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ABSTRACT 

Reinforcement learning (RL) is a machine learning 
technique for sequential decision making. This approach 
is well proven in many small-scale domains. The true 
potential of this technique cannot be fully realised until it 
can adequately deal with the large domain sizes that 
typically describe real world problems. RL with function 
approximation is one method of dealing with the domain 
size problem. This paper investigates two different 
function approximation approaches to RL: Fuzzy Sarsa 
and gradient-descent Sarsa(λ) with tile coding.  It presents 
detailed experiments in two different simulation 
environments on the effectiveness of the two approaches.  
Initial experiments indicated that the tile coding approach 
had greater modelling capabilities in both testbed 
domains. However, experimentation in a coevolutionary 
scenario has indicated that Fuzzy Sarsa has greater 
flexibility. 
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1.  Introduction 

In order to move reinforcement learning (RL) out of “toy” 
domains, and realize its full potential in “real world” 
applications, RL must be able to efficiently cope with 
large state spaces. In the past few years there has been 
considerable research in the area of function 
approximation for RL. This is a particularly important 
area, as function approximation techniques are able to 
collapse the state space into a manageable size, and use 
their abilities to generalize between similar states and 
actions, to speed the learning process. 
There has been significant work using linear function 
approximation, particularly in association with tile coding 
[1]. While a variety of different encoding techniques have 
been proposed, a good deal of success has been reported 
by the machine learning community with the method 
called tile coding [2][3][4]. This linear encoding 
technique collapses the state space down into a large 
feature vector and learns the associated weights of each 
feature. Another related solution, popular in the control 
system domain, is suggested by fuzzy set theory. A fuzzy 
set is a mapping from a set of real numbers to a set of 
symbolic labels. This approach stores states as fuzzy 

states. The basic principle of fuzzifying reinforcement 
learning is to utilise fuzzy sets in state representation. In 
this manner, many states can be represented with only a 
few fuzzy states. There have been several algorithms that 
utilise this idea and are presented as fuzzy reinforcement 
learning [5][6][7].  
The primary contribution of this paper is the identification 
of a scenario in which the type of function approximation 
used makes a large difference. As shown, both methods 
perform reasonably well in stationary worlds, however in 
a coevolutionary context, Fuzzy Sarsa out performs tile 
coding.  
The remainder of this paper is organized as follows. In 
Section 2, a review of the basic RL principles, fuzzy RL 
and tile coding is presented. Section 3 presents the two 
testbed domains. Section 4 presents the results of some 
experiments in these domains and Section 5, concludes 
with a summary and further areas for investigation. 

2. Learning Algorithms 

The following section begins with a brief overview of the 
principles of RL. Finally, it presents a synopsis of the two 
implemented function approximation algorithms, Fuzzy 
Sarsa and gradient-descent Sarsa(λ) with tile coding.  

2.1 Reinforcement Learning 

RL belongs to a family of unsupervised learning 
algorithms. Unsupervised algorithms force the learner to 
try to learn from its experiences. RL learners learn from 
simulated data. These algorithms build a mapping of 
situations to actions. A RL algorithm observes the current 
state of its world, and learns the best possible action from 
that state. The learner is never told what actions to take 
but rather what results are desired. It is up to the learner 
how they achieve the result. Reinforcement learners have 
4 main elements: a policy, a reward function, a value 
function and optionally, a model of the environment. [1]. 
The typical objective for the learner is to develop a policy 
that maximizes long term return.  
Basic RL is generally described as tabular, since its 
state/action space can be stored in table. Basic RL 
algorithms are limited when dealing with large, possibly 
continuous, state spaces. The size of lookup table that 
would be required, is not only computationally difficult, 
but results in very slow learning. A solution to this 
problem has been addressed by various different methods 
of function approximation. 



2.2 Fuzzy Sarsa 

Fuzzy Sarsa is based on the original Sarsa algorithm using 
fuzzification techniques presented in Bonarini’s Fuzzy Q-
Learning [8]. This algorithm is presented in full in [9].  
This section will first review the principles of fuzzy logic 
applicable to Fuzzy Sarsa, before reviewing the Fuzzy 
Sarsa algorithm. 
In fuzzy, reduction of the state space is based on storing 
the state/action space in fuzzy sets. Fuzzy sets are an 
extension of set theory that utilizes a set of fuzzy 
descriptors in place of the traditional set of crisp values. A 
fuzzy descriptor consists of a descriptor label to represent 
a range of crisp values.  In the fuzzification process, a 
crisp state s matches a set of fuzzy states. To determine 
the fuzzy state, a mapping from the set of real numbers 
representing the current state to a set of symbolic state 
labels is created. Consider a world descriptor 
Money_Left. The value of Money_Left in a crisp state 
consists of a discrete number, say ML(x), x∈Z  = [0..15]. 
In a fuzzy state, the same value x maps to one or more of 
the fuzzy labels associated with Money_Left = 
[Lots_Money, Little_Money]. X’s degree of belonging to 
any particular fuzzy label is defined by the membership 
function (µ) associated with the fuzzy set Money_Left. 
For example, the µMoney_Left might be described as: 
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Figure 1: Membership function of Money_Left  

The crisp values are fuzzified using these membership 
functions. Each crisp value will belong, to some degree, 
to one or more fuzzy set labels. The fuzzification of 
Money Left = 12 results in µLots_Money (12) = 0.87 and 
µLittle_Money (12) = 0.13. To fuzzify a crisp state, the 
membership of each state item is fuzzified, and, typically, 
the AND is taken to obtain the overall state membership 
or degree of matching. In the case of a crisp state 
S1={Money_Left = 12, Auctions_Left = 3}, crisp state S1 
belongs to fuzzy states Ŝ1b and Ŝ1d with membership 0.87 
and 0.13 respectively. All possible membership 
calculations for S1 are depicted in Figure 2. 
 

 

Fuzzy 
 State 

Money Left µMoney  

Left 
Auctions Left µAuctions 

Left 
µS1 

Ŝ1a Lots_Money 0.87 Few_Auctions 0 0 
Ŝ1b Lots_Money 0.87 Many_Auctions 1 0.87 
Ŝ1c Little_Money 0.13 Few_Auctions 0 0 
Ŝ1d Little_Money 0.13 Many_Auctions 1 0.13 

 

Figure 2: Fuzzification of crisp state S1 
Fuzzy Sarsa uses fuzzy representation of both states and 
actions. The degree of matching is still based on the fuzzy 
state, however membership functions for the fuzzification 

and defuzzification of fuzzy actions are also required.  For 
example, Bid_High might defuzzify to the crisp action 
Bid 8. This fuzzy state action pair is referred to as a fuzzy 
rule. In a fuzzy rule, the fuzzy state corresponds to the 
antecedent of the rule and the fuzzy action is the 
consequent. All fuzzy rules have a strength associated 
with them. It is this strength, fuzzy Q (FQ) value that this 
type of fuzzy RL learns.  
Greedy action selection for a fuzzy RL algorithm matches 
the crisp state s to one or more sets, sub-population, of 
fuzzy rules.  Each sub-population is identified by having a 
common antecedent. The rule that is chosen from this 
sub-population, is the rule with the highest strength value. 
Since a crisp state s might match a number of fuzzy states 
(set )(sFS ) as seen in Figure 2 (Both Ŝ1b and Ŝ1d match 
the fuzzy state S1), a method of combination is needed to 
determine what action to take when all rules could be 
proposing different actions. For all )(ˆ sFSs∈ , the action 
proposed for each ŝ, is the greedy action (highest FQ-
value) proposed by the fuzzy rule. The final action 
proposed is a weighted average of the actions, in terms 
the degree of matching to the crisp state s, proposed by 
each rule triggered. The weighted average is computed 
using the centre of mass approach:  
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where n is the number of fuzzy states matching crisp state 
s, and 

isa ˆ  is the best action (having been de-fuzzified) 
proposed by any rule matching ŝi.  

  Fuzzy State Fuzzy Action   
µ  Money Left Auctions Left Bid  FQ(ŝ,â) 

 Lots_Money Many_Auctions Bid_High  0.4 0.7 
 Lots_Money Many_Auctions Bid_Low  0.1 
 Little_Money Few_Auctions Bid_High  0.2 0.4 
 Little_Money Few_Auctions Bid_Low  0.6 

Figure 3: Fuzzy state action pairs 
To clarify greedy action selection, consider the example 
from Figure 3. Some crisp state s, matches the two fuzzy 
states [Lots_Money, Many_Auctions] with degree 0.7 and 
[Little_Money, Few_Auctions] with degree 0.4. Each of 
these two fuzzy states has 2 rules associated with them. 
For the state [Lots_Money, Many_Auctions], the greedy 
action will be to Bid_High, since that rule has the highest 
FQ(ŝ, â) value. Similarly, for the state [Little_Money, 
Few_Auctions], Bid_Low will be selected. The fuzzy 
actions are now defuzzified to obtain a crisp output. 
Bid_High is translated via some defuzzification function 
as bid 8 and Bid_Low as bid 4. Thus the actual action 
taken is calculated as follows would be 6.5. For Fuzzy 
Sarsa, the FQ value update formula is as follows: 
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The full Fuzzy Sarsa algorithm is presented in [9]  

2.3 Gradient-descent Sarsa(λ) and tile coding 

Gradient-descent methods rely on the state space being 
encoded in a parameter vector of features, 

→

θ . Any state 
can be described by one or more of these features. In 
gradient-descent methods, since the state space is 

represented by a parameter vector 
→

θ , the Q(s,a) value is 

calculated by using the sum of 
→

θ  values present for that 
state/action pair.  In the case of the marketplace example, 
the state action pair S1={Money_Left = 12, 
Auctions_Left = 3}, a = {6} now has its own vector of 

features s

→

φ . This vector is a big binary vector that 

indicates whether the corresponding feature in s

→

θ  is 
present in the state. The Q(s,a) value is calculated as: 
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Most gradient-descent methods try to minimise the error 
on the observed examples by adjusting the entry for the 
present feature by a small amount. While there are both 
on-policy and off-policy gradient-descent methods, this 
study uses on-policy algorithms. Gradient-descent 
Sarsa(λ) is given in full in [1]. 
One of the most important aspects of gradient-descent  
methods is feature selection. A variety of coding 
techniques for feature selection such as radial basis 
functions, kanerva coding, etc, have been introduced. A 
good review of these techniques is proved by [1]. In 
particular, many researchers have reported success with 
tile coding [2][3][4] and therefore it has an established set 
of published results for comparison.  
Tile coding, or CMAC, was first introduced by Albus 
[10]. Over the last few years it has been adapted for use in 
reinforcement learning and renamed tile coding [1]. The 
basic principle behind tile coding is to overlay the state 
spaces with exhaustive partitions. Each partition is called 
a tiling, and every element in the partition a tile. Each tile 
makes up one feature and the total set of tiles in all tilings 
→

θ .  The resolution is divided into generalisation and 
granularity parameters. The generalisation parameter 
describes the shape of the tiles. The granularity parameter 
is described by the number of tiling overlaying the state 
space. These overlays are important in tile coding’s 

ability to make fine distinctions. The combination of 
generalisation and granularity is called the overall 
resolution. If a state space is described by two state 
variables x and y, one possible way to tile it is to create 
4x4 regions across the state space. This creates broad 
generalisation between state values that are within 0.25 of 
each other (in both x and y). This level of generalisation is 
relatively coarse. To refine the detail of what is learnt, 
another tiling offset from the original can be placed over 
the state space. Figure 4 shows the original 2-dimensional 
state space with 2 offset 4x4 tilings. The example state 
lies in exactly one tile in each tiling. Generalisation of 
that state occurs with any other state that lies within that 
tile. Since the offset is different for each tiling, the cluster 
of states surrounding the original state differs. 

 
Figure 4: Determining the tiles of a state 

The overall resolution of this example is 0.25/2 or 0.125. 
Finer resolution can be achieved by increasing the number 
of tilings. In summary, the shape and size of the tiles 
determines the type of generalisation that occurs between 
states, whereas the number of tiling overlays controls the 
distinctions made about them. 

3. Test Domains 

This section presents the two testbed domains used in the 
experiments. 

3.1 Mountain-Car World 

The mountain-car problem is described in detail by [1]. In 
this problem the learner controls an underpowered car that 
is situated in a deep valley. The objective is to get the car 
to the top of the mountain. The difficulty is that the car is 
underpowered and thus cannot gain enough momentum 
by simply going forward to get it to the top of the 
mountain. In order to find a solution, the learner must first 
move away from the goal. This type of problem is one 
that RL typically find difficult. The actions in this world 
are: full throttle forward, full throttle backwards, or zero 
throttle. The car moves according to: 

][ 11 ++ += ttt ppboundp  
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Where tp  and tv  is the car’s position and velocity at 

time t and ta , the action taken. The bound operation 



enforces 6.02.1 1 ≤≤− +tp  and 07.007.0 1 ≤≤− +tv .  The 
rewards in this domain are -1 at all non-terminal states. 
This environment serves as the tile coding control world, 
as the implementation is based on the published code of 
the mountain-car world including the gradient-descent 
Sarsa(λ) with tile coding learner, provided by Sutton [12].   

3.2 An Agent Marketplace Testbed 

The marketplace used for this experiment is a first price 
sealed bid auction where the task for any agent is to win 
some number of items (i) during (n) auctions. Time is 
broken up into equal periods, termed episode. During 
each episode, a certain quantity q of items is available in n 
auctions. The algorithms that are implemented in this 
experiment attempt to learn a strategy over the episode of 
auctions. In the following discussion the term auction 
refers to one event of auctioning an item within an 
episode, whereas an auction game refers to the set of 
auctions that take place during an episode. The rewards at 
the terminal states are Iwon * Mt / Mt-a if the agent has 
purchased all items required and -Ineeded if not. At all 
non-terminating state-actions, the agent receives a default 
reward of 0.   
This domain was chosen for two reasons. The first reason 
is the added complexity of the state/action and goal space. 
Although variables in the marketplace domain are not 
continuous, the state/action space is considerably different 
from the mountain-car world. Auctions have three 
different state variables, rather than the two of the 
mountain-car world. This increase tests the modeling 
abilities of each type of function approximation method. 
The action space, price to bid, is a more populated action 
space than that of the mountain-car world (forward, 
reverse, no throttle). Finally, in the marketplace world, 
there are many possible goal states, whereas the 
mountain-car world only has one. The second reason for 
choosing the marketplace domain is that it is a domain in 
which Fuzzy Sarsa has performed reasonably. [9] 

4. Experimental Results 

4.1 Experiments in the Mountain-car World 
For the first experiment to determine the effectiveness of 
the two different forms of function approximation RL, the 
Fuzzy Sarsa algorithm was implemented in the mountain-
car world.  The fuzzy algorithm was then compared to the 
established tile coding example. The gradient-descent 
Sarsa(λ) with tile coding used 9x9 grid tilings, as 
described in [1]. As depicted in Figure 5, the fuzzy 
algorithm used 7 label velocity and position state 
variables, and 2 label actions.  
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Figure 5: Membership functions for mountain-car world. 

Using the parameters γ=1, α=0.6 and ε = 0.025 (with 
annealing for epsilon to allow the algorithms to settle on a 
greedy policy), both algorithms found a solution. Figure 6 
gives the average solution found over 101 episodes. 
While both algorithms perform well in this domain, 
gradient-descent Sarsa(λ) with tile coding achieves a 
marginally more optimal and stable solution.  
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Figure 6: Stability of solution in Mountain-car problem 

To investigate the reason behind this improvement, the 
final action policy for each algorithm is illustrated by the 
two surface maps in Figure 7.   
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Figure 7: Final action policies for mountain-car world. 
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The surface maps indicate that both algorithms have 
learnt policies that have broad areas of similarity. 
However, it is apparent that the policy learnt by Fuzzy 
Sarsa lacks the fine distinctions apparent in the policy of 
tile coding. 

4.2 Experiments in the Marketplace 

The state space consists of 3 major categories: 
Money_Left, Auctions_Left and Items_Left. Actions 
include bids ranging from the original offer price to the 
agent’s maximum price and abstaining. Each category is 
divided into three labels. The general membership 
function used for all state and action variables is given in 
Figure 8. 

       State           Action 
Figure 8: Fuzzy membership functions for the marketplace 
The tile coding setting used was 2 tilings of 2x2x2. The 
RL parameters were α = 0.2, ε=0.03, and γ = 1.0. The 
settings were determined following a “good enough” 
methodology. For the fuzzy memberships, several 
different combinations were trialed before deciding on the 
three label functions. For the tile coding settings, a variety 
of candidate settings were empirically evaluated in the 
marketplace before choosing the most effective setting. 
The RL parameter settings were chosen by using the top 
ten best parameters found for both algorithms using a 
scanning method. From both sets of top ten parameter 
settings, the top parameter in common was selected. 
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Figure 9: Learners against a linear strategy 
For the experiments, an auction game consisted of 40 
auctions, of which, each agent was required to win 20 
items. Each function approximation learner is tested 
against two stationary strategies, Linear and Greedy. An 
agent following a stationary strategy, follows the same 
behavioural policy in every auction game. A linear 

strategy slowly increases its bid over time, while a greedy 
strategy bids the maximum it can until it has obtained all 
needed items. The results presented are averaged over 10 
trials. Figure 9 indicates that both algorithms perform 
similarly when competing with a linear strategy, whereas 
Figure 10 indicates that the solution found by tile coding 
offers a small, but significant improvement over that of 
the fuzzy approach.  
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Figure 10: Learners against a greedy strategy 

4.3 Coevolution experiments in the Marketplace 

The results in both the mountain-car and the marketplace 
agree with the recent findings of [11], in their analysis of 
the abilities of fuzzy and tile coding function 
approximation in the learning of a selection of functions. 
This research investigates one type of test that could not 
be done in a simple function learning problem, or in the 
mountain-car world. This test consists of examining the 
abilities of both methods in a coevolutionary context. 
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Figure 11: Fuzzy Sarsa vs. Tile Coding in the Marketplace  
Figure 11 presents the results of Fuzzy Sarsa vs. gradient-
descent Sarsa(λ) with tile coding in the same type of 
marketplace as the previous tests. In this experiment, the 
two algorithms are the only two agents competing in the 
market, and therefore, must learn in tandem. There are 
enough items for both agents, and thus the goal of the two 
algorithms is to learn how to divide the items between 
them. Fuzzy Sarsa clearly achieves a significantly better 
price than tile coding throughout the experiment. Given 
the tile coding agent’s better performance in fixed 
strategy experiments, this poor performance is somewhat 
unexpected.  Before concluding that Fuzzy Sarsa has 

Zero          Some           Lots 

0

0.5

1

0 n
3 Labels

M
em

be
rs

hi
p

`
0

0.5

1

0 n
3 Labels

M
em

be
rs

hi
p

`

    Low     Medium       High 



more powerful modelling capabilities in a coevolutionary 
context, the poorer performance of the tile coding agent 
must be investigated. 
In the previous experiment, tile coding vs. a stationary 
strategy, there is only one learner. Therefore, the 
interactions of the game remain constant and the tile 
coding agent is able to refine its fairly course state space 
representation to learn a good strategy to use in a 
stationary context. In the coevolution experiment, because 
more than one agent is learning at the same time, the 
interactions of the game fluctuate. This fluctuation makes 
it more difficult for each agent to learn an optimal 
solution. As indicated in Figure 11, the prices achieved by 
the tile coding agent fluctuate more than those achieved 
by the Fuzzy Sarsa agent. One possible reason for the 
poorer performance of the tile coding agent is that the 
generalisation and resolution setting chosen by scanning a 
variety of combinations in a stationary strategy 
environment does not allow enough resolution to provide 
for the types of distinctions needed to perform well in the 
coevolution experiment. To determine if the tile coding 
settings were affecting the agent’s results, the experiment 
was rerun with a selection of other candidate settings.  
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Figure 12: Other tiling settings in the marketplace 

coevolution test 
Figure 12 presents the averaged price achieved in the last 
5000 episodes (out of 20000) by the tile coding agent and 
the Fuzzy Sarsa agent when in direct competition with 
each other. For both agents, the optimal price achieved is 
when the Tile Coding agent is at T2W2.  In this 
environment, stiff competition increases the performance 
of Fuzzy Sarsa. It pushes the algorithm to carefully refine 
its distinctions between both cooperative state/action 
pairs, pairs that work together to generate a solution, and 
competitive ones, pairs that contain the same state 
portion.  
Since the speed of learning in each individual tile in the 
tile coding method is dependant on the number of tilings, 
in a one further attempt to boost the algorithm’s 
performance the T8W4 test was rerun with increased α 
setting. However, with α= 0.8, the performance of the tile 
coding agent did not improve.  

5.  Conclusion 

This paper has demonstrated that the performance of a 
function approximation method is dependant on the type 
of environment. Through a detailed, both fuzzy and tile 
coding techniques were shown to perform similarly in 
most tests. However, the fuzzy approach was shown to be 
more robust with regards to coevolution. While further 
parameter tuning may boost the performance of the tile 
coding algorithm in the coevolutionary experiment, in is 
worth noting that this is not required of the fuzzy 
technique. This makes the fuzzy technique easier to use. 
Further investigations into this problem will examine 
potential tuning issues and investigate the function 
approximation methods in other types of coevolutionary 
scenarios such as different types of competitive 
coevolution and cooperative coevolution. 
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