
4th ECADA
Evolutionary Computation for the
Automated Design of Algorithms

GECCO WORKSHOP 2014
John Woodward jrw@cs.stir.ac.uk

Jerry Swan jsw@cs.stir.ac.uk

Earl Barr E.Barr@ucl.ac.uk

mailto:jrw@cs.stir.ac.uk
mailto:jrw@cs.stir.ac.uk
mailto:jsw@cs.stir.ac.uk
mailto:jsw@cs.stir.ac.uk

Welcome + Outline

• Schedule

• Proposing many algorithm

• Template method + type signatures

• Base and meta-level learning

• Problem Classes (probability of an instance)

• Example: Bin Packing

• Outlook.

Schedule

• 8:30-9:00 Introduction and Overview.
• 9:00-9:30 Automated Design of Algorithms and Genetic

Improvement: Contrast and Commonalities
• Saemundur O. Haraldsson, John R. Woodward
• 9:30-10:00 Benchmarks that Matter for Genetic Programming
• John R. Woodward, Simon P. Martin, Jerry Swan
• 10:00-10:40 Coffee Break
• 10:40-11:10 A Problem Configuration Study of the Robustness of a

Black-Box Search Algorithm Hyper-Heuristic
• Matthew A. Martin, Daniel R. Tauritz
• 11:10-11:40 A Step Size Based Self-Adaptive Mutation Operator for

Evolutionary Programming
• Libin Hong, John H. Drake, Ender Ozcan
• 11:40-12:10 Discussion

Schedule < coffee

• 8:30-9:00 Introduction and Overview.

• 9:00-9:30 Automated Design of Algorithms and
Genetic Improvement: Contrast and
Commonalities

• Saemundur O. Haraldsson, John R. Woodward

• 9:30-10:00 Benchmarks that Matter for Genetic
Programming

• John R. Woodward, Simon P. Martin, Jerry Swan

• 10:00-10:40 Coffee Break

Schedule > coffee

• 10:00-10:40 Coffee Break

• 10:40-11:10 A Problem Configuration Study of
the Robustness of a Black-Box Search Algorithm
Hyper-Heuristic

• Matthew A. Martin, Daniel R. Tauritz

• 11:10-11:40 A Step Size Based Self-Adaptive
Mutation Operator for Evolutionary Programming

• Libin Hong, John H. Drake, Ender Ozcan

• 11:40-12:10 Discussion

Conceptual Overview
Combinatorial problem e.g. TSP salesman
Exhaustive search?

Single tour NOT EXECUTABLE!!!

Genetic Algorithm
heuristic – permutations

Travelling Salesman

Tour

Genetic Programming
code fragments in for-loops.

Travelling Salesman Instances

TSP algorithm

EXECUTABLE on MANY INSTANCES!!!

Give a man a fish and he
will eat for a day.
Teach a man to fish and he
will eat for a lifetime.

John Woodward University of Stirling 6 10/07/2014

One Man – One Algorithm
1. Researchers design heuristics by hand and test them on

problem instances or arbitrary benchmarks off internet.

2. Presenting results at conferences and publishing in
journals. In this talk/paper we propose a new algorithm…

3. What is the target problem class they have in mind?

Heuristic
Algorithm1

Heuristic
Algorithm2

Heuristic
Algorithm3

Human 1

Human2

Human3

John Woodward University of Stirling 7 10/07/2014

One Man ….Many Algorithms
Space of Algorithms

Mutation 1

Mutation 2

Mutation
10,000

Template

. bubble sort

. Random Number

. Linux operating system

X

X

X

1. Challenge is defining an
algorithmic framework (set)
that includes useful
algorithms, and excludes
others.

2. Let Genetic Programming
select the best algorithm
for the problem class at
hand. Context!!! Let the
data speak for itself without
imposing our assumptions.

Search
Space

John Woodward University of Stirling 8

. Facebook

. MS word

10/07/2014

Proposing Sets of Algorithms

In the template method, one or more algorithm
steps can be overridden by subclasses to allow
differing behaviours while ensuring that the
overarching algorithm is still followed.

• Concrete methods/classes constrain the
behaviour of the program.

• Abstract methods/classes allow variation.

A template is a skeleton.

Template Method Hyper-heuristics

• Template Method is a design pattern.

• Some methods of a class have specified type
signatures but no implementation (body) i.e.
abstract class.

• The abstract class(es) can be supplied later by
another programmer.

• OR can be supplied by Automatic
Programming Technique such as Genetic
Programming.

Type Signatures

• H = history, P = population

Evolutionary Algorithm Template

Example – mutation for GA.

• Examples: one point and uniform mutation.

• Behaviour: Given a bit string of length n, return
a bit string of length n.

• We could write another mutation operator.

• NO NO NO – lets let Genetic Programing DO
ALL THE HARD (and boring) WORK.

• Generate-and-test a Generate-and-test
method

Meta and Base Learning
1. At the base level we are

learning about a
specific function.

2. At the meta level we
are learning about the
problem class.

3. We are just doing
“generate and test” on
“generate and test”

4. What is being passed
with each blue arrow?

5. Training/Testing and
Validation

GA
Function to

optimize

Mutation
operator
designer

Function
class

base level
Conventional GA

Meta level

14 John Woodward University of Stirling 10/07/2014

Compare Signatures (Input-Output)
Genetic Algorithm
• (B^n -> R) -> B^n
Input is an objective
function mapping bit-
strings of length n to a
real-value.
Output is a (near
optimal) bit-string
i.e. the solution to the
problem instance

 Genetic Algorithm Designer
• [(B^n -> R)] ->
 ((B^n -> R) -> B^n)
Input is a list of functions mapping
bit-strings of length n to a real-
value (i.e. sample problem
instances from the problem class).
Output is a (near optimal)
mutation operator for a GA
i.e. the solution method
(algorithm) to the problem class

15

We are raising the level of generality at which we operate.
Give a man a fish and he will eat for a day, teach a man to fish and…

John Woodward University of Stirling 10/07/2014

Additions to Genetic Programming
1. final program is part human constrained part (for-
loop) machine generated (body of for-loop).
2. In GP the initial population is typically randomly
created. Here we (can) initialize the population with
already known good solutions (which also confirms
that we can express the solutions). (improving rather
than evolving from scratch) – standing on shoulders of
giants. Like genetically modified crops – we start from
existing crops.
3. Evolving on problem classes (samples of problem
instances drawn from a problem class) not instances.

John Woodward University of Stirling 16 10/07/2014

In a Nutshell

• Humans design the structure of the program e.g.
the for-loops (GP is bad at that) (INVARIANT)

• Let GP build the body of the for-loop (VARIANT).

• The final program is part man made and part
machine made.

• We used the Object Oriented approach but could
be expressed in terms of e.g. Functional
programming (pass in a mutation operator).

Problem Classes Do Occur

1. Travelling Salesman

1. Distribution of cities over different counties

2. E.g. USA is square, Japan is long and narrow.

2. Bin Packing & Knapsack Problem

1. The items are drawn from some probability
distribution.

3. Problem classes do occur in the real-world

4. Next 6 slides demonstrate problem classes
and scalability with on-line bin packing.

John Woodward University of Stirling 18 10/07/2014

10/07/2014
John Woodward University of

Stirling
19

On-line Bin Packing

Pieces packed so far
Sequence of pieces to be packed

A sequence of pieces is to be packing into as few a bins or

containers as possible.

Bin size is 150 units, pieces uniformly distributed between 20-100.

Different to the off-line bin packing problem where the set of pieces

to be packed is available for inspection at the start.

The “best fit” heuristic, puts the current piece in the space it fits best

(leaving least slack). It has the property that this heuristic does not

open a new bin unless it is forced to.

150 =

Bin

capacity

Range of

piece size

20-100

Array of bins

10/07/2014
John Woodward University of

Stirling
20

Genetic Programming
applied to on-line bin packing

size size

capacity

fullness

emptiness

Fullness is

irrelevant

The space is

important

Not immediately obvious how

to link

Genetic Programming to apply

to combinatorial problems.

See previous paper.

The GP tree is applied to each

bin with the current piece

put in the bin which

gets maximum score

Terminals supplied to Genetic Programming

Initial representation {C, F, S}

Replaced with {E, S}, E=C-F

We can possibly reduce this to one variable!!

How the heuristics are applied

90
120

70

30 45

70

85

30
60

-

+

F S

C

%

C

-15 -3.75 3 4.29 1.88

10/07/2014 John Woodward University of Stirling 21

Robustness of Heuristics

= all legal results

= some illegal results

10/07/2014 John Woodward University of Stirling 22

10/07/2014
John Woodward University of

Stirling
23

The Best Fit Heuristic

0 1
0 2

0 3
0 4

0 5
0 6
0 7
0

21
63
04
45
87
28
6

1
0

0

1
1

4

1
2

8

1
4

2

-150

-100

-50

0

50

100

150

100-150

50-100

0-50

-50-0

-100--50

-150--100

Best fit = 1/(E-S). Point out features.

Pieces of size S, which fit well into the space remaining E,

score well.

Best fit applied produces a set of points on the surface,

The bin corresponding to the maximum score is picked.

Piece size emptiness

10/07/2014
John Woodward University of

Stirling
24

Our best heuristic.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

15020 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

-15000

-10000

-5000

0

5000

10000

15000

emptiness

piece size

pieces 20 to 70

Similar shape to best fit – but curls up in one corner.

Note that this is rotated, relative to previous slide.

10/07/2014
John Woodward University of

Stirling
25

Compared with Best Fit

• Averaged over 30 heuristics over 20 problem instances

• Performance does not deteriorate

• The larger the training problem size, the better the bins are

packed.

Amount the heuristics beat best fit by

-100

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000

evolved on 100

evolved on 250

evolved on 500

Amount

evolved

heuristics

beat

best fit by.

Number of pieces

packed so far.

10/07/2014
John Woodward University of

Stirling
26

Compared with Best Fit

• The heuristic seems to learn the number of pieces in the problem
• Analogy with sprinters running a race – accelerate towards end of race.
• The “break even point” is approximately half of the size of the training problem

size
• If there is a gap of size 30 and a piece of size 20, it would be better to wait for a

better piece to come along later – about 10 items (similar effect at upper bound?).

Amount the heuristics beat best fit by

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

evolved on 100

evolved on 250

evolved on 500

Amount

evolved

heuristics

beat

best fit by.

Zoom in

of previous

slide

A Brief History (Example Applications)

1. Image Recognition – Roberts Mark

2. Travelling Salesman Problem – Keller Robert

3. Boolean Satifiability – Fukunaga, Bader-El-Den

4. Data Mining – Gisele L. Pappa, Alex A. Freitas

5. Decision Tree - Gisele L. Pappa et. al.

6. Selection Heuristics – Woodward & Swan

7. Bin Packing 1,2,3 dimension (on and off line)
Edmund Burke et. al. & Riccardo Poli et. al.

10/07/2014 John Woodward University of Stirling 27

A Paradigm Shift?

conventional approach new approach

A
lgo

rith
m

s in
vestigated

/u
n

it tim
e

One person
proposes one
algorithm
and tests it
in isolation.

One person proposes a
family of algorithms
and tests them
in the context of
a problem class.

• Previously one person proposes one algorithm

• Now one person proposes a set of algorithms

• Analogous to “industrial revolution” from hand to
machine made. Automatic Design.

John Woodward University of Stirling 28

Human cost (INFLATION) machine cost MOORE’S LAW

10/07/2014

Consequences

1. Instead of proposing a single algorithm, “In
this paper we propose a novel algorithm”…

2. We can now propose a set of algorithms, “In
this paper we propose 10,000 algorithms”

3. The resulting algorithm is typically better
than a human designed algorithm.

4. If the problem changes, we can instantly call
on Genetic Programming again.

Conclusions

1. Algorithms are reusable, “solutions” aren’t (e.g. TSP).

2. We can automatically design algorithms that
consistently outperform human designed
algorithms (on various domains).

3. Heuristic are trained to fit a problem class, so are
designed in context (like evolution). Let’s close the
feedback loop! Problem instances live in classes.

4. We can design algorithms on small problem
instances and scale them apply them to large
problem instances (TSP, child multiplication).

John Woodward University of Stirling 30 10/07/2014

