
Benchmarks that Matter for
Genetic Programming

John R. Woodward jrw@cs.stir.ac.uk

Simon Martin spm@cs.stir.ac.uk

Jerry Swan jsw@cs.stir.ac.uk

mailto:Woodward@cs.stir.ac.uk
mailto:jrw@cs.stir.ac.uk
mailto:jrw@cs.stir.ac.uk
mailto:jrw@cs.stir.ac.uk

Outline

• Need for non-arbitrary benchmarks

• Metaheuristics and problem classes

• Recent Theorem about performance.

• Base and meta level (sampling) learning

• Type signatures

• Matching metaheuristics to problem classes.

• Automatic design of algorithms is a natural
solution.

Argument for Better Benchmarks

1. Machine learning has become disconnected
from the communities of domain experts.

2. GP lacks “standardized” benchmarks.

3. Theoretical results link with problem classes.

4. Automatic design of algorithms (meta-
learning and hyper-heuristics) can bridge
this gap.

Metaheuristics and Problem Classes

• A metaheuristics samples (stochastically) a
search space of possible solutions.

• A metaheuristics is a conditional probability
distribution over the search space.

• A set of problem instances come from a
probability distribution.

• There is therefore a link between a
metaheuristic and a problem class

Base and Meta/Hyper Level.

• At the base level we are learning about a
function.

• At the meta level we are learning about the
probability distribution of functions.

Theoretical Motivation 1

1. A search space contains the set of all possible solutions.
2. An objective function determines the quality of solution.
3. A search algorithm determines the sampling order (i.e.

enumerates i.e. without replacement). It is a (approximate)
permutation.

4. Performance measure P (a, f) depend only on y1, y2, y3
5. Aim find a solution with a near-optimal objective value using a

search algorithm. ANY QUESTIONS BEFORE NEXT SLIDE?
John Woodward University of Stirling 6

x1

X1.

X2.

X3.

x1

Y1.

Y2.

Y3.

x1

1.

2.

3.

Search
space

Objective
Function f

Search
Algorithm a

SOLUTION
PROBLEM

10/07/2014

P (a, f)

Theoretical Motivation 2

x1

1.

2.

3.

x1

1.

2.

3.

x1

1.

2.

3.

Search
space

Objective
Function f

Search
Algorithm a

x1

1.

2.

3.

x1

1.

2.

3.

σ−𝟏 σ

P (a, f) = P (a 𝛔,𝛔−𝟏 f) P (A, F) = P (A𝛔,𝛔−𝟏F)
P is a performance measure, (based only on output values).
 𝛔,𝛔−𝟏 are a permutation and inverse permuation.
A and F are probability distributions over algorithms and functions).
F is a problem class. ASSUMPTIONS IMPLICATIONS
1. Algorithm a applied to function 𝛔𝛔−𝟏𝒇 (that is 𝒇)
2. Algorithm a𝛔 applied to function 𝛔−𝟏𝒇 precisely identical.

John Woodward University of Stirling 7 10/07/2014

No Free Lunch Theorems (NFL)

• NFL (informally) states “two metaheuristics
perform equally over all problems”

• What NLF really says is over a problem class,
some metaheuristics can perform better than
others (we are just talking probability
distributions).

• A uniform distribution is a special case (and
unrealistic?).

Meta and Base Learning
1. At the base level we are

learning about a
specific function.

2. At the meta level we
are learning about the
problem class.

3. We are just doing
“generate and test” on
“generate and test”

4. What is being passed
with each blue arrow?

5. Training/Testing and
Validation

optimizer
Function to

optimize

optimizer
designer

Function
class

base level
Conventional optimizer

Meta level

9 John Woodward University of Stirling 10/07/2014

Compare Signatures (Input-Output)
Optimizer
• (B^n -> R) -> B^n
Input is an objective
function mapping bit-
strings of length n to a
real-value.
Output is a (near
optimal) bit-string
i.e. the solution to the
problem instance

 Optimizer Designer
• [(B^n -> R)] ->
 ((B^n -> R) -> B^n)
Input is a list of functions mapping
bit-strings of length n to a real-
value (i.e. sample problem
instances from the problem class).
Output is a (near optimal)
mutation operator for a GA
i.e. the solution method
(algorithm) to the problem class

10

We are raising the level of generality at which we operate.
Give a man a fish and he will eat for a day, teach a man to fish and…

John Woodward University of Stirling 10/07/2014

Black-Box Sampling

• If we sample a function f1

• f1(x1)= y1, f1(x2)=y2, what can we say f1(x3)=?

• If we sample a function f2

• f2(x1)= y1, f2(x2)=y2, what can we say f2(x3)=?

• If we experience a number of functions, the best
we can do is make probabilistic inferences.

• The best we can do is give a probability p(f) that
we think we are sampling function f.

Matching Metaheuristics to Problem
Classes

• TRAINING: Given a set of algorithms to choose
from, select the best (near optimal) for a set of
problem instances (drawn from a probability
distribution).

• TESTING: The resulting algorithm should perform
well on a set of problem instances (drawn from
the same probability distribution).

• We are using a machine learning algorithm (GP)
to build an optimization algorithm.

New Benchmarks for GP

• Typically Genetic Programming is applied to
problems requiring synthesis of a function
e.g. a controller for a robot or function
regression.

• Now we have a new set of problems (e.g.
optimization, combinatorial problems, TSP)

• This is because we are operating indirectly on
the search space using a hyper-heuristics
methodology.

Generating Timetabling Problems

• A standard timetabling problem consists of a
number of locations (rooms) time slots,
examiners (lecturers) and students.

• Given one problem instance we can generate
more similar instance.
– Number of room should not vary.

– Number of teachers may vary a little

– Number of student will vary more

By sensibly perturbing the given problem instance you
can generate a set of similar problem instances.

Conclusions

• It is difficult to infer which optimization
algorithm we should pick, given performance
on arbitrary benchmarks.

• Match an optimizer to a probability
distribution of problem instances.

• Meta-learning/hyper-heuristics learn about
the probability distribution of problem
instances.

• New unseen benchmark instances can be
generated for fair comparison.

