
Page 1 of 7

Digging Friendship: Paper Recommendation in Social Network

R. Dong and L.Tokarchuk
Queen Mary University of London

School of Electronic Eng. and Computer Science
Mile End Road, London E1 4 NS England

{ee08m010, l.n.tokarchuk}@elec.qmul.ac.uk

A Ma
MPI-QMUL Information Systems Research Centre

Macao Polytechnic Institute
Rua de Luis Gonzaga Gomez, Macao

{athen.ma@elec.qmul.ac.uk }

Abstract

Most paper recommender systems largely rely on explicit keywords provided by
their users. This means that people are still find it challenging to find desirable
papers from the hundreds of recommendations provided. Added personalization
of recommendation would help to alleviate this problem. .Social networking has
investigated the use of recommendation on a different basis than traditional
recommenders. Friendships connect people together in a social network and
thus contain various implied information about an individual. Social networks
use this information to enable users to expand their social network, and thus
tend to recommend new users or groups based on the existence of person or
group amongst your friends, or friends of friends - social recommendation. This
type of information, while perhaps not appropriate for paper recommendation
on its own, can help tailor recommendations toward the individual, rather than
the user.

In this paper, we explore how we can refine paper recommendation using both
traditional and social recommendation techniques. This paper first compares
and evaluates several existing paper recommendation techniques, and then
integrates the most effective one with social information. This information is
gathered by the reading histories and recommendations from the active user’s
friends. Preliminary tests of this technique suggest that paper recommendations
made by also taking friendships into account are not only accurate, but we feel
more intelligent and better fitting user’s preference.

1. Introduction
The Internet has given people opportunities to access research papers all over
the world in a just a few minutes, which was impossible only a decade ago.
However, mass availability leads to an overwhelming amount of information,

leaving people to sift through millions of available choices. With rapidly
increasing publications every year, it is impossible to cope with the published
work in just a single narrow field, not to mention interesting interdisciplinary
works.

Fortunately, recommender systems were built to deal with information
overload. They have been applied to many domains with different techiques, for
instance, GroupLens1 and Ringo2 apply Collaborative Filtering (CF) in Usenet
new and music, respectively, Krakatoa Chronicle3 system uses Content-based
Filtering (CBF) on newspapers and Fab4 applies the combined technique of CF
and CBF to recommend web pages. Moreover, recommender system has been
investigated in the domain of research paper as well, such as TechLens Project5
uses CF to recommend research papers to their users.

As mentioned above, two kinds of techniques are normally used in
recommender systems, namely, Collaborative Filtering (CF) and Content-based
Filtering (CBF). The term CF was first introduced by Goldberg in [5], it
recommends items to the active user if similar users liked those items. The
intuition behind this is that if users have similar taste in the past, they tend to
agree in the future as well [11].

CBF techniques have been well studied in the information retrieval (IR) field.
They recommend items based on the keywords contained in the user profiles or

1 Designed by Resnick, P.; Iacovou, N.; Sushak, M. and Bergstrom, P. 1994,
http://www.grouplens.org/

2 Designed by P.Maes and U. Shardanand, 1995, http://ringomo.com/
3 Designed by T. Kamba; K. Bharat and M.Albers, 1995
4 Designed by M. Balabanovic and Y. Shoham, 1997
5 Designed by S. McNee, I. Albert, et al. 2002, http://techlens.cs.umn.edu/tl3/

Page 2 of 7

inputted by the user. There are many ways to measure the similarity between
contents [2] [9]. The CBF technique applied in this research is TF-IDF, which
has been widely used in many domains and is considered as a successful
technique for text similarity [7]. The term TF-IDF stands for term-frequency
inverse-document-frequency, which combines the frequency of terms in
documents with the distribution of the terms in the whole collection of
documents. In other words, the importance increase proportionally to the
number of times a word appears in the documents but is offset by the frequency
of the word in corpus. Theoretically, documents with high number of similar
words or discriminating words should be the most similar to the query.

CF has several advantages compared to the CBF [3][6], such as:
1. Independence of content. Because the items are rated by humans, there is

no constrains for what kinds of items could be evaluated. Movies,
newspapers, or people all can be used as the domain of CF.

2. Enhancing the quality of the recommendations. This is due to the involving
of human evaluation of items. Humans can assess whether the paper is
authoritative or well-written, which is a hard work for computers.

3. The ability to give serendipitous recommendations. Because the similarity
is measured between people rather than the items, users may get
unexpected recommendations from similar users.

On the other hand, CF has its own drawbacks [3] [6]:
1. First-rater problem, which is that an item can not be recommended until at

least a user rates it.
2. Start-up problem, that is, CF can not give satisfactory recommendations for

user with few ratings since he could not be placed in a good neighborhood
to be similar to any others.

3. Sparsity problem. Because in the real word, users are very likely to rate
only small part of the existing items, which leads to the lack of overlap of
tastes and therefore make it difficult to create neighborhoods.

CBF also has its own advantages, such as:
1. Does not suffer from first-rater problem, since it recommends items if their

text share any common words with user’s profile or keywords.
2. Does not suffer from sparsity problem, because for most items, the text

similarity to the user profile can be computed.

However, it has several shortcomings [3]:
1. One is that it does not take the quality such as authoritativeness, style into

consideration because most text analysis techniques are based solely on
word analysis.

2. Another one is the over-specialization problem which refers to the fact that
it recommends items by analyzing the content of the texts without
spreading between other subjects. For instance, it may not consider two
different texts that use the word “car” and “automobile” respectively as the
similar items.

In addition, with the increasing popularity of social network, recommender
systems have begun to be introduced in social networks. More and more people
are willing to share their personal lives on social network sites, thus making it
possible to make more personalized recommendation by using the information
contained by those relationships. In our research, we use friendship to refine the
recommendations to fit every individual user since we believe that friends tend
to have similar tastes, and therefore recommend papers that have already been
read by friends of the active user over those that have not.

The rest of this paper is organized as follows: Section 2 will discuss several
existing paper recommendation techniques implemented in our research.
Section 3 will evaluate and compare those techniques to find the most effective
one.

2. Algorithms
To find the most efficient recommendation algorithm, we present seven
different algorithms, which each receive one paper as input and generate a list
of papers recommendations as output.

Classic implementations of CF and CBF are included as a baseline
comparison. And based on the CBF algorithm, both CBF Separated and CBF
Combined algorithms are developed to spread search space. In addition, three
hybrid algorithms, namely CF-CBF Separated, CBF Combined-CF and Fusion
algorithms, are also implemented to let CF and CBF complement each other and
therefore can overcome some of their shortcomings, such as first-rater and over-
specialization problem. The algorithms are then evaluated using the Citeseer[4]
database, an online database of computer science research papers.

While CBF was applied over the text of the papers, CF recommended items
based on the similarity among users. Normally, this similarity is calculated
based on user profiles, which is represented by a rating matrix. Therefore, in
order to perform CF in the domain of research paper, a rating matrix needs to be
created first. To do that, we chose to follow the same approach used in [9]
which considers the papers as “users” and their citations as “items” they have

Page 3 of 7

rated. This approach does not suffer from startup problem since the rating
matrix is populated from citations of papers. It also frees the system from rating
consistency because the ratings are not received from actual human beings, who
may have different rating criteria from each others.

1. Collaborative Filtering Algorithm:
The most popular algorithms used in CF are the neighborhood-based algorithms.
In which the neighbors of the active user are calculated based on their similarity
to the active user, and then the predictions are generated by calculating the
weighted aggregate of their ratings. There are many techniques to perform
neighborhood-based CF: user-user [6], item-item [8], and co-occurrences [9].

In our research, the CF algorithm we use is the standard k-nearest-neighbor
user-user CF algorithm. As mentioned above, a paper is considered as a “user”
and its citations as “items” rated. Therefore, this algorithm takes the citations of
the active paper as input and generates a list of recommendations as output,
respectively.

2. Content-Based Filtering Algorithm:
CBF algorithms recommend papers based on their content similarities. For a
given paper, the most similar papers are recommended. The method applied to
calculate text similarity is TF-IDF, as previously described in section 1.

Pure CBF is straightforward as its name suggested, it searches for similar
papers according to their text similarity to the active paper and then the most
similar ones are recommended.

3. CBF-Separated Algorithm:
This algorithm is built upon the pure CBF algorithm [1]. It explores not only the
text of the paper, but also the text of all the papers it cites. It searches for similar
documents to the paper itself and for all citations made in the original paper.

For example, as shown in figure 1, for the current paper P, this algorithm
generates a list of similar papers (R1p Rmp), where m is the number of
recommendations. And for every citation C1 to Cn, where n is the number of
citations in the current paper p, the algorithm also generate a list of similar
papers ((R1C1 ... RmC1) ... (R1Cn ...RnCm)). Then all lists are merged into one
single list sorted on the similarity coefficient returned. Finally, papers with
highest similarity scores are recommended to the user.

One advantage of this approach is that it tends to reduce over-specialization
since it expands the search space beyond similarity to the current paper to
include similarity to citations as well.

Figure 1. CBF-Separated Algorithm

4. CBF-Combined Algorithm:
CBF-Combined algorithm [1] is another extension of pure-CBF. Instead of
generating lists of similar papers for every citations as in CBF-Separated, it
merges the text of the active paper and the text of all the citations together into
one large chunk of text. After that, this large text is submitted as the query to
pure-CBF and the most similar papers to the combined text are returned as the
recommendation. This process is shown in the following figure 2.

Figure 2. CBF-Combined Algorithm

Page 4 of 7

5. CF-CBF Separated Algorithm:
Both CF and CBF algorithms have their own advantages and disadvantages. As
mentioned in Section 1, CBF can suffer from over-specialization problem, while
CF the first-rater and sparsity problem. Combining both algorithms together can
overcome their shortcomings, at least partially.

As shown in figure 3, in CF-CBF Separated, the CF (algorithm 1) is run first
in order to generate a list of recommendations,. CBF-Separated (algorithm 3) is
then applied to give further recommendations based on the list generated from
CF. In other words, the CBF module recommends a set of similar papers for
every recommendation given by CF to the active paper. Because the
recommendations given by CF module are in order, the recommendations
generated by the CBF module have to be scaled by this ordering. To achieve
that, the CBF recommendations are weighted accordingly, with the first set
generated from the top CF recommendation receiving weight 1 and the
following sets’ weights decreased by 0.05 accordingly. Then the similarity
scores of CBF recommendations are multiplied by these weights in descending
order. The following formula shows the above process:

S(rk) = S(rk)×(Wp (j-1)-∆d) (1)

where rk is the k th recommendation in the CBF list, pj is the j th
recommendation in the CF list, Wp (j-1) is the weight given to the previous
recommendation of CF, ∆d is the decremented weight factor and S(rk) is the
similarity of rk with pj.

Figure 3. CF-CBF Separated Algorithm

6. CBF Combined-CF Algorithm:
This algorithm still attempt to address the shortcomings of CBF and CF by
combining them together. Different from CF-CBF Separated, as shown in figure
4, this algorithm applies CBF-combined first and then CF. In other words, the
recommendations given by CBF-Combined are used to augment the citations of
the active paper, and then the CF algorithm uses the active paper along with its
augmented set of citations to generate further recommendations.

Figure 4. CBF Combined-CF Algorithm

7. CBF- CF Parallel Algorithm:
This algorithm runs both CF and CBF modules in parallel and generates the
recommendation list by merging the results from both modules as described in
[1]. In addition, to sort the recommendations in the right order, the
recommendations by both algorithms are passed through an ordering function
before being merged to the final list.

Figure 5. CBF- CF Parallel Algorithm

The ordering function works as follow: every recommendation that shows in

both modules’ recommendation lists is added to the final list with a rank score,
which is the summation of the ranks of recommendation in their original lists.
Then the final list is sorted in ascending order based on these scores. For
example, a paper that is ranked 3rd from the CF module and 2nd from CBF will

Page 5 of 7

receive a score of 5. Item with lower score goes closer to the top of the final
recommendation list. Other recommendations that don’t appear in both CF and
CBF lists are alternatively added to the final list. The general process of CBF-
CF Parallel Algorithm is shown in figure 5.

3. Evaluation
In order to evaluate the above algorithms, a dataset created from papers
extracted from CiteSeer, an online database of computer science research
papers, was used. The dataset was limited in two ways: first, papers that cite
fewer than 2 other papers are removed from the dataset since loosely connected
papers may introduce noise to the dataset [1]. Second, the citations not included
in the dataset as papers are removed. By doing this, every citation in the dataset
is also a paper in the dataset and therefore both CF and CBF would be able to
analyze every paper in the dataset6. After this process, there are 68,625 papers
in our pruned dataset.

To follow the methodology “Leave one out” [9], the dataset is divided into
training and testing datasets at a 90% to 10% ratio firstly. Then one citation is
randomly removed for every paper in the testing dataset. This process is
repeated ten times in order to perform 10-fold cross validation.

However, the recommender may give papers that didn’t exist at the
publication time of the active paper as recommendations. Since we measure the
performance of algorithms by looking at the rank of the removed citations in the
recommendation list and the citations of a paper must already exist at the time
the paper is written in order to be referred. Therefore, to handle this problem,
we filtered out recommendations that are published later than the active paper.
It is important to point out that the recommender could recommend papers that
are very similar to or even better than the removed citation and this may
diminish the performance of algorithms because these papers will appear before
the removed citations in the recommendation list. Even though there is a
possibility, we still expect the removed citation to be recommended.

The “hit-percentage (HP)” is used as a metric to measure the percentage of
time the recommender algorithm correctly recommends the removed citation.
The rank where the removed citation was found in the recommendation list is

6 Since algorithm 3, 4, 5 and 6 need to access the text of the citations as well,
this requires the citation to be included in the dataset.

also measured. Because the rank is important to users, the analysis is
segmented into bins based on rank where lower is better (e.g. recommendation
in the top10 bin is better than that in top40 bin). Recommendations beyond the
40th are considered “all” (41-100) for the reason that users are not likely to see
items recommended beyond this position. Table 1 shows the rank bins.

Rank of the citation found Bins

1 Top1
1-10 Top10
1-20 Top20
1-30 Top30
1-40 Top40
1-N All

Table 1. Rank Analysis

We are following the two criteria described in [1], that is, the first one is focus

on the performance in the Top10 as we think users like the best
recommendations first. The second one is the ability to give the
recommendation of removed citation in despite of its rank, which is measured
by All. If the Top10 of one algorithm is better than another algorithm but the All
is not, or vice-versa, the results of Top1 decide the best algorithm. The best
algorithm will be selected to integrate with social information collected from
social network sites.

As seen in figure 6, pure CF performs the worst in All, this is probably due to
sparsity problem of CF algorithm itself as there’s lack of overlap among
citations of papers to create good neighborhood.

For the three CBF algorithms, pure CBF works well in Top1, while CBF-
Separated worst among three of them. The CBF-Combined performs best from
Top10 to Top40 in our dataset, while the performance of CBF-Separated is quite
good as well. This suggest that spreading search space by including the text of
citations as search query or similar papers to the citations as recommendation
can reduce the over-specialization problem of CBF itself.

Page 6 of 7

Figure 6. Results of all algorithms

Surprisingly, combining algorithms by applying them alternatively dose not

give a better result, especially in Top1, only 0.5% for CF-CBF Sep and 0.9% for
CBF Com-CF. This does not necessarily mean that these two algorithms are not
better than other ones, this result probably due to the inter-connections among
papers in our dataset are too loose to create good neighborhood for CF, which
may undermine the total performance of two algorithms. Or the

recommendations generated are more similar to the active papers than the
removed citations, which decrease the rank of removed citations. However, it is
too difficult to test in offline evaluations without human interaction.

Finally, the fusion algorithm performs best in Top1 and All.
According to the criteria described above, CBF-Combined performs best in

Top10 while fusion is the best in All. Therefore, Top1 decides the best one. That
is, the fusion algorithm is chosen to be integrated with social information.

4. Integrating with Social Information
As we believe that friends have similar taste and tend to share the similar
interest in further as well, papers read by active user’s friends may be more
attractive than those generated by computer. To refine the paper recommender
system designed above, we integrate the recommender with reading histories
and paper collections of active user’s friends. By re-ordering the
recommendations, we expect the recommender to be more personalized and
intelligent for the involving of human interaction.

The approach designed to be test online in social network site is as following:
First, the search histories and paper collections of active user’s friends are

gathered to generate a paper list L. The papers are sorted in the list according to
their popularity among friends, that is, the more friends had read that paper, the
nearest to the top of the list. Second, the recommendations to the selected paper
(as described above, a paper is chose as the input of algorithms) are generated
by Fusion algorithm. Then, list L is compared with those recommendations to
check whether they contain same papers, that is, those papers that have already
read by friends as well as recommended by the Fusion algorithm. If so, the
recommendations are re-ordered to prioritize those papers in the top of
recommendations. After that, both the original and re-ordered recommendations
are presented to the active user. Finally, the choices of user are gathered and
recorded to further evaluate this new approach. In addition, if none of the paper
in the recommendation list has read by any friends of active user, that is, the
original and re-ordered recommendation list are exactly the same, the choices of
the user will not be recorded to eliminate the possibility of random choice made
by user.

Page 7 of 7

Figure 7. Paper Recommender

As seen in above figure 7, the column on the left is the original

recommendation list while the right one takes friends’ searching histories and
collections into consideration. The first two papers in the re-ordered list (right
list) are shown in the top since they are shared by the friends of active user. The
paper “Privacy-Preserving Collaborative Filtering using” appears before the
paper “Instance Selection Techniques for Memory-Based Collaborative”
because it have been read by more friends or at least the same number of friends
as the second one.

5. Further Issue
As our goal is to facilitate researchers in their studies, our next step is to launch
the paper recommender system in the popular social network site, such as
Facebook, to facilitate more researchers as well as other users and collect more
user feedbacks for the further evaluation since the preliminary test suggests that
users prefer recommendations made by taking friendship into consideration to

the traditional ones. Another possible extension is to investigate other
relationships in social network that might help make the recommendation more
personalized, such as the groups in social network sites, as the members of the
group share some properties and may have similar interests or backgrounds,
which could be used to improve the recommendations as well.

References
[1] Porto Alegre, “Combing Collaborative and Content-based Filtering to
Recommend Research Papers”, PhD Thesis, 2004.
[2] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval”,
Addison-Wesley, Wokingham, UK, 1999.
[3] Marko Balabanović and Yoav Shoham, “Fab: Content-Based, Collaborative
Recommendation”, Communications of the ACM, New York, 1997
[4] Kurt D. Bollacker, Steve Lawrence and C. Lee Giles, “A System For
Automatic Personalized Tracking of Scientific Literature on the Web”, in
International Conference On Digital Libraries, Berkeley, CA, 1999.
[5] D. Goldberg, D. Nichols, B. Oki and D. Terry, “Using collaborative filtering
to weave an information tapestry”, in Communications of the ACM, New York
(USA), 1992.
[6] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers and John Riedl, “An
Algorithmic Framework for Performing Collaborative Filtering”, in
Proceedings of the 1999 Conference on Research and Development in
Information Retrieval. Berkeley, CA, 1999.
[7] H. Kroon and E. J. H. Kerckhoffs, “Improving Learning Accuracy in
Information Filtering”, in International Conference on Machine Learning, Bari,
Italy, 1996.
[8] Bradley N. Miller, Joseph A. Konstan, and John Riedl, “PocketLens:
Toward a Personal Recommender System”, ACM Transactions on Information
Systems (TOIS), Volume 22, Issue 3, Pages: 437 – 476, July 2004.
[9] Sean McNee, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan, Shyong K.
Lam, Al Mamunur Rashid, Joe Konstan, and John Riedl, “On the
Recommending of Citations for Research Papers”, in Proceedings of ACM 2002
Conference on Computer-Supported Cooperative Work, New Orleans, LA
(USA), 2002.
[10] Gerard Salton and Chris Buckley, “Term Weighting Approaches in
Automatic Text Retrieval”, Information Processing and Management, 1988.
[11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: an open architecture for collaborative filtering of netnews”, in
Proceedings of the 1994 ACM conference on Computer supported cooperative
work, North Carolina (USA), 1994.

