
1. Template Method Hyper-heuristics
2. The Composite Design Pattern

GECCO -

John Woodward jrw@cs.stir.ac.uk

Jerry Swan jsw@cs.stir.ac.uk

Simon Martin spm@cs.stir.ac.uk

mailto:jsw@cs.stir.ac.uk
mailto:jsw@cs.stir.ac.uk

Outline

 Template method hyper-heuristics

– Sets of algorithms

– Type signatures

– Example Genetic Algorithm mutation operator

– Consequences

Composite design pattern

– hyper-heuristic

– Ensembles.

Template Method Hyper-heuristics

• Template Method is a design pattern.

• Some methods of a class have specified type
signatures but no implementation (body) i.e.
abstract class.

• The abstract class(es) can be supplied later by
another programmer.

• OR can be supplied by Automatic
Programming Technique such as Genetic
Programming.

Proposing Sets of Algorithms

In the template method, one or more algorithm
steps can be overridden by subclasses to allow
differing behaviours while ensuring that the
overarching algorithm is still followed.

• Concrete methods/classes constrain the
behaviour of the program.

• Abstract methods/classes allow variation.

A template is a skeleton.

One Man ….Many Algorithms
Space of Algorithms

Mutation 1

Mutation 2

Mutation
10,000

Template

. bubble sort

. Random Number

. Linux operating system

X

X

X

1. Challenge is defining an
algorithmic framework (set)
that includes useful
algorithms, and excludes
others.

2. Let Genetic Programming
select the best algorithm
for the problem class at
hand. Context!!! Let the
data speak for itself without
imposing our assumptions.

Search
Space

John Woodward University of Stirling 5

. Facebook

. MS word

10/07/2014

Type Signatures

• H = history, P = population

Evolutionary Algorithm Template

Example – mutation for GA.

• Examples: one point and uniform mutation.

• Behaviour: Given a bit string of length n, return
a bit string of length n.

• We could write another mutation operator.

• NO NO NO – lets let Genetic Programing DO
ALL THE HARD (and boring) WORK.

• Generate-and-test a Generate-and-test
method

Building a Space of Mutation Operators

A program is a list of instructions and arguments.

A register is set of addressable memory (R0,..,R4).

Negative register addresses means indirection.

A program can only affect IO registers indirectly.

+1 (TRUE) -1 (FALSE) +/- sign on output register.

Insert bit-string on IO register, and extract from IO register

Inc 0

Dec 1

Add 1,2,3

If 4,5,6

Inc -1

Dec -2 -20 -1 +1 20 …

INPUT-OUTPUT REGISTERS

110 -1 +1 43 …

WORKING REGISTERS

Program counter pc 2

John Woodward University of Stirling 9 10/07/2014

Expressing Mutation Operators
• Line UNIFORM ONE POINT MUTATION

• 0 Rpt, 33, 18 Rpt, 33, 18

• 1 Nop Nop

• 2 Nop Nop

• 3 Nop Nop

• 4 Inc, 3 Inc, 3

• 5 Nop Nop

• 6 Nop Nop

• 7 Nop Nop

• 8 IfRand, 3, 6 IfRand, 3, 6

• 9 Nop Nop

• 10 Nop Nop

• 11 Nop Nop

• 12 Ivt,−3 Ivt,−3

• 13 Nop Stp

• 14 Nop Nop

• 15 Nop Nop

• 16 Nop Nop

• Uniform mutation

Flips all bits with a

fixed probability.

4 instructions

• One point mutation

flips a single bit.

6 instructions

Why insert NOP?

We let GP start with
these programs and
mutate them. 10 John Woodward University of Stirling 10/07/2014

In a Nutshell

• Humans design the structure of the program e.g.
the for-loops (GP is bad at that) (INVARIANT)

• Let GP build the body of the for-loop (VARIANT).

• The final program is part man made and part
machine made.

• We used the Object Oriented approach but could
be expressed in terms of e.g. Functional
programming (pass in a mutation operator).

Consequences

1. Instead of proposing a single algorithm, “In
this paper we propose a novel algorithm”…

2. We can now propose a set of algorithms, “In
this paper we propose 10,000 algorithms”

3. The resulting algorithm is typically better
than a human designed algorithm.

4. If the problem changes, we can instantly call
on Genetic Programming again.

The Composite Design Pattern

The composite pattern describes that a group of
objects is to be treated in the same way as a
single instance of an object.

• Hyper heuristics

• Ensembles

Hyper-Heuristics
• Heuristics to choose heuristics H:[S]->[S]

• Heuristics to generate heuristics H:[O]->[O]

Composite Hyper-heuristic

• Operator maps state to state. O:[S]->[S]

• Where [S] is a list (trace or history of states)

• Hyper-heuristic H:[S]X[O]->[S]X[O]

• Selective hyper-heuristics update former [S]

• Generative hyper-heuristics update latter [O]

Ensembles of Classifiers

1. How to combine the classier outputs to
compute an overall classification?

2. How to generate multiple diverse classifiers
to produce a well-performing ensemble?

3. How to set the parameters of machine
learning algorithms?

4. How can we build high quality classifiers
more efficiently in the new era of big data
and parallel processing?

Combining Classifier Outputs

• Majority vote: The entire set of classifiers vote on a
class, and the class which receives the most votes is
taken.

• Averaging: If the outputs of each classier are a real
number then the outputs can be averaged.

• Weighted average: Each classier is assigned a weight
according to its `expertise'. When the averaging is done
more emphasis is placed on the classifiers with a
higher weight.

• Algebraic combiners: real-valued outputs of classifiers
are combined through statistical expressions such as
sum, mean, product, median, minimum, maximum.

Generating Diverse Classifiers

• Bagging (bootstrap aggregation)random samples
(usually with replacement) taken from the original
dataset

• Boosting adjusts the probability of sampling
misclassified data. Thus, misclassified data is more
likely to be considered in the training of subsequent
classifiers.

• Stacked Generalization trains multiple levels of
classifiers.

• Mixture of Experts generates several classifiers whose
outputs are combined through a rule which typically
trained using the expectation maximization (EM)
algorithm.

Consequences

1. Generation of Diverse Classifiers
2. Statistically better behaviour
3. Integration of different types of classifier
4. Learning Classifier Systems
5. Confidence
6. Levels of Measurement
7. Statistics and Machine Learning
8. Classifier Outputs as Features
9. Ensembles of Linear Classifiers
10. Big Data and Parallelism

Surrogate Fitness Function

• We may substitute an objective function
(supplied by the domain expert) with a
surrogate fitness function.

1. It is expensive to execute

2. It is not known explicitly

3. It is rugged/multimodal.

Closing Statement

• A catalogue of design patterns (with motives
and consequence) could stop us reinventing
the wheel.

• Definition – do we need one? Even informal?

• Metaheuristics are very ad hoc – why?

• Machine learning – training and testing
phase.

• Standardise terminology? (Re)-educate?

• Thank you – questions?

