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Template Method Hyper-heuristics 

• Template Method is a design pattern.  

• Some methods of a class have specified type 
signatures but no implementation (body) i.e. 
abstract class.  

• The abstract class(es) can be supplied later by 
another programmer.     

• OR can be supplied by Automatic 
Programming Technique such as Genetic 
Programming.  



Proposing Sets of Algorithms 

In the template method, one or more algorithm 
steps can be overridden by subclasses to allow 
differing behaviours while ensuring that the 
overarching algorithm is still followed. 

• Concrete methods/classes constrain the 
behaviour of the program.  

• Abstract methods/classes allow variation.  

A template is a skeleton.  

 



One Man ….Many Algorithms 
Space of Algorithms 

Mutation 1 

Mutation  2 

Mutation 
10,000 

Template 

. bubble sort 

. Random Number 

. Linux operating system 

X 

X 

X 

1. Challenge is defining an 
algorithmic framework (set) 
that includes useful 
algorithms, and excludes 
others.  

2. Let Genetic Programming 
select the best algorithm 
for the problem class at 
hand. Context!!! Let the 
data speak for itself without 
imposing our assumptions.  
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Type Signatures 

• H = history, P = population 



Evolutionary Algorithm Template 



Example – mutation for GA.  

• Examples: one point and uniform mutation. 

• Behaviour: Given a bit string of length n, return 
a bit string of length n.  

• We could write another mutation operator.  

• NO NO NO – lets let Genetic Programing DO 
ALL THE HARD (and boring) WORK.  

• Generate-and-test a Generate-and-test 
method 



Building a Space of Mutation Operators 

A program is a list of instructions and arguments.  

A register is set of addressable memory (R0,..,R4).  

Negative register addresses means indirection. 

A program can only affect IO registers indirectly. 

+1 (TRUE) -1 (FALSE) +/- sign on output register.  

Insert bit-string on IO register, and extract from IO register 

Inc  0 

Dec  1 

Add 1,2,3 

If 4,5,6 

Inc  -1 

Dec -2 -20 -1  +1 20 … 

INPUT-OUTPUT REGISTERS 

110 -1  +1 43 … 

WORKING REGISTERS 

Program counter pc 2 

John Woodward University of Stirling 9 10/07/2014 



Expressing Mutation Operators 
• Line   UNIFORM  ONE POINT MUTATION 

• 0   Rpt, 33, 18  Rpt, 33, 18 

• 1   Nop   Nop 

• 2   Nop   Nop 

• 3   Nop   Nop 

• 4   Inc, 3   Inc, 3 

• 5   Nop   Nop 

• 6   Nop   Nop 

• 7   Nop   Nop 

• 8   IfRand, 3, 6  IfRand, 3, 6 

• 9   Nop   Nop 

• 10   Nop   Nop 

• 11   Nop   Nop 

• 12   Ivt,−3   Ivt,−3 

• 13   Nop   Stp 

• 14   Nop   Nop 

• 15   Nop   Nop 

• 16   Nop   Nop 

• Uniform mutation 

Flips all bits with a  

fixed probability. 

4 instructions 

• One point mutation 

flips a single bit. 

6 instructions 

Why insert NOP?  

We let GP start with 
these programs and 
mutate them.  10 John Woodward University of Stirling 10/07/2014 



In a Nutshell 

• Humans design the structure of the program e.g. 
the for-loops (GP is bad at that) (INVARIANT) 

• Let GP build the body of the for-loop (VARIANT).  

• The final program is part man made and part 
machine made.  

• We used the Object Oriented approach but could 
be expressed in terms of e.g. Functional 
programming (pass in a mutation operator).  



Consequences 

1. Instead of proposing a single algorithm, “In 
this paper we propose a novel algorithm”… 

2. We can now propose a set of algorithms, “In 
this paper we propose 10,000 algorithms” 

3. The resulting algorithm is typically better 
than a human designed algorithm.  

4. If the problem changes, we can instantly call 
on Genetic Programming again.  



The Composite Design Pattern 

The composite pattern describes that a group of 
objects is to be treated in the same way as a 
single instance of an object. 

• Hyper heuristics  

• Ensembles 



Hyper-Heuristics 
• Heuristics to choose heuristics H:[S]->[S] 

• Heuristics to generate heuristics H:[O]->[O] 

 



Composite Hyper-heuristic 

• Operator maps state to state. O:[S]->[S] 

• Where [S] is a list (trace or history of states) 

• Hyper-heuristic H:[S]X[O]->[S]X[O] 

• Selective hyper-heuristics update former [S] 

• Generative hyper-heuristics update latter [O] 

 



Ensembles of Classifiers 

1. How to combine the classier outputs to 
compute an overall classification? 

2. How to generate multiple diverse classifiers 
to produce a well-performing ensemble? 

3. How to set the parameters of machine 
learning algorithms? 

4. How can we build high quality classifiers 
more efficiently in the new era of big data 
and parallel processing? 



Combining Classifier Outputs 

• Majority vote: The entire set of classifiers vote on a 
class, and the class which receives the most votes is 
taken. 

• Averaging: If the outputs of each classier are a real 
number then the outputs can be averaged. 

• Weighted average: Each classier is assigned a weight 
according to its `expertise'. When the averaging is done 
more emphasis is placed on the classifiers with a 
higher weight. 

• Algebraic combiners: real-valued outputs of classifiers 
are combined through statistical expressions such as 
sum, mean, product, median, minimum, maximum. 



Generating Diverse Classifiers 

• Bagging (bootstrap aggregation)random samples 
(usually with replacement) taken from the original 
dataset 

• Boosting adjusts the probability of sampling 
misclassified data. Thus, misclassified data is more 
likely to be considered in the training of subsequent 
classifiers. 

• Stacked Generalization trains multiple levels of 
classifiers. 

• Mixture of Experts generates several classifiers whose 
outputs are combined through a rule which typically 
trained using the expectation maximization (EM) 
algorithm.  



Consequences 

1. Generation of Diverse Classifiers 
2. Statistically better behaviour 
3. Integration of different types of classifier 
4. Learning Classifier Systems 
5. Confidence 
6. Levels of Measurement 
7. Statistics and Machine Learning 
8. Classifier Outputs as Features 
9. Ensembles of Linear Classifiers 
10. Big Data and Parallelism 



Surrogate Fitness Function 

• We may substitute an objective function 
(supplied by the domain expert) with a 
surrogate fitness function.  

1. It is expensive to execute 

2. It is not known explicitly 

3. It is rugged/multimodal. 



Closing Statement 

• A catalogue of design patterns (with motives 
and consequence) could stop us reinventing 
the wheel.  

• Definition – do we need one? Even informal? 

• Metaheuristics are very ad hoc – why? 

• Machine learning – training and testing 
phase.  

• Standardise terminology? (Re)-educate?  

• Thank you – questions?  

 


