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Abstract—This paper presents results for an approach for
indoor location estimation that integrates received signal strength
(RSS) data from both WiFi and GSM networks. Previous work
has focused on relatively small indoor environments. In many
potential applications, getting approximate location information,
such as in which room the mobile user is, is adequate. A
hierarchical clustering method is used to partition the RSS space.
To choose the best transmitters in a partition, we assess the
amount of RSS variance that is attributable to different base
stations (BSs) or access points (APs) by transforming the RSS
tuples into principal components (PCs). This allows us to retain
most of the useful information of detectable transmitters in
fewer dimensions. In our experiments, we collected WiFi and
cellular RSS on the 2nd and 3rd-floor electronic engineering
(EE) building in Queen Mary campus. The experiment results
show that the proposed method can provide a good accuracy of
room prediction, especially when we integrate WiFi RSS with
GSM RSS together to do the positioning.

I. INTRODUCTION

There are different methods to locate a user’s location inside

and outside, such as Time of Arrival (ToA), Time Difference

of Arrival (TDoA), Angle of Arrival (AoA) and received signal

strength (RSS). The ToA, TDoA and AoA methods are seen

as uneconomic because they require additional hardware in a

transmitter or receiver to locate a user, e.g. precision clocks

(ToA and TDoA) and antenna arrays (AoA). Many localization

systems utilize the signal strength values received from the

base stations (BSs) or relay stations (RSs) or access points

(APs) to estimate the location of a mobile user, based on

deterministic or probabilistic techniques. RSS has been widely

investigated principally in the context of indoor location esti-

mation. This is because the data required to create the RSS

database is readily collected from indoors. Though not as accu-

rate as time-based methods, RSS fingerprint-based localization

has the potential to overcome the limitations of traditional

triangulation approaches, because it performs relatively well

for non-line-of-sight circumstances where the alternative of

modelling the nonlinear and noisy patterns of realistic radio

signals is a challenging task. It requires less battery resources

than receiving GPS signals and less run time computational

resources than triangulation calculation. Furthermore, RSS-

based methods do not require the cooperation of network

operators. This paper shows that WiFi RSS and GSM RSS

data can be integrated to enhance accuracy.

RSS-based fingerprinting localization typically involves two

phases: training and online estimation. In the training phase,

RSS is collected at known locations to form a location finger-

prints database (a.k.a. radio map). The generated radio map

consists of many location-RSS tuples. Every tuple is the loca-

tion fingerprint with its corresponding location. In the online

phase, new RSS observations measured at unknown positions

are compared with all the fingerprints in the radio map to

estimate their locations based on the preferred algorithm and

distance function. These are outlined in Section II.

Fingerprinting techniques are especially appropriate for the

range of frequencies in which GSM and WiFi networks

operate. This is because [1] [2] the signal strength at those

frequencies presents an important spatial variability. Regarding

GSM technology, several research works use this technology

for localization, especially in outside environment. For exam-

ple, our previous work [3] utilized GSM-based fingerprinting

for outdoor localization. We have collected RSS fingerprints

from the 4-strongest GSM BSs, achieving 50th percentile

accuracy of 5.3 meters in a city environment. While inside

buildings, [2] has proposed an accurate GSM-based indoor

localization system by making use of the wide signal-strength

fingerprints (includes the 6 strongest GSM cells and readings

of up to 32 additional GSM channels, most of which are strong

enough to be detected, but too weak to be used for efficient

communication), but with the need of dedicated and complex

hardware. Many research works [4] [5] [6] have investigated

WiFi RSS fingerprinting in a relatively small size of indoor

environment for positioning. [4] represents the first finger-

printing system for indoor localization of portable devices. It

localizes a laptop in the hallways of a small office building

with accuracies of 2 to 3 meters, using RSS fingerprints from

four 802.11 APs. Other work uses augmenting mechanisms to

improve the accuracy of this technique, such as RFID [7] and

Zigbee [8]. Methods that use auxiliary active RFID tags have

been proposed for high indoor accuracy, but this is not ideal

for general use in larger areas.

The aim of this paper is to provide a novel hybrid RSS-based

localization method to tackle indoor environments. The hybrid

localization scheme combines the RSS measurement collected

from WiFi networks and from GSM networks and estimates

a mobile user location in an indoor multi-floor environment.

Unlike other previous research, we are content to locate to
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a specific room or room segment for a mobile user rather

than looking for very high location accuracy indoors. In our

work, in order to choose a subset of transmitters, Principal

Component Analysis (PCA) [9] technique is used to project

the measured RSS into a transformed signal space. The basis in

the transformed space can be viewed as the linear combination

of each transmitter with different weights (a.k.a principle

components (PCs)), which represent the different contributions

of each transmitter. A hierarchical partitioning scheme is used

to divide the mobile stations (MSs) in the training set into a

tree of clusters according to the sequence of the transmitter

labels sorted by their RSS values in a descending order. For

example, the first level branches correspond to partitions where

each particular transmitter is the strongest; all MSs with the

same two transmitters in the same order of RSS form a second

level branch from the root of the tree. At run time, for a new

MS with given RSS tuple, we use the labels of the transmitters

that cover this MS sorted by RSS and determine which cluster

it belongs to, by finding the longest label match in the tree

and then apply the weighted K-nearest neighbour (WKNN)

algorithm to predict the room number for this MS in that

cluster.

In this paper, the novel features that contribute to the greater

accuracy are: (1) the PCA approach can assist to choose the

best transmitters, because it can extract the useful information

into the relatively lower dimensions by suitable transformation.

The reduction of the data dimensions leads to a decrease in

the computational complexity and avoids unnecessary calcu-

lations; (2) the proposed clustering scheme can give a good

partitioning for localization; (3) integrating WiFi RSS with

GSM RSS data can enhance positioning accuracy.

The rest of the paper is organized as follows. Section II

reviews related work on the traditional transmitters selec-

tion approaches and location estimation methods using RSS

measurements. Section III illustrates our proposed algorithm

for transmitter selection and the room estimation using both

GSM RSS and WiFi RSS in indoor multi-floor buildings in

detail. Section IV presents the experimental evaluation of our

proposed algorithm in a real environment. Section V concludes

the paper and discusses directions for future work.

II. RELATED WORK

Various techniques have been proposed to estimate a mobile

user’s location using RSS. We survey the related work for two

different issues: (a) detectable transmitter selection methods

and (b) location estimation methods.

A. Previous Work on Transmitters Selection

Choosing a subset of transmitters is an intuitive way to

reduce the computational burden and storage requirement on

the resource-weak devices. [5] [10] show how their smart

AP selection methods can achieve good localization results

as compared with using all the available APs in an indoor

environment. In [5], the MaxMean approach is proposed to

choose the K most important APs, which are defined to be

those K APs having the highest average RSS. This mechanism

unavoidably throws out the information of detectable but

unselected APs, and also requires at least one AP that can

communicate with every point in the grid. This makes the

approach only suitable for small areas. [10] introduces the

InfoGain algorithm for AP selection, which divides the indoor

environment into n grid elements. Suppose m is the number

of detectable APs. The signal strengths from the APs are

collected in every grid Gj . The average value of signal strength

in Gj from APi(i = 1, ..., m) is defined as the value of the

i-th feature of Gj . The main idea of InfoGain is to select

the top K APs in terms of the “worth” of each AP feature

in every grid element. The worth of each APi feature is

calculated as the reduction in entropy by including the feature,

which is given by InfoGain(APi)=H(G)−H(G|APi). Here

H(G) =−
∑n

j=1
Pr(Gj) log Pr(Gj) the entropy of the grid

when APi’s RSS value is not known, Pr(Gj) is the prior

probability of grid Gj and is treated as uniformly distributed,

i.e. a user can be equally likely in any grid [10]. H(G|APi)=
∑

v

∑n
j=1

Pr(Gj , APi =v) log Pr(Gj |APi =v) computes the

conditional entropy given APi’s value. v is one possible value

of signal strength from APi. The summation is taken over all

possible values of APi. So they only need to focus on the

value of H(G|APi) which is the conditional entropy of grid

G given APi’s RSS value. Although positive results have been

demonstrated for a small indoor environment, for a larger area

such as an outdoor environment, it is difficult to determine the

appropriate number of grid elements for the target area and the

size of each grid element.

B. Previous Work on Location Estimation Approaches

Fingerprinting can be categorized into deterministic and

probabilistic approaches. A simplest deterministic approach

estimates the location of an observed RSS tuple as the average

of the locations of the K-nearest neighbour (KNN) in RSS

space which is measured as the Euclidean distance from this

observed RSS to the training RSS tuples [4]. [7] and [11]

improve the accuracy by using a weighted average of the

coordinates of the K nearest training samples. The weight

values are taken as the inverse of the Euclidian distance

between the observed RSS measurement and its K nearest

training samples. This method is referred to as weighted K-

nearest neighbour (WKNN). The experimental results in [11]

indicate that the KNN and the WKNN can provide a higher

accuracy than the single nearest neighbour (NN) method,

particularly when K = 3 and K = 4. However, when a high

density radio map is available, i.e. there is a lot of training

data, the simple NN method can perform as well as other

more complicated methods [12]. Probabilistic techniques [5]

[6] [13] [14] are used for modelling errors in the location

estimation of RSS measurements in wireless networks. These

methods use the training RSS tuples to construct conditional

probability density functions of the fingerprint tuples given

their locations, and utilize Bayes’ theorem to compute the

posterior probabilities of possible locations given a new RSS

tuple. However, because of the complexity, the authors in [6]

assume the elements of the fingerprint tuple are statistically
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independent from each other, which does not hold in a real

environment, i.e. our data sets contain correlation coefficients

greater than 0.9.

III. PROPOSED LOCATION ESTIMATION SCHEME

We will mainly focus on two issues: (1) how to select the

most representative detectable transmitters; (2) how to create

clusters and estimate the position within clustering.

A. The Most Representative Detectable Transmitters Selection

In a real environment, a mobile user can receive signals

from many detectable transmitters surrounding the area of the

interest. For example, for our test-bed (the 2nd and 3rd-floor

Electronic Engineering (EE) building in Queen Mary campus)

101 APs and 20 BSs for a particular operator can be detectable.

The PCA scheme is used to choose the optimal subset of APs

and BSs separately. Here we take the process of AP selection

as an example.

Assume that in the training stage, a set of n MSs: the

RSS measurements from all N neighbouring APs and its

corresponding room number are collected. If one MS does

not receive measurable signal strength from one typical AP,

we set a default value -120 dBm, as it is the minimum signal

strength. Let R denote the RSS measurements received by

all the training data from APs in WiFi networks in the target

environment, which is given by

R=
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...
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(1)

Here ~ri is a N -dimension row vector of RSS received by

MS i from N APs, while ~tj is the n-dimension column vector

of RSS received by all the n MSs from AP j, i.e. a different

viewpoint on the same data. L = (l1, ..., li, ..., ln) consists of

the room numbers, li is the room number where MS i is. The

detectable AP selection process based on PCA can be divided

into following steps:

Step 1: Calculate the matrix R̄, each of its row vector is

the mean value (t̄1, ..., t̄j , .., t̄N ) of the training RSS data in

R from each AP, and then the N × N covariance matrix S

of the training RSS data can be obtained. This describes the

mutual dependence of the signal strengths received by any

two MSs from different APs and can be expressed as S =
1

n−1
(R − R̄)(R − R̄)T . In this case, S =[sj,p], where sj,p =

1

n−1

∑n
i=1

(ri,j − t̄j)(ri,p − t̄p)
T , 1 ≤ j, p ≤ N .

Step 2: Calculate the eigenvalues and eigenvectors of

S. The eigenvalues contains the variances for the principal

components (PCs) and the eigenvectors contains the linear

coefficients for the principal components. Assume the eigen-

value {λ1, ..., λN} is in descending order, and ~ei represents the

normalized eigenvector associated with λi. Thus, the principal

component coefficients can be defined as A=[~e1, ..., ~eN ]. So

far, we have accomplished the principal components analysis

itself.

Step 3: Hence, to put the PCA to use, we need to know

what proportion each principal component represents of total

variance, which can be expressed as

ωi =
λi

∑N
i=1

λi

(2)

According to (2), we can remove the PCs that contribute

little to the variance, and project the entire dataset to a lower

dimensional space, but retain most of the information. Fig. 1

gives an example of how to choose the optimal PCs on the two

floors EE building in Queen Mary campus in WiFi networks.

Since in our measurements, there are 101 APs detected on the

two floors and 20 APs are stable. This figure shows how much

variance in the dataset is explained by which PC (by the bars

shown in Fig. 2) and how much variance is explained by the

successive PCs (as seen by the blue line shown in Fig. 2).

We can observe that the 16 first PCs can capture most of the

variability in the signal strengths from the stable 20 APs. Since

the principal components are orthogonal, the amount of total

variance expressed by the first 12 PC can give us over 95% of

the information about RSSs from the 20 Aps. In this way, the

reduced dimensions can be denoted as Q, which is 12 here.

The optimized principal component is Aopt =[~e1, ..., ~eQ].
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Fig. 1. The cumulative variance accounted for by successive PCs in WiFi
networks on the 2nd and 3rd-floor EE building in Queen Mary campus

Step 4: Calculate component loadings of each AP to the Q

largest PCs.

uij =
√

λieij(i ∈ [i, Q], j ∈ [i,N ]) (3)

Here uij is the component loading of the j-th AP on the

i-th PC, and eij is the j-th element of ~ei. Within each PC,

one AP with the largest absolute value of component loading

is chosen.

B. Training Stage

Once the optimal APs and BSs are determined, we want

to build a radio map during the training stage. Let q be the

optimal number of transmitters, which contains q1 WiFi APs

and q2 GSM BSs. Let Z ={z1, ..., zi, ...zn} be the set of the

n training MSs, where zi =
[

~r
wifi
i , ~r

gsm
i , li

]

, ~r
wifi
i and ~r

gsm
i

are the WiFi RSS tuples and the GSM RSS tuples for the i-

th training MS respectively and li denotes its corresponding

room number.

The training stage analyses the RSS of WiFi and GSM

separately with the same procedures, which are illustrated

in Algorithm 1 below. For WiFi measurements of every

training data zi (step 1), we pick out the strongest w RSS
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measurements in descending order, which can be expressed as
{

r
wifi

i,iW
1

≥ r
wifi

i,iW
2

≥ ... ≥ r
wifi

i,iW
w

| iW
1

, iW
2

, ..., iWw ∈ [1, q1]
}

(4)

Here iW
1

, iW
2

, ..., iWw are the ID series of the chosen w

WiFi transmitters respectively (step 2). Similarly, we can get

the corresponding IDs of BSs as iG
1

, iG
2

, ..., iGg by choosing

the strongest g RSS of GSM transmitters in descending

order (step 3). Then these IDs are concatenated into a new

series: [iW
1

, iW
2

, ..., iWw , iG
1

, iG
2

, ..., iGg ] (step 4), which also can

be regarded as the ranking pattern PD
i of zi of dimension

D(D = w + g). By repeating choosing sequential number of

continuous IDs in PD
i from the starting ID (step 5), we can

get different ranking patterns Pd
i (d ∈ [i,D]) for zi in every

dimension (step 6). Each ranking pattern Pd
i corresponds to

a specific cluster Cd
i . Afterwards, the training data with the

same ranking pattern are assigned into the same cluster (step

7). Repeat the steps and finally we can obtain ranking patterns

of every training data in every dimension.

Algorithm 1

Requried:

Z = {z1, ..., zi, ..., zn}: training data set

w, g: the number of transmitters to choose from optimal

APs and BSs respectively (the matching length)

Steps:

1: for i = 1 to n do

2: Sort the strongest w WiFi RSS in descending order and

get corresponding ID series of APs : [iW
1

, iW
2

, ..., iWw ]
3: Sort the strongest g GSM RSS in descending order and

get corresponding ID series of BSs: [iG
1

, iG
2

, ..., iGg ]
4: Combine the two ID series together to get the ranking

pattern in dimension (D = w + g).
PD

i =[iW
1

, iW
2

, ..., iWw , iG
1

, iG
2

, ..., iGg ]
5: for dimension d = 1 to D do

6: The ranking pattern in dimension d is:

Pd
i =PD

i (1 : d)
7: ∀j < i, if Pd

i =Pd
j , then Cd

i ≡Cd
j

8: end for

9: end for

C. Online Localization Stage

Given a new MS m with observed RSS measurement ~rm

from q transmitters including q1 APs and q2 BSs, we want to

estimate which room this MS belong to, which is illustrated in

Algorithm 2 below. First we sort the RSS of WiFi and GSM

in descending order separately, and obtain an ID sequence

of the length of w and g (step 1 and 2), both of which are

concatenated into a new one that can be defined as the ranking

pattern PD
m of MS m of dimension D (step 3). Then the

estimation process of room ID is carried on recursively within

the d dimensions (step 4). MS m’s ranking pattern Pd
m is

obtained by choosing a sequence from the beginning element

in PD
m with the length of d (step 5). MS m is regarded as

belonging to the cluster which has the same ranking pattern

with m in dimension d (step 6), and the room ID of MS m

can be estimated by applying WKNN method using the room

IDs of training data in the same cluster (step 7). If there is no

cluster that satisfies this condition, we continue to search in a

lower dimension (step 4).

Algorithm 2

Requried:

Z = {z1, ..., zi, ..., zn}: training data set

w, g: the number of transmitters to choose from optimal

APs and BSs respectively (the matching length)

Pd
i : all the ranking patterns of training data in every

dimension. (i ∈ [1, n], d ∈ [1, D])
~rm: the MS m’s RSS measurements from WiFi and GSM

networks.

Steps:

1: Sort the strongest w WiFi RSS of m in descend-

ing order and get corresponding ID series of APs:

[mW
1

,mW
2

, ..., mW
w ]

2: Sort the strongest g GSM RSS of m in descending order

and get corresponding ID series of BSs: [mG
1

,mG
2

, ..., mG
g ]

3: Concatenate the ID series obtained in step 1 and 2 as the

ranking pattern of m in dimension (D = w + g).
PD

m =[mW
1

,mW
2

, ..., mW
w ,mG

1
,mG

2
, ..., mG

g ]
4: for dimension d = D to 1 do

5: Pd
m =PD

m(1 : d)
6: if ∃i satisfies Pd

m≡Pd
i then

7: m ∈ Cd
i

8: Apply WKNN to estimate the room ID of m using

the RSS and Room IDs of training data Z in Cd
i .

9: Break

10: end if

11: end for

IV. EXPERIMENTAL EVALUATION

The proposed algorithm is evaluated on a real indoor

environment. The measurements are collected on the 2nd and

3rd-floor of EE building in the Queen Mary campus, as shown

in Fig. 2. We collect both GSM RSS data and WiFi RSS data

in each room in this area by a mobile app on an Android

smartphone and their corresponding location information are

labelled with the room number. The downloadable data can be

found at [15].

The performance of the proposed localization method is

compared with the KNN method in [4] and the KDE method

in [6], which assumes RSSs are independent statistically. For

the KDE method, we build the RSS probability density for

every room. Three forms of RSS are used, viz. GSM RSS,

WiFi RSS and both of them (a.k.a hybrid RSS). In the target

indoor environment, we collected 500 samples of GSM and

WiFi signal strengths in 15 different rooms on the two floors.

In the experiments, the data are randomly divided into two sets.

The first set is treated as training data and is a collection of

400 samples. Their corresponding room location information

is known. The other set contains the other 100 samples and

is used for room estimation test using only the RSS values,
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Fig. 2. The layout of the experimental test-bed

with their correct room number subsequently only used for

validation.

A. The Effects of Transmitters Selection Methods

0 2 4 6 8 10 12 14 16 18 2020
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The Number of APs

T
he

 A
cc

ur
ac

y 
of

 R
oo

m
 P

re
di

ct
io

n

 

 

Proposed Method
MaxMean
InfoGain

Fig. 3. The average accuracy of room prediction versus the number of APs

To better illustrate the effects of transmitters selection

methods, we take the WiFi networks for example. We compare

our approach to select the best number of APs from the

20 stable APs with the MaxMean [5] and InfoGain [10]

approaches. For the InfoGain approach we take every room as

a grid element. The performance is evaluated in terms of the

average accuracy of room estimation, which is defined as the

cumulative percentage of estimations within specified errors.

Fig. 3 shows the accuracy comparison between MaxMean,

InfoGain and our proposed transmitter selection method. It can

be clearly seen that our approach significantly outperforms the

traditional methods under the same numbers of the APs. For

example, when using 12 APs, our approach reports 71.8%
accuracy of room estimation while those of MaxMean and

InfoGain are 60% and 57.2% respectively. Likewise, the pro-

posed transmitter selection approach performs better than the

other two methods for the GSM networks. In this comparison,

we choose 12 APs and 4 BSs as the best subset respectively

after using PCA.

B. The Effect of the Matching Length in Clustering

The proposed method needs to create different clusters

according to ranking patterns with the different number of

dimensions during the training stage. To balance the trade-off

between computational complexity and estimation accuracy,

we need to find the best maximum matching length to create

clusters. Fig. 4 reports that the room estimation accuracy ver-

sus the highest maximum matching length used in clustering

in WiFi networks. This corresponds to the depth of the tree

constructed during training phase. Seen from Fig. 4, we can
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Fig. 4. The accuracy of room prediction versus the maximum number of
matching length in clustering in WiFi networks

see the estimation accuracy increases as the matching length

increases from 1 to 8. However, the predictive accuracy does

not monotonically improve along with the increasing matching

length. When the maximum allowed matching length is set as

8, inclusion of additional RSS leads to worse rather than better

performance. Similarly, for GSM, the best maximum number

length allowed is set as 4.

C. Positioning Performance
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Fig. 5. The room accuracy results for different alrgothims in three forms of
RSS

Fig. 5 compares the estimation accuracy of the three dif-

ferent algorithms by using GSM RSS, WiFi RSS and both

of them. We perform 10 trials for every algorithm and plot

the mean value. In each trial, we used the same number of

training data and test data. From Fig. 5, we can see that

the proposed localization method significantly outperforms the

two traditional methods, especially when hybrid RSS data

(WiFi RSS and GSM RSS) is used. For instance, when inte-

grating WiFi RSS with GSM RSS, our proposed method can

achieve 72% accuracy of correct room prediction, whereas the
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KNN and KDE methods report 15.6% and 19.2% respectively.

Furthermore, we observe that all the three methods based on

hybrid RSS data perform better than those based on only GSM

signal strength or WiFi signal strength at a certain extent. In

addition, it clearly shows that using WiFi data can achieve

better accuracy than using GSM data. This is because the

variation of GSM signal strengths in different rooms is smaller

than that of WiFi signal strengths and there are more APs

available.

D. Comparing cluster-based PCA and Global PCA
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Fig. 6. The room accuracy results comparisons between cluster-based PCA
and Global PCA methods in three forms of RSS

As we mentioned before, the target of our research is to

perform location estimation in a large indoor areas. Here it

might not be a reasonable way to use global PCA to choose a

best subset of transmitters relevant to all possible locations. We

cannot necessarily neglect any one of detectable transmitters

because each of them takes the important responsibility in

the region where it covered. So we compared using global

PCA method (a.k.a G-PCA) that we have described in Section

III, and another approach where PCs are selected within each

cluster (a.k.a C-PCA) from the full set of transmitters. In each

cluster we use the best transmitters, i.e. those that account for

most of the variability in the data. Both methods are tested by

using different subsets of the RSS, as shown in Fig. 6. This

figure not only shows the correct room prediction accuracy,

but also illustrates the accuracy of obtaining either the correct

room or a neighbouring room. A marked improvement in

accuracy is found using C-PCA, especially for the GSM RSS.

The reason is that the chosen PCs can be quite different in

each cluster after a suitable transformation, and C-PCA does

not require the selection of a single relevant subset, which G-

PCA does. Therefore C-PCA is more scalable. This would be

more apparent in a larger area.

V. CONCLUSION

In this paper, we have proposed a novel hybrid RSS-based

room estimation approach in multi-story indoor environment.

The use of PCA method to investigate the different contri-

butions of the different transmitters to choose the subset of

transmitters can reduce the computational burden and storage,

as well as improve the estimation accuracy. To evaluate

the performance of our proposed cluster-based deterministic

algorithm, we collected real RSS from both WiFi and GSM

networks on two floors EE building in Queen Mary campus.

The results indicate using the hybrid RSS can improve the

estimation accuracy in multi-story building compared with the

traditional algorithms. The cluster based approach allows for

extensibility to larger areas as a predefined subset of relevant

transmitter is not selected for the whole area, rather it is

specific to each cluster.

In future work, we will incorporate the mobile users’

movement trajectories to further improve the accuracy of

location estimation. We are currently validating mechanisms

for integrating WiFi RSS with GSM RSS and have obtained

significant accuracy improvements in a large scale multi-storey

indoor environment, e.g. Stratford Westfield shopping mall

in London. The corrections described in this paper can help

enhance the accuracy. Moreover, we also have been developing

an approach for adjustment according to temperature, humidity

and user density.
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