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ABSTRACT
We revisit the roots of Genetic Programming (i.e. Natural
Evolution), and conclude that the mechanisms of the pro-
cess of evolution (i.e. selection, inheritance and variation)
are highly suited to the process; genetic code is an effec-
tive transmitter of information and crossover is an effective
way to search through the viable combinations. Evolution
is not without its limitations, which are pointed out, and it
appears to be a highly effective problem solver; however we
over-estimate the problem solving ability of evolution, as it
is often trying to solve “self-imposed” survival problems.

We are concerned with the evolution of Turing Equiva-
lent programs (i.e. those with iteration and memory). Each
of the mechanisms which make evolution work so well are
examined from the perspective of program induction. Com-
puter code is not as robust as genetic code, and therefore
poorly suited to the process of evolution, resulting in a insur-
mountable landscape which cannot be navigated effectively
with current syntax based genetic operators. Crossover, has
problems being adopted in a computational setting, primar-
ily due to a lack of context of exchanged code. A review of
the literature reveals that evolved programs contain at most
two nested loops, indicating that a glass ceiling to what can
currently be accomplished.

Categories and Subject Descriptors
I [Computing Methodologies]: Artificial Intelligence—
Automatic Programming

General Terms
Algorithms
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Genetic Programming
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1. INTRODUCTION
Koza poses the question ([1], page 1, attributed to Arthur

Samuel in the 1950’s) “How can computers learn to solve
problems without being explicitly programmed? ..., how can
computers be made to do what is needed to be done, without
being told exactly how to do it.” Inspired by evolution, Ge-
netic Programming (GP) goes some way to addressing this
issue, however, ironically, the programs evolved are typically
a sub-set of Turing Equivalent (TE) programs (i.e. logical
or arithmetic expressions rather than computer programs in-
volving iteration and memory [2]). This paper states a case
for the unsuitability of GP to evolve TE programs.

Evolution is a process which acts on biological entities,
and causes the frequency of genes to vary over time. Three
factors are necessary for evolution to take place; variation,
inheritance and selection. Variation is caused by mutation
and crossover. In either case, mutation of a gene, or the
crossing-over of genetic material from two parents, will result
in an individual which has different traits to the parents.
Selection is provided by the environment, and inheritance is
supported by the propagation of genetic material. GP is a
machine learning method inspired by evolution.

In machine learning, the concept of search is a very general
“test-and-generate” methodology, in which a set of potential
solutions is evaluated. Evolutionary computation searches
the set of solutions in a style inspired by evolution. If the
solution set contains computer programs, then we call this
approach GP [1, 3]. Thus GP is the search of the space of
executable data structures. The programs could represent
logical expressions or arithmetic expressions (as is usually
done in GP [1]), however it can also include computer pro-
grams in the most general sense (i.e. effective procedures or
algorithms) which include capabilities of iteration/recursion
and memory. It is the evolution of algorithms which is our
concern in this paper. Our goal in GP is to find a program
defined by a set of test cases, and not to study aspects of
the evolutionary process.

There are a number of motivations for studying program
induction using TE systems. Angeline [4] states, ‘A poor
representation limits what behaviors can be created while a
good representation permits the induction of any potentially
useful sequences of actions’. Teller ([5], page 133) states,
‘given that programs written in a Turing Complete language
are more difficult to evolve than programs written in less ex-
pressive languages... why bother evolving them?’. He has
two answers; Firstly, TE programs are more expressive than
other reactive functions (which have no memory) which are
usually evolved in GP [1]. Secondly, computer programs can



express a function in less space than less expressive repre-
sentations. This also aids generalization; almost all of the
solution evolved with TE programs are general (see section
2). While there are a number of important motivations for
wanting to induce algorithms, the central message of this
paper is that evolution is not an effective methodology for
automatically synthesizing algorithms.

The line of the argument of this article is as follows. In
section 2 we review the literature concerning the applica-
tion of GP to TE program spaces. We review some aspects
of evolution in section 3, and argue that genetic code is a
highly suitable representation to carry genetic information,
and crossover is an effective way to search this space. We
also explore some of the limits of evolution and argue that
it is illusively successful. In section 4, we examine some of
the problems of applying the principles of evolution to the
task of automatically generating computer programs. These
problems stem largely from the highly discontinuous map-
ping between program space and function space, an issue
which is compounded by the extra flexibility available if we
are evolving TE computer programs rather than less expres-
sive executable data structures. In the remaining sections
we summarize these issues and conclude the article.

2. LITERATURE REVIEW
Various computer models have been used, including Tur-

ing Machines (TM), Universal Register Machines, and some
model designed especially for evolution. Often the solution
evolved is completely general, solving all instances of the
problem exactly. The majority of authors comment of the
unsuitability of the genetic operator, crossover, to search
the space of programs. Almost all of the authors avoid the
problem of non-halting programs by enforcing a fixed upper
limit on number of instructions executed. Turing Machines
are possibly the most well known models of computation, yet
it is interesting that little work has been done using them
as a representation for evolution [6, 7, 8].

Cramer [9] evolves a multiplication function. He takes
the PL language (which is TE) containing instructions: INC,
ZERO, LOOP, and GOTO. Programs consist of lists of instruc-
tions and have an arbitrary number of globally scoped in-
teger variables. He studies a less expressive language (PL-
:GOTO) which consists of the instructions of PL without
the instruction GOTO. Programs written in PL-:GOTO are
guaranteed to halt and correspond to the set of primitive
recursive functions. He also adds a SET instruction and a
BLOCK operator that accepts two statements as arguments
and evaluates them sequentially, which is a grouping opera-
tion and calls this the JB language. In the JB language, a
program is represented as a list of integers. To interpret a
list, it is split into sections of three integers, the first inte-
ger is the instruction and the remaining two integers are the
arguments. Each set of three integers therefore corresponds
to a program statement. He comments that this language
is unsuitable for evolution as it is very sensitive to changes
because ‘a single unfortunate mutation .... would destroy
any useful features of the program’ and the language TB is
introduced which has a tree like structure. Genetic oper-
ators act near the leaves of the tree in order to avoid the
‘catastrophic minor change’ problems JB suffered from.

The key to designing an effective evaluation function is
one that rewards multiplication-like behavior (i.e. reflects
the fact we are moving nearer the global optima). Cramer [9]

used the following ‘after much experimentation’ (indicating
the difficulty of designing a good fitness function). Programs
with the following types of behavior were given successively
more credit; 1. the output variables changed from their
initial values, 2. simple dependency of the output on the
input, 3. the value of the input is a factor of the output, 4.
the output is the product of the two inputs.

Tanomaru et. al. [6] argues that ‘since automata are typ-
ically represented by their state transition tables, this seems
to be the most natural representation to be adopted’. Crossover
exchanges randomly selected contiguous rows in the state
transition table, and the children therefore maybe of differ-
ent length to their parents. Mutation changes the contents
of a percentage of randomly selected cells of the state tran-
sition table. They tackle two problems of sorting tapes of
two symbols and proper subtraction.

Tanomaru [7] argues that crossover is not an effective pro-
cedure as it can result in meaningless automata (as they re-
fer to non existent states) and thus valuable processing time
is wasted. Crossover is entirely dropped as ‘it is based on
the building block hypothesis, which is very unlikely to hold
in the case of automata generation’ (he offers no explana-
tion of this point of view is offered). Three problems were
tackled; the recognition of a regular, context free and a con-
text sensitive language. Results indicate that the enhanced
approach outperforms the simpler approach detailed in [6].

Vallejo et. al. [8] evolved Turing Machines with the ca-
pabilities of bio-sequence recognition. The experiments use
a machine with 32 states and a tape alphabet consisting of
8 symbols. It is not stated how many of these states are
actually active in the final solution. The GA found a Turing
Machine which correctly classified all training sequences and
accepted several sequences not included in the training set.

Huelsbergen presents a series of papers [10, 11, 12] in
which he evolves programs. His register machine consists of
a number of registers which hold integer values, and a flag
which can have one of three values (lessthan, greaterthan or
equal). Examples of instructions included in this language
are compare and jump. There are a collection of conditional
jump instructions which jump depending on the value of the
flag. A number of other instructions include increment,
decrement and clear. In this system (unlike Cramer’s [9])
an explicit looping structure is not used which makes the
problem harder. In [10] Huelsbergen evolves a multiplication
function using a primitive set including an addition instruc-
tion. In [11] Huelsbergen evolves programs which generate
recursive sequences (squares, cubes, factorial and Fibonacci
numbers). In this paper the instruction set has additional in-
structions (subtraction, multiply and division). In a similar
vein to his previous paper, he demonstrates that recursive
sequence generating programs can be evolved without using
an instruction set which includes an explicit recursion op-
erator. In [12] Huelsbergen evolves solutions to the parity
problem. He claims that no domain specific operators are
used, however he does include a number of logical opera-
tors not included in the previous papers [10, 11]. Two point
crossover and single point mutation are employed. Headless
chicken crossover is also used, where a randomly generated
contiguous group of instructions is inserted into a program,
rather than being inherited from a parent. Interestingly
on this problem macro-mutation significantly outperforms
crossover. All of the solutions obtained in these papers [10,
11, 12] could be described as containing a single loop. There



is a looping structure which executes a section of code re-
peatedly however, no nested loops were evolved (but were
not needed for these problems). As the solutions only con-
tain one loop, there is no obvious building block, so it is
perhaps not surprising that crossover did not perform well.

Schmidhuber et. al. produced a series of papers [13, 14,
15]. These papers use a probability distribution over in-
structions which are part of programs written in as assem-
bly type language. These papers are not concerned with a
population based evolutionary approach but rather learning
to learn where an individual program alters its own learning
bias as it receives reward from the environment. In these
works the agent can potentially use any learning algorithm
as the instruction set is TE (this therefore has the advantage
over other self adaptation approaches which can only alter
the way they learn in a very restricted sense). There are
a number of “normal primitives” which perform standard
mathematical operations on the registers. There are also
a number of special primitives which can alter the proba-
bility distributions of the instructions in the program (and
therefore alter how the program alters itself). Another spe-
cial primitive signals to the program when to assess its own
learning. Schmidhuber et. al. [14], tackle a simple maze
navigation task. The solution produced consists of two ex-
plicit nested loops [14] (page 9) and [15] (page 116). In
a second implementation, a function regression problem is
tackled and a single looping program is evolved [14] (page
17) and [15] (page 127).

Nordin et al. extend the Compiling GP System (CGPS)
[16], which uses instructions of fixed length, to Automatic
Induction of Machine Code GP (AIM-GP) [17], which uses
instructions of variable length. The original motivation was
to directly evolve machine code avoiding the interpretation
process high level languages have to go through, achieving an
impressive improvement in speed of around 1000 times com-
pared to LISP implementations. In CGPS, crossover points
are readily identifiable as instructions are of fixed length.
To avoid this issue in AIM-GP, instructions are grouped
together in fixed length instruction blocks (the size of the
blocks being a globally defined parameter). The block size
must be set large enough to accommodate the largest in-
struction. Crossover exchanges these instruction blocks. In-
struction blocks are like an implicit glue (compare this with
Cramer’s BLOCK instruction) and may assist in the protection
of building blocks against possible disruption by crossover.
As more than one instruction may appear in an instruction
block, crossover cannot separate the instructions. Muta-
tion can do one of 3 things, either affect a whole instruction
block, an instruction or the operand of an instruction. Ho-
mologous crossover preserves the context in tree based GP
by selecting the same crossover point in both parents, thus
preserving location. This is not easy to achieve in a linear
system, but one way of achieving it is to use ADFs [17].

Teller [2] states that standard GP is not capable of evolv-
ing TE structures. He adds iteration and memory to make
the representation TE. Some problems require only current
state information for them to be solved, while other prob-
lems need historical state information in addition, so Teller
[18] introduces a new problem to GP. An agent is in a grid
world with a number of boxes. The aim is for the agent to
push all the boxes to the edges of the environment. The
agent has no way of telling which way it is pointing un-
less it keeps track of that information using Indexed Mem-

ory. He evolves the agent both with and without ADFs and,
although ADFs are not required for Turing Completeness,
their presence does improve performance. An agent’s explo-
ration of the grid is terminated after 80 time steps (a little
less than 2 tours of the board).

Langdon [19, 20] evolves a number of data structures (in-
cluding stacks, queues and lists) using Teller’s Indexed Mem-
ory [18]. Langdon [19] generates stack and queue data struc-
tures. An individual is five trees, one for each operation of
the stack (push, pop, makenull, empty, and top). Only trees
representing the same operation are crossed over. The prob-
lems only require solutions to implement a stack of 10 inte-
gers, however the solutions scale up to stacks of any depth.
The fitness function is the number of fitness cases passed.
Langdon [20] again uses Indexed Memory to evolve a list
data structure, a generalization of a stack and a queue which
were previously evolved [19]. He evolves ten list operations
including insert, delete and locate. A for-while loop was
used and a limit was placed on the number of iterations.
This limit was set as low as possible but still allowed loops
to span all the available memory.

3. EVOLUTION
In this section we look at the suitability of genetic code

for the task it performs (i.e. transmitting inheritable infor-
mation to the next generation), and also the effectiveness
of crossover (the major genetic operator compared to muta-
tion) to search for new individuals. We also consider some
of the limits of evolution, and ask why does evolution ap-
pear to be so successful (e.g. it has created the complexity
of human brains and many different versions of eyes).

3.1 Genetic code
Genetic code is highly suited to its purpose [21, 22, 23,

24]. The process of translating through all the stages from
the genetic bases (abbreviated to A, C, G, T) on a string
of DNA, through to a functioning protein is proof of princi-
ple that genetic code is suitable for the task of inheritance.
Contiguous sections of three bases along a DNA molecule,
called codons, code for one of 21 amino acids and a STOP
symbol. Genetic code has some properties which make it
particularly suitable as the transmitter of genetic informa-
tion. We make the following points;
1. Codons, which are groups of three bases, code for an
amino acid. This is the minimal number. As there are four
types of bases, a codon can code for up to 64 different sym-
bols. If only 2 bases were used, 16 amino acids could be
coded for, while 4 bases could code for 256 amino acids,
making the 4th redundant.
2. The amino acids coded for by codons are not mapped to
randomly, but are grouped together in clusters. This means
that often changing (or mutating) the third base in a codon
does not change the amino acid represented. Hence, in terms
of coding theory this is a perfect code as it is as robust to
mutation as it can be, given the number of bases, the size
of codons and the alphabet of amino acids to represent.
3. Even if a base is mutated, so the codon containing it codes
for a different amino acid, the properties of the resulting pro-
tein are still very similar (e.g. in terms of their properties;
non-polar, polar, basic, acidic). Thus, while the resulting
protein may contain a different amino acid, it properties,
and therefore function, may have only slightly changed.

These three points mean that genetic code is efficient (i.e.



it uses the shortest number of bases), and is reasonably ro-
bust against mutation. And it is this robustness which may
make it so suitable for the carrier of hereditary informa-
tion (i.e. it can effectively transmit information to the next
generation), but is also open to the possibility of slight cor-
ruption during transmission, and thus allows for variation
in the resulting population. In contrast, computer code is
very brittle; often one instruction out of place causes either
a syntactic error, or results in a program with completely
different semantic properties to the original program.

3.2 Crossover and Sexual Reproduction
In evolution, variation is necessary. In asexual reproduc-

tion, this happens only via mutation, where new genetic
material may be introduced into the gene pool. In sexual
reproduction, this variation happens chiefly via crossover,
where new genes are not introduced into the gene pool, but
new individuals are created. Importantly, mutation may
result in non-viable biological entities which perish before
becoming reproductively active, whereas crossover is much
more likely to produce individuals which are viable but phe-
notypically different to the parents. Crossover is a much
safer bet compared to mutation, in this sense of being able
to create original off-spring (i.e. different from off-spring),
but also have a high chance of being viable.

Sexual reproduction has undoubtedly been responsible for
the evolution of more complex organisms than asexual re-
production (i.e. eukaryotic, compared to prokaryotic). In
evolution, when two individual reproduce, the resulting in-
dividuals are a combination of the parent in some sense.
In a simplistic example, the eye color of the off-spring is re-
lated to the eye color of the parents. The situation is similar
for skin color and hair color. The exact relationship of the
color of the said phenotypic feature is related to which genes
for which colors are present in the parents. The mixing or
blending of phenotypic characteristics occurs at the genetic
level, in what is called genetic recombination (crossover).
What does not happen is interference between the colors of
different features. For example, we do not crossover the eye
color of the father, with the hair color of the mother, to
give the resultant skin color of the child. In general, like-
genes are exchanged with like-genes. Of course, mutation
may cause some interference effects, but in general the phe-
notypic features are inherited independently (i.e. the hair
color of the off-spring is determined by the hair color of the
parents, independently of the genes for eye color and skin
color). In genetics, contiguous sections of DNA are decoded
into contiguous chains of amino acids which go on to form
proteins. That is a pair of codons that appear on a string
of DNA, will code for a pair of amino acids, and this pair of
amino acids will appear together in the resulting protein. It
therefore makes sense that a genetic operator acts on con-
tiguous sections of DNA. That is, closely neighboring bases
on a string of DNA are highly likely to be inherited together,
rather than separated. Thus, crossover appears to be a very
effective way of producing new individuals, which are some
sort of combination of the parents.

3.3 Re-evaluation
A species is more likely to be successful in future gener-

ations if it produces more individuals in the current gener-
ation. Once the number of individuals in a population hits
zero, that species becomes extinct, and will no longer suc-
cessful. Increasing the numbers of a species could be thought
of as the implicit aim of evolution. While evolution does not
have an intention behind it, it is a little like thinking a ball
rolling down a slope has the intention of getting to the bot-
tom, or a ensemble of particles has the aim of becoming
disordered (when in actual fact it is just laws of nature at
work). An outside observer may therefore interpret evolu-
tion as having the goal of increasing numbers of a species.
In other words, evolution does not care about re-evaluation.
When the population does saturate, then chaos may start to
play a role, throwing the dynamics into a complex behavior.
In GP we are usually concerned with the earlier stages of
evolution before the population saturates in any sense.

3.4 Limits of evolution
Evolution has produced some interesting solutions to the

problems of survival. One such example is the way some
bacteria reproduce. Some bacteria can reproduce twice as
fast as it takes to copy its genetic material. Nature’s solution
to this problem is for a bacteria to effectively give birth to
a bacteria which is already pregnant, thus halving the time
it would take to reproduce otherwise [21].

While evolution has yielded some intriguing solutions, we
should not fall into a false sense of security of thinking that it
is without its limitations. One example of the limits of what
cannot be achieved by evolution is illustrated by the artificial
selection of bulldogs, where the preferred phenotype is a
large head in proportion to the rest of the body. In fact,
the head of an unborn puppy has become so large it can no
longer pass through the pelvic girdle of the mother during
birth unaided. As a consequence, the majority of bulldogs
are born by cesarean section. This is therefore a phenotype
which is highly unlikely to have evolved if evolution was left
to its own devices.

Another example of the limits of evolution is the difficulty
for natural selection to produce something which works on
the principle of the wheel. From an engineering perspec-
tive, the wheel is simple; it is a freely rotating object con-
nected to a spindle. In biology, we see structures similar
to wheels, but are typically only able to rotate through an
angle of less than one rotation. For example, the skulls of
mammals can typically rotate on a bone in the neck, but
in a restricted sense. The reason for this restricted move-
ment is that blood vessels, nerve cells and other connective
tissues must remain attached to the two objects (e.g. the
body and the head). Perhaps the only example where na-
ture has evolved freely rotating structures is in the flagellum
of some bacteria, which is in sharp contrast to the number
of examples of evolution of the eye. One may protest that
evolution does not need to produce mechanisms similar to
wheels, and works perfectly well without in the absence of
rotating mechanisms, so this is a pointless question. How-
ever, in an artificial scenario, it is hard to see how wheel-like
structures could evolve. For example in [25] the aim was to
evolve agents which could move away from the origin, and
here wheels would be advantageous.



3.5 Why does evolution seem so successful?
Perhaps one of the reasons why biological evolution has

given rise to such vast complexity is that different species
are competing both for resources (e.g. light, water, nutri-
tion), but more importantly against each other (e.g. infec-
tion, predator-prey relationships, parasitic relationships and
symbiotic relationships and niches in intricate food-webs).
This effectively results in an “arms-race”. Many of the fac-
tors influencing survival are concerned with, not so much
the physical environment, but the threat from biological en-
vironments (i.e. there is a bigger threat to one species from
other organisms rather than physical factors). Probably the
best way to compete with biological evolution is to use bi-
ological evolution itself. The point is that evolution may
seem highly successful in terms of the vast diversity it has
produced, as it is competing with itself. That is, many of
the problems a biological entity encounter will have biolog-
ical solutions. For example, if a predator species evolves to
run faster, then the prey species must respond by evolving
faster off-spring if it is to remain successful. Similarly, com-
panies competing with each other are well matched as they
have the same set of resources and limitations (e.g. what is
economically, technologically and legally possible).

3.6 Conclusion
Evolution is a remarkably process. Genetic code is a suit-

able representation to carry information to future genera-
tions. Crossover is a suitable way to explore combinations
of different traits within a given species. However, this suit-
ability of evolution to explore the space of biological entities,
does not necessarily transfer to searching the space of com-
puter programs. We also examined some of the limitations
of evolution, and that we may be over generous in estimating
the creativity of evolution as it is often solving self imposed
problems in a biological arms-race. Evolution is a myopic
process, which only cares about the next generation, and
can be lead down blind alleys, having only a local view of
the landscape. GP, if it is to be successful, needs to be
long-sighted and have the end goal in mind. The take-away
message of this section is that we should not overestimate
the potential of evolution when applying the paradigm to
searching the space of computer programs, which we exam-
ine in the next section.

4. GENETIC PROGRAMMING

4.1 Non-biological description of GP
GP is usually described using the vocabulary from ge-

netics and evolutionary biology. GP can be completely de-
scribed in standard mathematical terms, without any refer-
ence to biological terminology. For example, a population
is a multi-set of programs, and a crossover operator is a
stochastic binary operator mapping two programs to two
programs. There is often confusion over some terminology
(e.g. chromosome and its GP analogue) and a “?” is entered
in the table 1. We have taken genotype to mean a program
(syntax), and phenotype to mean the function that the pro-
gram expresses (semantics).

One advantage of a mathematical terminology is that it
allows specialists in the field of biologically related areas
to communicate with people with the common interest of
program induction (i.e. computer scientists) without the bi-

Table 1: Biological terminology and their mathe-
matical equivalent used in GP. A “?” means there
is not a clear analogy.

biological mathematical
population multi-set of programs

individual or off-spring program
mutation operator unary operator
crossover operator binary operator

selection n-ary function
gene instruction

chromosome ADF?
genotype program

phenotype function
fitness objective value
allele ?

species ?

ological background. If we are trying to model biology, we
want our computer model to be isomorphic to actual biol-
ogy. In GP, we are not trying to model evolution so we do
not require biological concepts have a corresponding inter-
pretation in GP. Adopting a non-biological terminology may
also help distance GP from, for example, the computational
modeling of biology, which has different aims and objectives.
It also frees the research from being too faithful to the un-
derlying biology (as we are interesting in finding programs
rather than modeling biology). As Freeland [26] (2003, p
310) notes: “A luxury of EC is to bend fundamental rules
of evolution beyond anything biologically plausible, and thus
to answer questions where biologists have assumptions”. We
now give an example where, using biological terminology has
limited the way researcher think.

In biological crossover the amount of genetic material is
conserved, and this is often the case with crossover opera-
tors proposed in GP. Crossover is a function mapping from
the cartesian product of programs to the cartesian product
of programs; XO : p1 x p2 → p3 x p4 where pi is a program,
subject to the constrain S(p1)+S(p2) = S(p3)+S(p4), where
S(pi) is the size of the ith program. A description of a more
general crossover operator which does not conform to its bi-
ological counterpart just involves dropping the constrain on
the sizes of the resultant pair of programs. Thus genetic ma-
terial can be thought of as being copied between programs,
rather than being exchanged. There are two points concern-
ing this broader class of crossover operators. Firstly, conven-
tional crossover is a special case of this exchange crossover.
Secondly, removing a good sub-program from one program,
while benefiting the recipient program, will be detrimental
to the donor program. This example is a case where GP
researchers have been over-faithful to the biological origins.
Adopting an unbiased mathematical terminology may re-
duce this temptation.

4.2 Crossover
Crossover is a feature which really differentiates evolution-

ary methods from other search methods. In section 3.2 we
gave the hair-eye-skin color example of biological crossover,
where like-features are exchanged for like-features. Here, we
give the analogous computational example, however this is
not what occurs in GP. Imagine a pair of word-processing



programs. Each contains a set of fonts, a set of drawing ob-
jects, a set of icons. A new word-processing program could
be obtained by exchanging (i.e. crossing over) the fonts,
drawing objects and icons. In other words like-code is ex-
changed for like-code. The resulting program will be a new
word-processing program (i.e. it still retains the functional-
ity of a word processing package) with distinct appearance to
the participating parent programs. This is not how crossover
is currently performed in GP.

It would appear that crossover is good for exchanging“like
for like”. But some sort of structure has to be in place be-
forehand, defining what “like” means (i.e. giving the genetic
code or computer code a context in which to operate and
produce meaning. Code in a different context has differ-
ent meaning). For example, given the overall structure of
a word-processing program, crossover can happily exchange
like-code for like-code, but the question is, where does this
overall structure first come from in the first place. GP does
not currently have a good answer to this dilemma.

4.3 Number of loops
In table 2 we reference papers and the problem they ap-

plied GP to. We also list the number of loops that were
found in the solutions. In some cases loop programming
constructs were explicit in the primitive set (e.g BLOCK in
[9], forwhile [27]). In other cases, an explicit loop construct
was not included and had to be synthesized from other prim-
itives. For example, with a TM loops are constructed from
state transitions, and with a Universal Register Machine,
loops are constructed from the following instructions; com-
pare, jump, increment, decrement and clear.

We choose a loop to illustrate the limitations of GP for
the following reasons. Firstly, loops are very important from
a programming perspective as they are one of the methods
we can write more general and compact code. Secondly,
the contents of a loop (i.e. the body of a loop) is potentially
hard to evolve, as a small change is likely to accumulate into
a large error as the code is iterated over numerous times.
Thirdly, there is not a gradual way to construct a loop from
nothing ; you either have a loop or you do not. One miss-
ing instruction in the case of a Universal Register Machine,
or a missing state in a TM , completely destroys the loop’s
behavior. This is similar to the difficultly of evolution at-
tempting to evolve a wheel, you either have a wheel with the
functionality of a wheel, or you have nothing, there is no in
between; half a wheel is useless.

While the number of loops in a program is not a full mea-
sure of how difficult a problem is or how complex an evolved
program is, we assume it as an indication. We can see a wor-
rying trend that in the case of GP which includes explicit
loop constructs; only programs containing pairs of nested
loops have been evolved. When no explicit loop primitive
was available, only programs containing a single loop were
evolved. This perhaps indicates a glass-ceiling to the pro-
gram complexity that can be achieved with GP in its current
state. To our knowledge, a nested implicit loop has not been
evolved. In some senses, the number of loops is a very poor
measure of program complexity, as all programs can be writ-
ten with the application of a single loop structure [2]. Hence
in all of Teller’s work with Indexed Memory, only a single
loop which contains a program is ever evident.

Table 2: Table of different problems tackled, and
the number of loops found in the program code of
the evolved solutions. In cases where explicit loop
instructions were available 2 nested loops are seen.
In cases where loops had to be constructed from
simpler instructions, only 1 loop was seen. A “?” is
inserted where we could not establish the number of
loops from the published work.

loops problem reference
1 multiplication [10]
1 squares, cubes, factorial, Fibonacci [11]
1 even parity [12]
1 sorting, proper subtraction [6]
1 language recognition [7]
? HIV data-set [8]
2 multiplication [9]
2 maze navigation, function regression [14]
2 evolving data structures [27, 28]

4.4 Manipulating syntax
How can making random changes on syntax bring about

meaningful changes in semantics? By blindly bombarding
syntax data structures and hoping that improvements in
semantics will result is effectively “shooting in the dark”.
There is very little correlation between any syntactic met-
ric (defined across program space) and any semantic metric
(defined across function space), which makes the space hard
to search [2]. That is, we could be a single instruction away
from a program which represents the required function, but
the function of that program bears no semantic relationship
to a desired function. Consider of all the difficulties Cramer
[9] had hand-crafting a fitness function which rewarded mul-
tiplication like behavior.

Imagine the following thought experiment. We have a
GP algorithm, but instead of an algorithm performing the
genetic operations of crossover and mutation, a human pro-
grammer replaces the genetic operator. Also, imagine that
the programmer is not aware of the meaning of the primitives
(function set and terminal set). The human programmer is
only aware of feedback received in terms of how well pro-
grams perform with respect to the fitness function. The hu-
man programmer would not blindly exchange code without
regard for their semantic content. Instead he would look at
the functional interpretation of a sub-program and hopefully
combine promising parts. For example, current crossover op-
erators can exchange two sub-programs which, while syntac-
tically different are semantically equivalent. Clearly such an
exchange would be rather pointless. As the human program-
mer, we would never make such an exchange. This thought
experiment is analogous to the Chinese-room thought ex-
periment put forward by John Searle. In other words, our
search through the space of programs, should be guided by
the semantics of the programs, and not by their syntax.

Some attempts have been made to give context to code
[17]. For example, crossover operators which transfer code
between the same positions in two program trees. However,
it is not the position of the code that gives it its context (i.e.
meaning), but its relationship relative to the other code in
the program. For example, a font library positioned at line



145 in one program, does not imply that the font library in
a second word processing package is positioned also at line
145 (see the word processing package example earlier).

4.5 Stochastic solution, deterministic problem
In many instances the target problem does not have a

stochastic element (e.g. the traveling salesman problem).
It seems inappropriate to want to tackle such a problem
with a stochastic search process. That is, given an instance
of a problem, an evolutionary computation approach will
almost certainly give a different answer every time due to
the probabilistic way the search is conducted. There are
other machine learning methods which would not introduce
this probabilistic uncertainty into the solution. For example,
the C4.5 [29] is an algorithm for generating decision-trees by
reducing the entropy at each node in the decision-tree. If the
algorithm is run a second time, it will give the same answer
as it is deterministic algorithm.

GP is not the only culprit of attempting to solve a deter-
ministic problem with a probabilistic approach. Many cur-
rent search methods are stochastic e.g. simulated annealing,
and artificial neural networks (ANNs). Support vector ma-
chines (SVM) have gone some way to address this issue in
ANNs. While an ANN effectively moves a decision bound-
ary around by adjusting connection weights, with SVM, a
decision boundary is calculated directly from the given class
points. The ANN approach may return a whole range of
possible solutions, but the SVM approach returns a sin-
gle unique solution. Thus, what is needed is an analogous
method in GP, which removes the randomness. One may
argue that Levin search is such a solution.

5. SUMMARY
A literature review has revealed that only a small fraction

of the papers on GP deal with evolving TE computer pro-
grams, with the ability to iterate and utilize memory, while
the majority of papers deal with evolving less expressive log-
ical or arithmetic functions. This suggests a reluctance in
the field to tackle these more challenging search spaces, and
the aim of this paper is to unravel why.

We revisit evolution, which is the inspiration for GP. We
find that genetic code is suited to the task it performs (i.e.
robustly carrying information from one generation to the
next), and that genetic recombination is an effective way of
producing viable off-spring which are phenotypically differ-
ent to the parents, thus providing variation. It is brought to
the reader’s attention, however, that evolution does have its
limits, and while it has given rise to an incredible array of di-
versity, and therefore apparent potential creativity which we
would like to harness in GP, this is largely due to having to
solve “self-imposed” problems. Evolution is in an arms-race
with itself; competing species are largely hill-climbing in the
space of viable biological entities, and small changes in one
species mutually drives small changes in another species (ei-
ther cooperatively or competitively), giving the impression
of some sort of evolutionary progress.

Returning to GP, while the goal of GP is not to replicate
evolutionary processes, we believe the biological nomencla-
ture should be super-seeded by an unbiased abstract math-
ematical language. This will free researchers of the emo-
tional baggage of being unnecessarily faithful to evolution.
A broader class of crossover operator was proposed to il-
lustrate this misplaced trust. Crossover in GP fails to be as

effective as its biological counterpart, as it does not exchange
like-code for like-code (i.e. the semantics of the exchanged
code is not comparable) as there is currently no informa-
tion about context available. How can a crossover operator
“know” if code performing a certain function at some loca-
tion in one program will perform the same function at a dif-
ferent location in a different program? We examine what has
been achieved in the literature, and find a worrying trend
that largely small toy-problems been attempted which re-
quire only a few line of code to solve by hand. Also, GP is a
stochastic answer to a deterministic question, and therefore
such a methodology is questionable. Surely a deterministic
problem requires a deterministic solution method.

6. CONCLUSIONS
If we are to work toward a general theory of Artificial In-

telligence (AI), it should certainly be able to make claims
concerning program induction using TE representations. Lang-
don et. al. [30] (page IX) illustrate current AI approaches
as separate islands in a sea, and the foundations of AI exist-
ing below the sea. As a TE language is the most expressive
representation, we suggest that an understanding of the in-
duction of functions using TE representations must lie deep
within such a theory. A theory of AI based on TMs should
encompass a theory of induction based on finite-state au-
tomata or push-down automata, as what these automata
can express are subsets of what a Turing Machine can ex-
press. Vallejo et. al. [8] say, ‘a GP based on the evolu-
tion of Turing Machines using genetic algorithms provides
a convenient framework for understanding the fundamental
theoretical capabilities and limitations of GP’. We believe,
not only should a theory of AI include induction using TE
representations, it should be central.

A paradigm shift in program induction away from GP is
well overdue. There is a distinct lack of ambitious results in
the area of TE evolution in the literature (i.e. most applica-
tions are toy problems). We conclude that GP in its current
form is fundamentally flawed, when applied to the space of
TE programs. This paper could be interpreted as an attack
on GP. Rather, it is intended to be viewed as identifying the
weaknesses in the approach which need to be addressed if
the field is to progress from its current stagnating phase. If
we are seeking a program based on its sematic merits, then
we should use a search method which is guided by seman-
tics, rather than dominant syntactic gradient-decent meth-
ods which are currently employed.
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