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Welcome + Outline 

• Schedule 

• Proposing many algorithm 

• Template method + type signatures 

• Base and meta-level learning 

• Problem Classes (probability of an instance) 

• Example: Bin Packing 

• Outlook.  

 



Schedule 

• 8:30-9:00 Introduction and Overview.  
• 9:00-9:30 Automated Design of Algorithms and Genetic 

Improvement: Contrast and Commonalities 
• Saemundur O. Haraldsson, John R. Woodward 
• 9:30-10:00 Benchmarks that Matter for Genetic Programming 
• John R. Woodward, Simon P. Martin, Jerry Swan  
• 10:00-10:40 Coffee Break 
• 10:40-11:10 A Problem Configuration Study of the Robustness of a 

Black-Box Search Algorithm Hyper-Heuristic 
• Matthew A. Martin, Daniel R. Tauritz 
• 11:10-11:40 A Step Size Based Self-Adaptive Mutation Operator for 

Evolutionary Programming 
• Libin Hong, John H. Drake, Ender Ozcan 
• 11:40-12:10 Discussion 



Schedule < coffee 

• 8:30-9:00 Introduction and Overview.  

• 9:00-9:30 Automated Design of Algorithms and 
Genetic Improvement: Contrast and 
Commonalities 

• Saemundur O. Haraldsson, John R. Woodward  

• 9:30-10:00 Benchmarks that Matter for Genetic 
Programming 

• John R. Woodward, Simon P. Martin, Jerry Swan  

• 10:00-10:40 Coffee Break 



Schedule > coffee 

• 10:00-10:40 Coffee Break 

• 10:40-11:10 A Problem Configuration Study of 
the Robustness of a Black-Box Search Algorithm 
Hyper-Heuristic 

• Matthew A. Martin, Daniel R. Tauritz 

• 11:10-11:40 A Step Size Based Self-Adaptive 
Mutation Operator for Evolutionary Programming 

• Libin Hong, John H. Drake, Ender Ozcan 

• 11:40-12:10 Discussion 



Conceptual Overview 
Combinatorial problem e.g.  TSP salesman 
Exhaustive search? 

Single tour NOT EXECUTABLE!!! 

Genetic Algorithm 
heuristic – permutations 

Travelling Salesman 

Tour 

Genetic Programming 
code fragments in for-loops.  

Travelling Salesman Instances 

TSP algorithm 

EXECUTABLE on MANY INSTANCES!!! 

Give a man a fish and he  
will eat for a day.  
Teach a man to fish and he 
will eat for a lifetime. 
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One Man – One Algorithm 
1. Researchers design heuristics by hand and test them on 

problem instances or arbitrary benchmarks off internet.  

2. Presenting results at conferences and publishing in 
journals. In this talk/paper we propose a new algorithm…  

3. What is the target problem class they have in mind? 

 

 
Heuristic 
Algorithm1 

Heuristic 
Algorithm2 

Heuristic 
Algorithm3 

Human 1 

Human2 

Human3 
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One Man ….Many Algorithms 
Space of Algorithms 

Mutation 1 

Mutation  2 

Mutation 
10,000 

Template 

. bubble sort 

. Random Number 

. Linux operating system 

X 

X 

X 

1. Challenge is defining an 
algorithmic framework (set) 
that includes useful 
algorithms, and excludes 
others.  

2. Let Genetic Programming 
select the best algorithm 
for the problem class at 
hand. Context!!! Let the 
data speak for itself without 
imposing our assumptions.  

 

Search  
Space 
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. Facebook  

. MS word 
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Proposing Sets of Algorithms 

In the template method, one or more algorithm 
steps can be overridden by subclasses to allow 
differing behaviours while ensuring that the 
overarching algorithm is still followed. 

• Concrete methods/classes constrain the 
behaviour of the program.  

• Abstract methods/classes allow variation.  

A template is a skeleton.  

 



Template Method Hyper-heuristics 

• Template Method is a design pattern.  

• Some methods of a class have specified type 
signatures but no implementation (body) i.e. 
abstract class.  

• The abstract class(es) can be supplied later by 
another programmer.     

• OR can be supplied by Automatic 
Programming Technique such as Genetic 
Programming.  



Type Signatures 

• H = history, P = population 



Evolutionary Algorithm Template 



Example – mutation for GA.  

• Examples: one point and uniform mutation. 

• Behaviour: Given a bit string of length n, return 
a bit string of length n.  

• We could write another mutation operator.  

• NO NO NO – lets let Genetic Programing DO 
ALL THE HARD (and boring) WORK.  

• Generate-and-test a Generate-and-test 
method 



Meta and Base Learning 
1. At the base level we are 

learning about a 
specific function.  

2. At the meta level we 
are learning about the 
problem class.  

3. We are just doing 
“generate and test” on 
“generate and test” 

4. What is being passed 
with each blue arrow? 

5. Training/Testing and 
Validation 

 

GA 
Function to 

optimize 

Mutation 
operator 
designer 

Function 
class 

base level 
Conventional GA  
 

Meta level 
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Compare Signatures (Input-Output) 
Genetic Algorithm  
• (B^n -> R) -> B^n 
Input is an objective 
function mapping bit-
strings of length n to a 
real-value.  
Output is a (near 
optimal) bit-string  
i.e. the solution to the 
problem instance 

 Genetic Algorithm Designer 
•  [(B^n -> R)] ->  
     ((B^n -> R) -> B^n) 
Input is a list of functions mapping 
bit-strings of length n to a real-
value (i.e. sample problem 
instances from the problem class).  
Output is a (near optimal) 
mutation operator for a GA  
i.e. the solution method 
(algorithm) to the problem class 

15 

We are raising the level of generality at which we operate. 
Give a man a fish and he will eat for a day, teach a man to fish and… 

  
John Woodward University of Stirling 10/07/2014 



Additions to Genetic Programming 
1. final program is part human constrained part (for-
loop) machine generated (body of for-loop).  
2. In GP the initial population is typically randomly 
created. Here we (can) initialize the population with 
already known good solutions (which also confirms 
that we can express the solutions). (improving rather 
than evolving from scratch) – standing on shoulders of 
giants. Like genetically modified crops – we start from 
existing crops.  
3. Evolving on problem classes (samples of problem 
instances drawn from a problem class) not instances.  

 

John Woodward University of Stirling 16 10/07/2014 



In a Nutshell 

• Humans design the structure of the program e.g. 
the for-loops (GP is bad at that) (INVARIANT) 

• Let GP build the body of the for-loop (VARIANT).  

• The final program is part man made and part 
machine made.  

• We used the Object Oriented approach but could 
be expressed in terms of e.g. Functional 
programming (pass in a mutation operator).  



Problem Classes Do Occur 

1. Travelling Salesman 

1. Distribution of cities over different counties  

2. E.g. USA is square, Japan is long and narrow.  

2. Bin Packing & Knapsack Problem 

1. The items are drawn from some probability 
distribution.  

3. Problem classes do occur in the real-world 

4. Next 6 slides demonstrate problem classes 
and scalability with on-line bin packing.  

John Woodward University of Stirling 18 10/07/2014 
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On-line Bin Packing 

Pieces packed so far 
Sequence of pieces to be packed 

A sequence of pieces is to be packing into as few a bins or 

containers as possible. 

Bin size is 150 units, pieces uniformly distributed between 20-100. 

Different to the off-line bin packing problem where the set of pieces 

to be packed is available for inspection at  the start. 

The “best fit” heuristic, puts the current piece in the space it fits best 

(leaving least slack). It has the property that this heuristic does not 

open a new bin unless it is forced to.  

150 =  

Bin 

capacity 

Range of  

piece size 

20-100 

Array of bins  
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Genetic Programming  
applied to on-line bin packing 

size size 

capacity 

fullness 

emptiness 

Fullness is  

irrelevant  

The space is  

important 

Not immediately obvious how 

to link  

Genetic Programming to apply  

to combinatorial problems. 

See previous paper. 

The GP tree is applied to each 

bin with the current piece 

put in the bin which  

gets maximum score 

Terminals supplied to Genetic Programming 

Initial representation {C, F, S} 

Replaced with {E, S}, E=C-F 

We can possibly reduce this to one variable!! 



How the heuristics are applied 
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Robustness of Heuristics 

= all legal results 

= some illegal results 

10/07/2014 John Woodward University of Stirling 22 
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The Best Fit Heuristic 
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Best fit = 1/(E-S). Point out features. 

Pieces of size S, which fit well into the space remaining E, 

score well. 

Best fit applied produces a set of points on the surface,  

The bin corresponding to the maximum score is picked. 

Piece size emptiness 
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Our best heuristic. 
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pieces 20 to 70

Similar shape to best fit – but curls up in one corner. 

Note that this is rotated, relative to previous slide.  
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Compared with Best Fit 

• Averaged over 30 heuristics over 20 problem instances 

• Performance does not deteriorate 

• The larger the training problem size, the better the bins are 

packed. 

Amount the heuristics beat best fit by
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0 20000 40000 60000 80000 100000

evolved on 100

evolved on 250

evolved on 500

Amount  

evolved  

heuristics  

beat  

best fit by.  

Number of pieces 

packed so far. 
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Compared with Best Fit 

• The heuristic seems to learn the number of pieces in the problem 
• Analogy with sprinters running a race – accelerate towards end of race. 
• The “break even point” is approximately half of the size of the training problem 

size 
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a 

better piece to come along later – about 10 items (similar effect at upper bound?). 

Amount the heuristics beat best fit by
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Zoom in 

of previous  

slide 



A Brief History (Example Applications) 

1. Image Recognition – Roberts Mark 

2. Travelling Salesman Problem – Keller Robert 

3. Boolean Satifiability – Fukunaga, Bader-El-Den 

4. Data Mining – Gisele L. Pappa, Alex A. Freitas   

5. Decision Tree - Gisele L. Pappa et. al.  

6. Selection Heuristics – Woodward & Swan 

7. Bin Packing 1,2,3 dimension (on and off line)  
Edmund Burke et. al. & Riccardo Poli et. al.  
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A Paradigm Shift? 

conventional approach              new approach 

A
lgo

rith
m

s in
vestigated

/u
n

it tim
e 

One person 
proposes one  
algorithm 
and tests it 
in isolation. 

One person proposes a 
family of  algorithms 
and tests them 
in the context of  
a problem class.  

• Previously one person proposes one algorithm 

• Now one person proposes a set of algorithms 

• Analogous to “industrial revolution” from hand to 
machine made. Automatic Design.  

John Woodward University of Stirling 28 

Human cost (INFLATION)          machine cost MOORE’S LAW 
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Consequences 

1. Instead of proposing a single algorithm, “In 
this paper we propose a novel algorithm”… 

2. We can now propose a set of algorithms, “In 
this paper we propose 10,000 algorithms” 

3. The resulting algorithm is typically better 
than a human designed algorithm.  

4. If the problem changes, we can instantly call 
on Genetic Programming again.  



Conclusions 

1. Algorithms are reusable, “solutions” aren’t (e.g. TSP).  

2. We can automatically design algorithms that 
consistently outperform human designed 
algorithms (on various domains).  

3. Heuristic are trained to fit a problem class, so are 
designed in context (like evolution). Let’s close the 
feedback loop! Problem instances live in classes.  

4. We can design algorithms on small problem 
instances and scale them apply them to large 
problem instances (TSP, child multiplication).  
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