuzzified to obtain a crisp output.
Bid_High is translated via some defuzzification function
as bid 8 and Bid_Low as bid 4. Thus the actual action
taken is calculated as follows would be 6.5. For Fuzzy
Sarsa, the FQ value update formula is as follows:

+= −−−−)ˆ,ˆ()ˆ,ˆ(1111
i
t

i
t

i
t

i
t asFQasFQ

 ∑
∀

−−−−+
−−

j

i
t

i
tt

j
t

j
ttas

asFQasFQr
j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ((111)ˆ,ˆ()ˆ,ˆ(11
ξγαξ

where)ˆ,ˆ(11
i
t

i
t asFQ −− is the value of being in the fuzzy

state i
ts 1ˆ − and suggesting a fuzzy action i

ta 1ˆ − . i
tc 1−

ξ is the
fuzzification factor, or the degree of belonging (µ) of the
crisp state 1−ts to the fuzzy state i

ts 1ˆ − . This is calculated
as:

∑
=

−

−−
=

ni
i

s
as

i
t

i
t

i
t

..1

)ˆ(
)ˆ,ˆ(

1

11 µ

µ
ξ .

The full Fuzzy Sarsa algorithm is presented in [9]

2.3 Gradient-descent Sarsa(λ) and tile coding

Gradient-descent methods rely on the state space being
encoded in a parameter vector of features,

→

θ . Any state
can be described by one or more of these features. In
gradient-descent methods, since the state space is

represented by a parameter vector
→

θ , the Q(s,a) value is

calculated by using the sum of
→

θ values present for that
state/action pair. In the case of the marketplace example,
the state action pair S1={Money_Left = 12,
Auctions_Left = 3}, a = {6} now has its own vector of

features s

→

φ . This vector is a big binary vector that

indicates whether the corresponding feature in s

→

θ is
present in the state. The Q(s,a) value is calculated as:

∑
=

→

=
s

j
jjasQ

0
),(φθ

Most gradient-descent methods try to minimise the error
on the observed examples by adjusting the entry for the
present feature by a small amount. While there are both
on-policy and off-policy gradient-descent methods, this
study uses on-policy algorithms. Gradient-descent
Sarsa(λ) is given in full in [1].
One of the most important aspects of gradient-descent
methods is feature selection. A variety of coding
techniques for feature selection such as radial basis
functions, kanerva coding, etc, have been introduced. A
good review of these techniques is proved by [1]. In
particular, many researchers have reported success with
tile coding [2][3][4] and therefore it has an established set
of published results for comparison.
Tile coding, or CMAC, was first introduced by Albus
[10]. Over the last few years it has been adapted for use in
reinforcement learning and renamed tile coding [1]. The
basic principle behind tile coding is to overlay the state
spaces with exhaustive partitions. Each partition is called
a tiling, and every element in the partition a tile. Each tile
makes up one feature and the total set of tiles in all tilings
→

θ . The resolution is divided into generalisation and
granularity parameters. The generalisation parameter
describes the shape of the tiles. The granularity parameter
is described by the number of tiling overlaying the state
space. These overlays are important in tile coding’s

ability to make fine distinctions. The combination of
generalisation and granularity is called the overall
resolution. If a state space is described by two state
variables x and y, one possible way to tile it is to create
4x4 regions across the state space. This creates broad
generalisation between state values that are within 0.25 of
each other (in both x and y). This level of generalisation is
relatively coarse. To refine the detail of what is learnt,
another tiling offset from the original can be placed over
the state space. Figure 4 shows the original 2-dimensional
state space with 2 offset 4x4 tilings. The example state
lies in exactly one tile in each tiling. Generalisation of
that state occurs with any other state that lies within that
tile. Since the offset is different for each tiling, the cluster
of states surrounding the original state differs.

Figure 4: Determining the tiles of a state

The overall resolution of this example is 0.25/2 or 0.125.
Finer resolution can be achieved by increasing the number
of tilings. In summary, the shape and size of the tiles
determines the type of generalisation that occurs between
states, whereas the number of tiling overlays controls the
distinctions made about them.

3. Test Domains

This section presents the two testbed domains used in the
experiments.

3.1 Mountain-Car World

The mountain-car problem is described in detail by [1]. In
this problem the learner controls an underpowered car that
is situated in a deep valley. The objective is to get the car
to the top of the mountain. The difficulty is that the car is
underpowered and thus cannot gain enough momentum
by simply going forward to get it to the top of the
mountain. In order to find a solution, the learner must first
move away from the goal. This type of problem is one
that RL typically find difficult. The actions in this world
are: full throttle forward, full throttle backwards, or zero
throttle. The car moves according to:

][11 ++ += ttt ppboundp

)]3cos(0025.0001.0[1 tttt vavboundv −++=+

Where tp and tv is the car’s position and velocity at

time t and ta , the action taken. The bound operation

enforces 6.02.1 1 ≤≤− +tp and 07.007.0 1 ≤≤− +tv . The
rewards in this domain are -1 at all non-terminal states.
This environment serves as the tile coding control world,
as the implementation is based on the published code of
the mountain-car world including the gradient-descent
Sarsa(λ) with tile coding learner, provided by Sutton [12].

3.2 An Agent Marketplace Testbed

The marketplace used for this experiment is a first price
sealed bid auction where the task for any agent is to win
some number of items (i) during (n) auctions. Time is
broken up into equal periods, termed episode. During
each episode, a certain quantity q of items is available in n
auctions. The algorithms that are implemented in this
experiment attempt to learn a strategy over the episode of
auctions. In the following discussion the term auction
refers to one event of auctioning an item within an
episode, whereas an auction game refers to the set of
auctions that take place during an episode. The rewards at
the terminal states are Iwon * Mt / Mt-a if the agent has
purchased all items required and -Ineeded if not. At all
non-terminating state-actions, the agent receives a default
reward of 0.
This domain was chosen for two reasons. The first reason
is the added complexity of the state/action and goal space.
Although variables in the marketplace domain are not
continuous, the state/action space is considerably different
from the mountain-car world. Auctions have three
different state variables, rather than the two of the
mountain-car world. This increase tests the modeling
abilities of each type of function approximation method.
The action space, price to bid, is a more populated action
space than that of the mountain-car world (forward,
reverse, no throttle). Finally, in the marketplace world,
there are many possible goal states, whereas the
mountain-car world only has one. The second reason for
choosing the marketplace domain is that it is a domain in
which Fuzzy Sarsa has performed reasonably. [9]

4. Experimental Results

4.1 Experiments in the Mountain-car World
For the first experiment to determine the effectiveness of
the two different forms of function approximation RL, the
Fuzzy Sarsa algorithm was implemented in the mountain-
car world. The fuzzy algorithm was then compared to the
established tile coding example. The gradient-descent
Sarsa(λ) with tile coding used 9x9 grid tilings, as
described in [1]. As depicted in Figure 5, the fuzzy
algorithm used 7 label velocity and position state
variables, and 2 label actions.

0

0.25

0.5

0.75

1

-0.07 -0.035 0 0.035 0.07

Velocity

M
em

be
rs

hi
p

0

0.25

0.5

0.75

1

-1.2 -0.6 0 0.6

Position

M
em

be
rs

hi
p

0

0.25

0.5

0.75

1

Reverse Drift Forward

Actions

M
em

be
rs

hi
p

Figure 5: Membership functions for mountain-car world.

Using the parameters γ=1, α=0.6 and ε = 0.025 (with
annealing for epsilon to allow the algorithms to settle on a
greedy policy), both algorithms found a solution. Figure 6
gives the average solution found over 101 episodes.
While both algorithms perform well in this domain,
gradient-descent Sarsa(λ) with tile coding achieves a
marginally more optimal and stable solution.

0

500

1000

1500

0 25 50 75 100

Episodes

S
te

ps

Fuzzy Sarsa GD Sarsa with Tile Coding
Figure 6: Stability of solution in Mountain-car problem

To investigate the reason behind this improvement, the
final action policy for each algorithm is illustrated by the
two surface maps in Figure 7.

0.07 0.07
-1

.6

-0.07 0.07
-1.2

.6

Gradient descent Sarsa(λ)
with Tile Coding

Fuzzy Sarsa

Figure 7: Final action policies for mountain-car world.

Velocity

Position

The surface maps indicate that both algorithms have
learnt policies that have broad areas of similarity.
However, it is apparent that the policy learnt by Fuzzy
Sarsa lacks the fine distinctions apparent in the policy of
tile coding.

4.2 Experiments in the Marketplace

The state space consists of 3 major categories:
Money_Left, Auctions_Left and Items_Left. Actions
include bids ranging from the original offer price to the
agent’s maximum price and abstaining. Each category is
divided into three labels. The general membership
function used for all state and action variables is given in
Figure 8.

 State Action
Figure 8: Fuzzy membership functions for the marketplace
The tile coding setting used was 2 tilings of 2x2x2. The
RL parameters were α = 0.2, ε=0.03, and γ = 1.0. The
settings were determined following a “good enough”
methodology. For the fuzzy memberships, several
different combinations were trialed before deciding on the
three label functions. For the tile coding settings, a variety
of candidate settings were empirically evaluated in the
marketplace before choosing the most effective setting.
The RL parameter settings were chosen by using the top
ten best parameters found for both algorithms using a
scanning method. From both sets of top ten parameter
settings, the top parameter in common was selected.

10
11
12
13
14
15
16
17
18

500 20000Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa Tile Coding

Figure 9: Learners against a linear strategy
For the experiments, an auction game consisted of 40
auctions, of which, each agent was required to win 20
items. Each function approximation learner is tested
against two stationary strategies, Linear and Greedy. An
agent following a stationary strategy, follows the same
behavioural policy in every auction game. A linear

strategy slowly increases its bid over time, while a greedy
strategy bids the maximum it can until it has obtained all
needed items. The results presented are averaged over 10
trials. Figure 9 indicates that both algorithms perform
similarly when competing with a linear strategy, whereas
Figure 10 indicates that the solution found by tile coding
offers a small, but significant improvement over that of
the fuzzy approach.

10
11
12
13
14
15
16
17
18

500 20000Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa Tile Coding

Figure 10: Learners against a greedy strategy

4.3 Coevolution experiments in the Marketplace

The results in both the mountain-car and the marketplace
agree with the recent findings of [11], in their analysis of
the abilities of fuzzy and tile coding function
approximation in the learning of a selection of functions.
This research investigates one type of test that could not
be done in a simple function learning problem, or in the
mountain-car world. This test consists of examining the
abilities of both methods in a coevolutionary context.

10
11
12
13
14
15
16
17
18

500 20000Episodes

A
ve

ra
ge

 P
ric

e

Fuzzy Sarsa Tile Coding

Figure 11: Fuzzy Sarsa vs. Tile Coding in the Marketplace
Figure 11 presents the results of Fuzzy Sarsa vs. gradient-
descent Sarsa(λ) with tile coding in the same type of
marketplace as the previous tests. In this experiment, the
two algorithms are the only two agents competing in the
market, and therefore, must learn in tandem. There are
enough items for both agents, and thus the goal of the two
algorithms is to learn how to divide the items between
them. Fuzzy Sarsa clearly achieves a significantly better
price than tile coding throughout the experiment. Given
the tile coding agent’s better performance in fixed
strategy experiments, this poor performance is somewhat
unexpected. Before concluding that Fuzzy Sarsa has

Zero Some Lots

0

0.5

1

0 n
3 Labels

M
em

be
rs

hi
p

`
0

0.5

1

0 n
3 Labels

M
em

be
rs

hi
p

`

 Low Medium High

more powerful modelling capabilities in a coevolutionary
context, the poorer performance of the tile coding agent
must be investigated.
In the previous experiment, tile coding vs. a stationary
strategy, there is only one learner. Therefore, the
interactions of the game remain constant and the tile
coding agent is able to refine its fairly course state space
representation to learn a good strategy to use in a
stationary context. In the coevolution experiment, because
more than one agent is learning at the same time, the
interactions of the game fluctuate. This fluctuation makes
it more difficult for each agent to learn an optimal
solution. As indicated in Figure 11, the prices achieved by
the tile coding agent fluctuate more than those achieved
by the Fuzzy Sarsa agent. One possible reason for the
poorer performance of the tile coding agent is that the
generalisation and resolution setting chosen by scanning a
variety of combinations in a stationary strategy
environment does not allow enough resolution to provide
for the types of distinctions needed to perform well in the
coevolution experiment. To determine if the tile coding
settings were affecting the agent’s results, the experiment
was rerun with a selection of other candidate settings.

0 5 10 15 20

T2W2

T4W2

T3W3

T8W4

T16W3

Ti
lin

gs
/W

id
th

 S
et

tin
gs

Average Price

Tile Coding Fuzzy Sarsa
Figure 12: Other tiling settings in the marketplace

coevolution test
Figure 12 presents the averaged price achieved in the last
5000 episodes (out of 20000) by the tile coding agent and
the Fuzzy Sarsa agent when in direct competition with
each other. For both agents, the optimal price achieved is
when the Tile Coding agent is at T2W2. In this
environment, stiff competition increases the performance
of Fuzzy Sarsa. It pushes the algorithm to carefully refine
its distinctions between both cooperative state/action
pairs, pairs that work together to generate a solution, and
competitive ones, pairs that contain the same state
portion.
Since the speed of learning in each individual tile in the
tile coding method is dependant on the number of tilings,
in a one further attempt to boost the algorithm’s
performance the T8W4 test was rerun with increased α
setting. However, with α= 0.8, the performance of the tile
coding agent did not improve.

5. Conclusion

This paper has demonstrated that the performance of a
function approximation method is dependant on the type
of environment. Through a detailed, both fuzzy and tile
coding techniques were shown to perform similarly in
most tests. However, the fuzzy approach was shown to be
more robust with regards to coevolution. While further
parameter tuning may boost the performance of the tile
coding algorithm in the coevolutionary experiment, in is
worth noting that this is not required of the fuzzy
technique. This makes the fuzzy technique easier to use.
Further investigations into this problem will examine
potential tuning issues and investigate the function
approximation methods in other types of coevolutionary
scenarios such as different types of competitive
coevolution and cooperative coevolution.

References

[1] Richard S. Sutton, Andrew Barto, Reinforcement
Learning: An Introduction; MIT Press, Cambridge, MA, 1998.
[2] R. S. Sutton; Generalization in reinforcement learning:
Successful examples using sparse coarse coding; In
Advances in Neural Information Processing Systems, volume
8; The MIT Press, 1996.
[3] Peter Stone, Richard S. Sutton, and Gregory
Kuhlmann. Reinforcement Learning for RoboCup-Soccer
Keepaway. Adaptive Behavior, 13(3):165–188, 2005.
[4] Alexander A. Sherstov and Peter Stone. Function
Approximation via Tile Coding: Automating Parameter
Choice. In SARA 2005, pp. 194–205, Springer Verlag,
Berlin, 2005.
[5] P. Y. Glorennec. Fuzzy Q-learning and Dynamical
Fuzzy Q-Learning. In FUZZ-IEEE, Orlando, FL. 1994
[6] Hamid R Berenji, Fuzzy Q-Learning: A new approach
for fuzzy dynamic programming, IEEE World Congress on
Computational Intelligence., Proceedings of the Third IEEE
Conference on , 26-29 June 1994.
[7] Andrea Bonarini, Delayed Reinforcement, Fuzzy Q-
Learning and Fuzzy Logic Controller, In Herrera, F.,
Verdegay, J. L. (Eds.) Genetic Algorithms and Soft
Computing, (Studies in Fuzziness, 8), Physica-Verlag, Berlin,
D, 447-466, 1996.
[8] Andrea Bonarini, Reinforcement distribution for fuzzy
classifiers: a methodology to extend crisp algorithms,
Proceedings of the IEEE World congress on Computational
Intelligence (WCCI) - Evolutionary Computation, IEEE
Computer Press; Piscataway, NJ; 51-56; 1998.
[9] L Tokarchuk, J Bigham, and L Cuthbert, Fuzzy Sarsa:
An approach to fuzzifying Sarsa Learning, Proceedings of
the International Conference on Computational Intelligence
for Modeling, Control and Automation, 2004
[10] Albus, J. S; Brains, Behavior, and Robotics.
BYTE/McGraw-Hill, Peterborough, 1981.
[11] Lashon B. Booker, Approximating Value Functions in
Classifier Systems, technical paper, The MITRE
Corporation, February 2005
[12] Mountain-car C++ and Lisp Implementation
http://www.cs.ualberta.ca/~sutton/MountainCar/
MountainCar.html

