
Fuzzy Sarsa: An approach to fuzzifying Sarsa Learning 
 

 L. Tokarchuk1, J. Bigham1, and L. Cuthbert1 

 1Electronic Engineering, Queen Mary, University of London,  
Mile End Road, London, E1 4NS 

E-mail: {l.n.tokarchuk,j.bigham, laurie.cuthbert}@elec.qmul.ac.uk 

Abstract 

This paper discusses the two general approaches for learning in an agent electronic marketplace: 
reinforcement learning and fuzzy reinforcement learning. It examines the implementation of the TD 
learning algorithm Sarsa, before examining an approach to TD fuzzy reinforcement learning. We then 
extend the fuzzy learning algorithms in order to be comparable to the on-policy TD learning of Sarsa, 
FQ Sarsa and Fuzzy Sarsa. This paper discusses some of the issues around implementation of the 
reinforcement algorithm Sarsa, FQ Sarsa and Fuzzy Sarsa in an agent auction game. Finally, we 
discuss the convergence and optimality results of implementing these approaches to learning in an 
agent marketplace game. 

1 Introduction 

Over the last few years there has been a continued interest in developing systems based on 
autonomous agents. Given that interest, it is increasingly important that agents are capable of 
learning about the complex and dynamic environments that they exist in. A fixed or stationary 
strategy in such an environment rarely serves as the best policy for an agent. Agents that have 
the ability to learn about their surroundings typically do better and need less supervision than 
those that do not. As agent societies become more complex, agent behaviours become more 
difficult to manage. One technique of managing agent behaviours is to have self-adapting 
agents. These agents learn about their surroundings by utilising an online learning method 
such as one of those offered by the family of algorithms available in reinforcement learning 
[1]. This type of learning is appropriate in domains where existing data sets are not 
necessarily available for training.  

One topic that has sparked interest in the last few years is the possibility that a learning agent 
may be able to gain added benefit from observing the other agents in its environment. 
Moreover, there are certain situations where agents may gain added benefit from being able to 
model and predict the behaviours of other agents they encounter. There have been several 
attempts to address this problem including methods based on game theory, such as the 
recursive modelling method algorithm (RMM) [2], and Vidal’s framework [3]. RMM has 
several downsides. The first of these is the assumption of knowledge of other’s value 
functions, while another is the computational complexity. Modelling techniques based on an 
agent’s knowledge of another agent’s value functions are inherently flawed in a competitive 
environment. Therefore, we need another method of modelling. One such method is 
suggested by genetics, is that of coevolution [4]. Coevolution allows a learner to evolve in 
response to new information. In other words, as learner one changes its strategy another 
learner changes to cope with it. Reinforcement learning does not immediately present a 
solution for providing agent co-evolution, as it suffers the problem of dimensional explosion. 
As the problem space in reinforcement learning becomes larger, so does the state space which  



an agent must reason about. In order for an agent to evolve alongside other learning agents, 
that agent must maintain a model of the other agents. Since adding agent modelling to 
reinforcement learning would vastly increase the state space an agent needs to learn, we first 
investigate ways of decreasing the state space.  

Fuzzy sets theory presents a possible solution to reducing the state space. A fuzzy set is a 
mapping from a set of real numbers to a set of symbolic labels. A fuzzy state consists of a set 
of symbolic labels, to which a discrete number can be mapped. The basic principle of 
fuzzification is to utilise fuzzy sets in state representation. Therefore, we can represent many 
states with only a few fuzzy states. There have been several algorithms that utilise this idea 
and are presented as fuzzy reinforcement learning [5, 6].The first step we take is to represent 
our learning problem in terms of fuzzy logic. We call this process fuzzification of the learning 
problem. We then present a new version of the Sarsa [1] learning algorithm introduced by 
Sutton and Barto, called FQ Sarsa, which simply reduces the learning state space. We then 
investigate a more “fuzzy” approach by using the framework presented by Bonarini [7].  

The paper is divided into three major sections: Section 2 describes the testing environment for 
our reinforcement algorithms. Section 3 discusses the Sarsa reinforcement learning technique, 
and how to apply it to a marketplace game. Section 4 discusses issues around fuzzifying 
marketplace state space. Section 5 presents our algorithms, FQ-Sarsa and Fuzzy Sarsa. Finally, 
Sections 6 and 7 present the results of implementing such algorithms in an agent marketplace. 

2 An Auction Test Bed 

In order to examine the reinforcement algorithms presented in the rest of this paper, a simple 
auction marketplace environment was simulated. The marketplace is a first price sealed bid 
auction where the task for any agent is to win some number of items (i) during (n) auctions. 
Essentially, time is broken up into equal periods, each termed an episode. An episode is 
comprised of the time taken to complete n auctions. During each episode , a certain quantity q 
of items is available. The algorithms that are implemented in this experiment attempt to learn 
a strategy over the episode of auctions. In the following discussion the terms auction and 
auction game have particular meaning. An auction refers to one event of auctioning an item 
within an episode, whereas an auction game refers to the set of auctions that take place during 
an episode. The following sections present the reinforcement learning algorithms 
implemented in our marketplace; namely: 

• Sarsa – a classic temporal difference (TD) learning reinforcement learning algorithm. 
• FQ Sarsa – a fuzzy learning accelerator for Sarsa learning. 
• Fuzzy Sarsa – our “fuzzification” of Sarsa following Bonarini’s guidelines. 

3 Sarsa 

Sarsa is an on-policy TD learning algorithm. The general principle of Sarsa is summarized by 
its name: State, Action, Reward, State, Action. In Sarsa, an agent starts in a given state, from 
which it does some action. After the action, the agent receives a reward and has transitioned 
into a new state from which it can take another action. In reinforcement learning, a state 
consists of a set of discrete values representing the current state of the world. Figure 1 
illustrates potential states for a marketplace agent. In this case, the agent has some discrete 
values which make up its state of the world. These are the amount of money left, and the 
number of items still left to buy.  



 State Money_Left Items_to_Buy 
S1 12 3 
S2 5 1      

 

Figure 1: State (Crisp State) Representation  

In Sarsa, the current state of the agent‘s environment is represented by a particular state. The 
agent recognizes which state it is in (say state S1), and executes some action. This action 
causes a translation to another state. In traditional reinforcement learning algorithms like 
Sarsa, we attempt to learn the value, or Q-Value, of a state-action pair- Q(s,a). For the 
example state S1 in Figure 1, there would be several entries in our table corresponding to all 
the possible actions. If the available actions are bid 8, bid 6, and bid 4, our entries for S1 
would become:  

  

State Action
Money_Left Items_to_Buy Bid 

12 3 8 
12 3 6 
12 3 4 

         

 

S1

S9

S7

bid 4 

bid 6 

S*

action * 

 
Figure 2: State action (crisp) pairs and Possible State action translations. 

Furthermore, executing an action from S1, results in the agent moving into a new state. Sarsa 
is an on-policy algorithm. This means that the learning occurs only from experience. An on-
policy learner selects an action, receives a reward and observes the new state. As with all 
reinforcement style algorithms, there must be a trade off between exploration and exploitation. 
An exploratory action and exploiting action is chosen as a result of the current policy. In the 
version of Sarsa implemented in our marketplace test bed, the action selection policy 
implemented was the ε greedy selection policy. ε greedy policy selection operates on the 
simple guideline of choosing the most optimal action based on the current known rewards or 
Q-values for all possible actions. The agent chooses which action to take based on 
maximising its reward (greedy selection). For every selection there is some probability ε that 
rather than choosing the optimal greedy action, the algorithm will choose randomly to explore 
other actions in the hope that they may lead to a more optimal solution. In order to maximise 
exploration at the beginning of the simulation, an annealing factor is applied to ε until ε 
reaches a predefined minima (0.01). Thus the policy becomes: 

γε  Randomly explore a different action. 
(1-γε)  Make the greedy choice. 

After an agent has executed an action in a particular state, the agent receives a reward. The 
rewards used in this simulation were based on overall achievement of the agents’ goal. They 
can be summarized as follows: 

POSITIVE REWARD = Iwon * Mt / Mt-a  
NEGATIVE REWARD = -Ineeded 
DEFAULT REWARD  = 0 

Where I is the number items and M the amount of money the agent has. The agent receives a 
positive reward at the end of the episode if it has achieved its goal (i.e. it bought the number 



of required items) and a negative reward if it has not. At all other non-terminating state-
actions, the agent receives the default reward.  

The algorithm then proceeds as follows: 
All Q(s,a) values are initialised (to 0 in our case). 
Repeat for each episode (or auction game){ 
 Initialize st (start state for the auction game). 
 Choose at from st using ε greedy selection policy. 
 Repeat for each step(auction) in the episode(auction game){ 
  Take action at, observe r and st+1  
  Choose at+1 from st+1 using ε greedy selection policy  

)]a,Q(s - )a,Q(s [)a,Q(s )a,Q(s tt1t1t1tttt +++ ++= γα tr  

st = st+1, at = at+1 
} 

} 

Figure 3: Sarsa Algorithm 

4 Fuzzy Classifiers 

In order to investigate fuzzy learning, the principles of fuzzification need to be investigated. 
As stated, a fuzzy set is a mapping from a set of real numbers to a set of symbolic labels. A 
fuzzy state consists of a set of symbolic labels, to each of which a discrete number is mapped. 
The basic principle of fuzzification is to utilise fuzzy sets in state representation. For example, 
consider the world descriptor Money_Left from the states described Figure 1. The value of 
Money_Left in a crisp state consists of a discrete number, say ML(x), x ∈ZZ  =[0..15]. However, 
in a fuzzy state, the same value x maps to one or more of the fuzzy labels associated with 
Money_Left = [Lots_Money, Little_Money]. X’s degree of belonging to any particular fuzzy 
label is defined by the membership function (µ) associated with the fuzzy set Money_Left. So 
for example, the µMoney_Left and µItems_to_Buy  might be described as: 

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Money Left

M
em

be
rs

hi
p

Little_Money Lots_Money 

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Item  to Buy

M
em

be
rs

hi
p

Few_Items Many_Items 

 
Figure 4: Membership function of Money_Left and Items_To_Buy 

It is important to note that the membership functions can take on other patterns (bell, 
trapezoidal, etc) and can be additive (membership functions that total 1 for any given crisp 
value (Σi =1 to n  µi(x) = 1)), or non-additive. However, it has been shown that systems that are 
additive are more robust to noise, design error etc. [7]. Crisp values are then fuzzified using 
these membership functions. Each crisp value will belong to some degree, to one or more 
fuzzy set labels. In Figure 1, the fuzzification of Money LeftS1 = 12 results in:  

µLots_Money (12) = 0.87 and µLittle_Money (12) = 0.13 

In order to fuzzify a crisp state, the membership of each item of the state is fuzzified, and the 
AND of each item is calculated to obtain the state’s membership or degree of matching. In the 
case of state S1 of Figure 1, crisp state S1 belongs to fuzzy states Ŝ1b and Ŝ1d with 



membership 0.87 and 0.13 respectively. All possible membership calculations for S1 are 
depicted in Figure 5. 

 Fuzzy 
State 

Money Left µMoney Left Items to Buy µItems to buy µS1 

Ŝ1a Lots_Money 0.87 Few_Items 0 0 
Ŝ1b Lots_Money 0.87 Many_Items 1 0.87 
Ŝ1c Little_Money 0.13 Few_Items 0 0 
Ŝ1d Little_Money 0.13 Many_Items 1 0.13 

 
Figure 5: Fuzzification of Crisp State S1 

A system which uses a fuzzy representation of both states and actions will have entries along 
the lines of Figure 6. The membership calculations are still specific to the fuzzy state rather 
than state/action pairs, however membership functions for fuzzy actions are still required as 
they must be fuzzified and defuzzified before use.  

  

Fuzzy State Fuzzy Action 
Money Left Items to Buy Bid 
Lots_Money Many_Items Bid_High 
Lots_Money Many_Items Bid_Low 

 
Figure 6: Fuzzy state action pairs 

For example, Bid_High might defuzzify, via the membership function, to the crisp action Bid 
8. This type of fuzzy state action pair is referred to as a fuzzy rule where the fuzzy state 
corresponds to the antecedent of the rule and the fuzzy action proposed is the consequent. As 
a fuzzy rule it is read as: 

if Lots_Money and Many_Items then Bid_High 

All fuzzy rules have a strength associated with them. It is this strength (FQ value) that most 
fuzzy reinforcement algorithms attempt to learn. In the action selection portion of a system, if 
a crisp state s matches a sub-populations’ antecedent, the rule that is chosen is the rule with 
the highest strength value. However, since a crisp state s might match a number of fuzzy 
states (set )(sFS )  as seen in Figure 5 (Both Ŝ1b and Ŝ1d match the fuzzy state S1), a method 
is needed in order to determine what action to take when all rules could be proposing different 
actions. For all )(ˆ sFSs∈ , there will be at least one matching fuzzy state action pair, or fuzzy 
rule (r). The action proposed for each ŝ, will be the greedy action (or the action proposed by 
the fuzzy rule with the highest QS-value). Therefore, the resulting action proposed, is a 
weighted average of the actions proposed by each rule triggered. These actions are weighted 
in terms of how appropriate each rule, or the degree of matching of the crisp state s, with the 
antecedent of the rule. The weighted average is computed using the centre of mass approach:  

∑
∑

=

==

ni
i

ni
si i

a
a

..1

..1
ˆ

µ

µ
       (1) 

where n is the number of fuzzy states matching crisp state s and 
isa ˆ  is the best action (having 

been de-fuzzified) proposed by any rule matching ŝi. Any fuzzy state with membership > 0 is 
considered in the action calculation.  



 

  Fuzzy State Fuzzy 
Action 

  

µ  Money Left Items to Buy Bid  FQ(ŝ,â) 
 Lots_Money Many_Items Bid_High  0.4 0.7 
 Lots_Money Many_Items Bid_Low  0.1 
 Little_Money Few_Items Bid_High  0.2 0.4 
 Little_Money Few_Items Bid_Low  0.6  

Figure 7: Fuzzy state action pairs 

Consider a crisp state s, which matches the two fuzzy states Lots_Money, Many_Items with 
degree 0.7 and Little_Money, Few_Items with degree 0.4. Each of these two fuzzy states have 
2 rules associated with them. For the state Lots_Money, Many_Items, the greedy action will 
be to Bid_High, since that rule has the highest FQ(ŝ, â) value. Similarly for the state 
Little_Money, Few_Items, Bid_Low will be selected. The fuzzy actions are now defuzzified 
to obtain a crisp output. Bid_High is translated as bid 8 and Bid_Low as bid 7. The actual 
action taken is calculated as follows: 

( ) ( )( ) 5.6
)4.07.0(

4*4.08*7.0
=

+
+

=a  

4.1 Fuzzy Q-Learning 

Bonarini presents a different approach which attempts to account for more fuzzy principles 
than just fuzzy sets. In Bonarini’s approach, crisp states are fuzzified into fuzzy states, and 
fuzzy states propose a fuzzy action. Both crisp states and actions are converted into fuzzy 
states and fuzzy actions. State fuzzification and action selection (following the centre of mass 
approach) occurs as discussed in Section 4. The fuzzy state actions or rules, are divided into 
sub-populations of rules. A sub-population is populated with rules that have the same 
antecedent (or state portion). For example, the rules in Figure 6 make up a sub-population. 
They all contain the same antecedent, but propose different consequents (or actions). 

Bonarini presents several different forms of Fuzzy RL learning. In fuzzy versions of Q-
learning and TD-λ are presented. The Q-learning algorithm, which we will base our 
extensions on, is presented here:  

))(ˆ)),((ˆmax()(ˆ)(ˆ
11 rVasrVRrVrV kikikikrkk j

−++= ++ ξγαξ    (2) 

where )(ˆ rVk is the value of rule r, R is the reward received, α is the learning rate, γ the future 
rewards discounting factor and i

tc 1−
ξ the fuzzification factor. The primary new contribution 

from Q learning is the fuzzification factor and the update of all rules that are triggered (since 
in any given fuzzy state multiple rules are triggered to calculate the resulting action). The 
fuzzification factor weights the contribution of each fuzzy rule. The contribution is the degree 
of matching of the current state s to the fuzzy state ŝ ( )(ˆ t

I
s sµ ). Divided by the sum of all 

degrees of matching for all fuzzy states ŝ that match the current state s ( )(
,1 ˆ ktk s si∑ =
µ ).  

)(
)(

,1 ˆ

ˆ
)ˆ,ˆ(

ktk s

ts
as s

s

i

i

ii ∑ =

=
µ

µ
ξ      (3) 



5 Fuzzifying Sarsa 

Section 3 discusses one type of algorithms that uses Q-learning algorithm for fuzzification. In 
the following sections we investigate two methods of performing Sarsa in our domain space. 
In Section 5.1 we investigate a fuzzy Sarsa algorithm, FQ Sarsa, that utilises fuzzy states. In 
5.2 we present a fuzzy Sarsa algorithm, Fuzzy Sarsa, an on-policy fuzzy leaner which utilises 
fuzzy states and actions in the manner presented in 4.1.  

5.1 FQ Sarsa 

This algorithm is based on the Sarsa algorithm presented in 3. It is essentially Sarsa with the 
ability to cope with data stored as fuzzy sets (a fuzzy state), and therefore works by reducing 
the state space. It does not consider fuzzy actions or goal states, leaving these in their original 
crisp representation. In this approach, a crisp state s matches a set of fuzzy states and these 
fuzzy states are paired with crisp action values. Since the actions are not fuzzified, the 
selection mechanism operates on a simple greedy approach rather than using the fuzzy centre 
of mass approach. Therefore, at any given time t, the action that is selected is the best action 
(the one with the highest FQ value) for the most fit fuzzy state ( )ˆ(max sµ , where µ is the 
degree of matching of crisp state s to fuzzy state ŝ). The FQ value update formula is modified 
as follows.  

)),ˆ()ˆ()^,ˆ((),ˆ(),ˆ( 111111 −−−−−− −++= ttttttttt asFQsasFQrasFQasFQ µλα   (4) 

Rather than take the max of future rewards, we replace it with the FQ value of the new state 
action pair reached by applying the current policy - ),ˆ( tt asFQ . We choose at using the policy 
derived from FQ. In other words, ),ˆ( tt asFQ , is the state with the highest degree of matching 
(max µ(ŝt)) and the action chosen follows the current policy (i.e. ε-greedy). We then follow 
Berenji’s example and take the fuzzy AND (or minimum) of ),ˆ( tt asFQ and µ(ŝt).  

All Q(s,a) values are initialised (to 0 in our case). 
Repeat for each episode (or auction game){ 

 Initialize ŝt (start state for the auction game). 
 Choose at from ŝt using ε greedy selection policy. 
 Repeat for each step(auction) in the episode(auction game){ 
  Take action at, observe r and ŝt+1  
  Choose at+1 from ŝt+1 using ε greedy selection policy  

  )),ˆ()ˆ()^,ˆ((),ˆ(),ˆ( 111111 −−−−−− −++= ttttttttt asFQsasFQrasFQasFQ µλα  

    ŝt = ŝt+1, at = at+1 
   } 

} 

Figure 8: FQ Sarsa Algorithm 

5.2 Fuzzy Sarsa 

The algorithm we present in Section 5.2 does not combine actions, it only selects them. This 
approach is problematic in that essentially the FQ Sarsa approach is only concentrating on 
reducing the state space and is not capable of leaning interactions between rules. To that 
effect, we now concentrate on the Fuzzy Q Learning algorithm presented by Bonarini and 
extend in order to implement it as an on-policy learner. 



In this approach, states, actions and goals are all fuzzified in the manner described in 4.1. We 
use the centre of mass approach to calculate greedy actions. The Q value update formula is 
modified as follows: 

∑
∀

−−−−−−− −++=
−−

j

i
t

i
tt

j
t

j
ttas

i
t

i
t

i
t

i
t asFQasFQrasFQasFQ

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ(()ˆ,ˆ()ˆ,ˆ( 111)ˆ,ˆ(1111
)ˆ,ˆ(11

ξγαξ  (5) 

where FQ values are the value of being in of fuzzy state and suggesting a fuzzy action, and 
i
tc 1−

ξ is a fuzzification factor as described in Equation 3. We also have used i
t

i
t as 11 ˆ,ˆ −−  rather 

than r , since the current fuzzy state and suggested action is the definition of a fuzzy rule and 
r is already used in reference to the reward. In Q-learning, Q is updated using the largest 
possible reward (or reinforcement) from the next state, whereas in Sarsa, Q is updated with 
the value of the actual next state action pair as defined by the current policy. The change in 
the future contributions section to ∑

∀i
i

ii asFQ ξγ )ˆ,ˆ( is again, a result of the difference 

between Q-Learning and Sarsa. Rather than take the max of future rewards, we sum all 
rewards for all fuzzy states actions and multiply by the fuzzification factor. This is done for 
all FQ values where the fuzzy state j

tŝ has some degree of matching to the next crisp state s, 
and the suggested action j

tâ  is the action that would be applied using the current policy.  

All Q(s,a) values are initialised (to 0 in our case). 
Repeat for each episode (or auction game){ 

 Initialize ŝt (start state for the auction game). 
 Choose ât from ŝt by calculating the centre of mass using all ŝt 

that match crisp s and ât following ε greedy selection policy. 
 Repeat for each step(auction) in the episode(auction game){ 
 Take action ât, observe r and ŝt+1  

Choose ât+1 from ŝt+1 using ε greedy selection policy for all 
ŝt+1 match st+1. 

     ∑
∀

−−−−−−− −++=
−−

j

i
t

i
tt

j
t

j
ttas

i
t

i
t

i
t

i
t asFQasFQrasFQasFQ

j
taj

ts
i
t

i
t

))ˆ,ˆ()ˆ,ˆ(()ˆ,ˆ()ˆ,ˆ( 111)ˆ,ˆ(1111
)ˆ,ˆ(11

ξγαξ  

 ŝt = ŝt+1, ât = ât+1 
} 
} 

Figure 9: Fuzzy Sarsa Algorithm 

The algorithm presented in Figure 9 follows the same template as Sarsa. The primary 
differences between Sarsa and Fuzzy Sarsa lie in the state update as described above. After 
the learning algorithm is initialised and a start state found (ŝt), the algorithm chooses a fuzzy 
action (ât). This action is chosen based on the current policy, resulting in either an exploratory 
action or a greedy action. If an exploratory action is taken, the algorithm observes the result 
and updates all matching fuzzy state/action pairs (ŝt, ât), where ât is the fuzzified crisp action 
taken, according to the FQ update equation in Equation 5. If a greedy action is taken, the 
algorithm observes the results and updates all fuzzy state/action pairs that contributed to the 
selection of ât. For example, in the random case if ŝ1a, ŝ1b match our state and we randomly 
choose to do â3, the algorithm updates (ŝ1a, â3),(ŝ1b, â3). If however, we chose the greedy 
action, then we would calculate the centre of mass of the actions proposed by ŝ1a, ŝ1b. 
Suppose ŝ1a proposed â1, and ŝ1b proposed â3 and that the centre of mass calculation returned 
â2. The pairs that are updated in the greedy case are the contributing pairs, ie. (ŝ1a, â1)(ŝ1b, â3). 
After that is completed, the world is in a new state, and the algorithm repeats the above 
process for the new fuzzy state(s). 



6 The Agent Marketplace 
All three algorithms; Sarsa, FQ-Sarsa and Fuzzy Sarsa were implemented in an agent 
marketplace designed as discussed in Section 2. In the case of the Sarsa algorithm, we 
considered that the state of the world consisted of 3 major categories: Money_Left, 
Auctions_Left and Items_Left. Actions included bids ranging from the offer price to the 
agent’s maximum price and abstaining. Fuzzy States consisted of the same state categories as 
Sarsa. However, rather than storing the crisp representation of the state, states are stored as 
fuzzy labels rather than discrete values. We elected to use four labels for each fuzzy category. 
Since membership functions are more robust when additive, Σi =1 to n  µi(x) = 1, the functions 
we used were triangular (rather than trapezoidal, etc), since triangular membership functions 
are popular and easy to design additive functions with. Confirmation of the robustness of 
additive membership functions, came from the results of an earlier experiment using non-
triangular and non-additive membership functions. During this test, our fuzzy algorithms were 
not able to find a solution, let alone an optimal one. The membership functions are given in 
Figure 10. FQ Sarsa does not use the Bid_Price function, since it utilises crisp bids. 
 
 

No_Money   Little_Money   Some_Money    Lots_Money 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 n
Money_Left

M
em

be
rs

hi
p

 
 

No_Auctions  Few_Auctions  Some_Auctions  Many_Auctions 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 n
Auctions_Left

M
em

be
rs

hi
p

 No_Items    Few_Items    Some_Items    Many_Items 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 n
Item s_To_Buy

M
em

be
rs

hi
p

                

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 n
Bid_Price

M
em

be
rs

hi
p

Zero_Price Low_Price Medium_Price High_Price

 
Figure 10: Fuzzy Membership Functions for the Test bed 

In our experiment, all games were played with two agents; a fixed strategy agent, and a 
learning agent. The exploration and learning rates are both annealing parameters and gamma 
is set to 0.1. The results represent an average over 5 games. In test 1 of our algorithms, each 
agent must obtain 4 items over the 8 auctions in the episode. In this test, the price of each item 
ranges from 5 to 8. 

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
Episodes

%
 W

on

FQ Sarsa Fuzzy Sarsa Sarsa

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

0 5000 10000 15000 20000 25000 30000
Episodes

A
ve

ra
ge

 P
ric

e

FQ Sarsa Fuzzy Sarsa Sarsa  
Figure 11: Percentage of Games Won in Test 1 and Quality of Solution in Test 1 



As seen from Figure 11, all three algorithms converge upon a solution at similar rates. The 
difference in the algorithms can be seen from the quality of solution found. Both FQ Sarsa 
and Sarsa find solutions that are significantly better than that of Fuzzy Sarsa. We 
hypothesised that since fuzzy algorithms maximise learning around boundaries [7], that if the 
boundaries themselves do not represent a significant enough portion of the items, then the 
value of the solution may be affected. In test 1, the range of items to buy and the range of 
prices is equal to the range of fuzzy labels used, and therefore do not represent appropriate 
partitions in the fuzzy label boundaries. To determine if this was the case we performed a 
second test leaving all parameters constant except price, which was altered to have a larger 
range (5 to 12). 

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
Episodes

%
 G

am
e 

W
on

FQ Sarsa Fuzzy Sarsa Sarsa
 

10
10.2
10.4
10.6
10.8

11
11.2
11.4
11.6
11.8

0 5000 10000 15000 20000 25000 30000
Episodes

A
ve

ra
ge

 P
ric

e

FQ Sarsa Fuzzy Sarsa Sarsa
 

Figure 12: Percentage of Games Won in Test 2 and Quality of Solution in Test 2 

As seen in Figure 12, the convergence rates remain similar to Test 1. However, as suspected the value 
of the solution found for Fuzzy Sarsa is more in line with what we would expect and closer to that of 
both FQ Sarsa and Sarsa. In order to confirm these results and that the overlap of the fuzzy boundaries 
on the fuzzy labels (ie. No_Items, Few_Items, etc) should be greater than the normal crisp labels (4 
items to buy, 3 items to buy, etc), a further test was conducted. In this test, the number of auctions was 
increased to 12, the number of items required to 6 and the price range remained the same (5-12). 

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
Episodes

%
 G

am
e 

W
on

FQ Sarsa Fuzzy Sarsa Sarsa  

10
10.2
10.4
10.6
10.8

11
11.2
11.4
11.6
11.8

0 5000 10000 15000 20000 25000 30000
Episodes

A
ve

ra
ge

 P
ric

e

FQ Sarsa Fuzzy Sarsa Sarsa  
Figure 13: Percentage of Games Won in Test 3 and Quality of Solution in Test 3 

In our final test, test 3, we were interested in the results of an even larger state space. For this 
test, we increase the number of items each agent must obtain to 10 items and the number of 
auctions to 20 (price remains the same at 5 to 12). As observed from Figure 14, both FQ Sarsa 
and Fuzzy Sarsa now converge to a solution quicker than Sarsa. As a result of the increased 
state space of Sarsa during this test, it has a tendency to get caught in a local minima if it does 
not stumble across a good solution during the exploratory stage of this algorithm. Furthermore, 
it is seen that the value of the solution found by Fuzzy Sarsa is superior to the one found by 
Sarsa, and that both Sarsa and Fuzzy Sarsa find superior solutions to that of FQ Sarsa. The 
reason for this is apparent, while FQ Sarsa converges quicker, it has a much reduced state 



space than Sarsa, and thus does not have the range of possibilities available to Sarsa available 
to it. Again, we confirm that purer fuzzy solution presented by Fuzzy Sarsa, does seem to 
maximise transitions along fuzzy borders, allowing it to converge quicker and find a better 
solution than Sarsa. 

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
Episodes

%
 G

am
e 

W
on

FQ Sarsa Fuzzy Sarsa Sarsa

10
10.2
10.4
10.6
10.8

11
11.2
11.4
11.6
11.8

0 5000 10000 15000 20000 25000 30000
Episodes

A
ve

ra
ge

 P
ric

e

FQ Sarsa Fuzzy Sarsa Sarsa  
Figure 14: Percentage of Games Won in Test 4   Quality of Solution in Test 4 

7 Conclusions 
We have discussed some issues around applying fuzzy logic principles to both the 
reinforcement state action space and the algorithm itself. We found that Fuzzy Sarsa produces 
unpredictable and non-optimal results when the number of fuzzy labels used to encode 
information is greater than the number of actual labels. However, we have found that as the 
state space increases, a pure fuzzy logic approach to reinforcement learning as presented in 
Fuzzy Sarsa allows for a more robust and correct solution than the reduced state space 
algorithm presented by both Sarsa and FQ Sarsa. This is a significant result since Fuzzy Sarsa 
works with a significantly smaller state space than Sarsa. We plan to analyse Fuzzy Sarsa 
further, and to extend it to cope with coevolutionary learning. 

References 
[1] Richard S. Sutton, Andrew Barto, Reinforcement Learning: An Introduction; MIT 
Press, Cambridge, MA, 1998. 

[2] S. Noh and P. J. Gmytrasiewicz; Agent Modelling in Antiair Defence; Proceedings of 
the Sixth International Conference on User Modelling; 1997. 

[3]  J.M. Vidal and E.H. Durfee, Agents learning about agents: A framework and analysis; 
In AAAI-97 Workshop on Multiagent Learning; 1997. 

[4] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 
1998. 

[5] Hamid R Berenji, Fuzzy Q-Learning: A new approach for fuzzy dynamic 
programming, IEEE World Congress on Computational Intelligence., Proceedings of the 
Third IEEE Conference on , 26-29 June 1994. 

[6] Andrea Bonarini, Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic 
Controller, In Herrera, F., Verdegay, J. L. (Eds.) Genetic Algorithms and Soft Computing, 
(Studies in Fuzziness, 8), Physica-Verlag, Berlin, D, 447-466, 1996. 

[7] Andrea Bonarini, Reinforcement distribution for fuzzy classifiers: a methodology to 
extend crisp algorithms, Proceedings of the IEEE World congress on Computational 
Intelligence (WCCI) - Evolutionary Computation, IEEE Computer Press; Piscataway, NJ; 51-
56; 1998. 


