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Outline 

• Need for non-arbitrary benchmarks 

• Metaheuristics and problem classes 

• Recent Theorem about performance. 

• Base and meta level (sampling) learning 

• Type signatures 

• Matching metaheuristics to problem classes. 

• Automatic design of algorithms is a natural 
solution.  

  



Argument for Better Benchmarks 

1. Machine learning has become disconnected 
from the communities of domain experts. 

2. GP lacks “standardized” benchmarks. 

3. Theoretical results link with problem classes. 

4. Automatic design of algorithms (meta-
learning and hyper-heuristics) can bridge 
this gap.  

 



Metaheuristics and Problem Classes 

• A metaheuristics samples (stochastically) a 
search space of possible solutions.  

• A metaheuristics is a conditional probability 
distribution over the search space.  

• A set of problem instances come from a 
probability distribution.  

• There is therefore a link between a 
metaheuristic and a problem class 



Base and Meta/Hyper Level. 

• At the base level we are learning about a 
function.  

• At the meta level we are learning about the 
probability distribution of functions.  



Theoretical Motivation 1 

1. A search space contains the set of all possible solutions.  
2. An objective function determines the quality of solution.  
3. A search algorithm determines the sampling order (i.e. 

enumerates i.e. without replacement). It is a (approximate) 
permutation.   

4. Performance measure P (a, f)  depend only on y1, y2, y3 
5. Aim find a solution with a near-optimal objective value using a 

search algorithm.  ANY QUESTIONS BEFORE NEXT SLIDE? 
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Theoretical Motivation 2 
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P (a, f) = P (a 𝛔,𝛔−𝟏 f)                  P (A, F) = P (A𝛔,𝛔−𝟏F) 
P is a performance measure, (based only on output values). 
 𝛔,𝛔−𝟏 are a permutation and inverse permuation.  
A and F are probability distributions over algorithms and functions). 
F is a problem class. ASSUMPTIONS IMPLICATIONS 
1. Algorithm a applied to function 𝛔𝛔−𝟏𝒇 ( that is 𝒇) 
2. Algorithm a𝛔 applied to function 𝛔−𝟏𝒇 precisely  identical.  
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No Free Lunch Theorems (NFL)  

• NFL (informally) states “two metaheuristics 
perform equally over all problems” 

• What NLF really says is over a problem class, 
some metaheuristics can perform better than 
others (we are just talking probability 
distributions). 

• A uniform distribution is a special case (and 
unrealistic?).   



Meta and Base Learning 
1. At the base level we are 

learning about a 
specific function.  

2. At the meta level we 
are learning about the 
problem class.  

3. We are just doing 
“generate and test” on 
“generate and test” 

4. What is being passed 
with each blue arrow? 

5. Training/Testing and 
Validation 
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Compare Signatures (Input-Output) 
Optimizer 
• (B^n -> R) -> B^n 
Input is an objective 
function mapping bit-
strings of length n to a 
real-value.  
Output is a (near 
optimal) bit-string  
i.e. the solution to the 
problem instance 

 Optimizer Designer 
•  [(B^n -> R)] ->  
     ((B^n -> R) -> B^n) 
Input is a list of functions mapping 
bit-strings of length n to a real-
value (i.e. sample problem 
instances from the problem class).  
Output is a (near optimal) 
mutation operator for a GA  
i.e. the solution method 
(algorithm) to the problem class 
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We are raising the level of generality at which we operate. 
Give a man a fish and he will eat for a day, teach a man to fish and… 
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Black-Box Sampling 

• If we sample a function f1 

• f1(x1)= y1, f1(x2)=y2, what can we say f1(x3)=?  

• If we sample a function f2 

• f2(x1)= y1, f2(x2)=y2, what can we say f2(x3)=? 

• If we experience a number of functions, the best 
we can do is make probabilistic inferences. 

• The best we can do is give a probability p(f) that 
we think we are sampling function f.  



Matching Metaheuristics to Problem 
Classes 

• TRAINING: Given a set of algorithms to choose 
from, select the best (near optimal) for a set of 
problem instances (drawn from a probability 
distribution).  

• TESTING: The resulting algorithm should perform 
well on a set of problem instances (drawn from 
the same probability distribution).  

• We are using a machine learning algorithm (GP) 
to build an optimization algorithm. 



New Benchmarks for GP 

• Typically Genetic Programming is applied to 
problems requiring synthesis of a function 
e.g. a controller for a robot or function 
regression.  

• Now we have a new set of problems (e.g. 
optimization, combinatorial problems, TSP) 

• This is because we are operating indirectly on 
the search space using a hyper-heuristics 
methodology.  



Generating Timetabling Problems 

• A standard timetabling problem consists of a 
number of locations (rooms) time slots, 
examiners (lecturers) and students. 

• Given one problem instance we can generate 
more similar instance.  
– Number of room should not vary. 

– Number of teachers may vary a little   

– Number of student will vary more 

By sensibly perturbing the given problem instance you 
can generate a set of similar problem instances.  

 



Conclusions 

• It is difficult to infer which optimization 
algorithm we should pick, given  performance 
on arbitrary benchmarks.  

• Match an optimizer to a probability 
distribution of problem instances.  

• Meta-learning/hyper-heuristics learn about 
the probability distribution of problem 
instances. 

• New unseen benchmark instances can be 
generated for fair comparison.  

 


