
Metaheuristic Design Pattern: Surrogate Fitness Functions

Alexander E.I. Brownlee
Computing Science and

Mathematics
University of Stirling

FK9 4LA Scotland UK
sbr@cs.stir.ac.uk

John R. Woodward
Computing Science and

Mathematics
University of Stirling

FK9 4LA Scotland UK
john.woodward@cs.stir.ac.uk

Jerry Swan
Computing Science
University of York

YO10 5GW England UK
jerry.swan@york.ac.uk

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
metaheuristics, surrogates, fitness approximation

1. PROBLEM STATEMENT
Metaheuristics are algorithms which search a space of can-

didate solutions for a given problem, seeking good quality
solutions with respect to one or more objectives. This search
proceeds by using operators that create new solutions (the
decision space), guided by some concept of solution fitness
(the objective space). The fitness function usually serves
two distinct but related purposes. Firstly, the fitness func-
tion encapsulates the problem objectives, in the most re-
strictive case providing no more information than a partial
ordering over the solutions. Secondly, it is desired that the
fitness function guides the search, providing the metaheuris-
tic with a gradient which directs it towards better quality
solutions. However, it is not necessarily the case that these
two purposes are aligned: the “true” objective function may
not provide a suitable gradient for the search, or may simply
be expensive to compute. In this context it may be more
suitable to use a surrogate fitness function (also known as a
meta-model, proxy or approximation function) to guide the
search.

2. SOLUTION
Use the ‘Surrogate Fitness’ design pattern in the following

situations:

1. The objective function is costly to execute, e.g., it
is obtained via a long-running simulation or complex
function, where evaluations make up the majority of
the search run time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768499

2. The objective function is noisy, i.e., it can return differ-
ent values for multiple evaluations of a single solution,
and must be repeatedly sampled to compensate.

3. The objective function does not provide a useful search
gradient (Figure 1), preventing the search algorithm
from reaching the global optimum. Specifically:

(a) The objective function is too rugged, causing the
search to become trapped in a local optimum.
This would be reflected by recently visited solu-
tions having low diversity in the decision space
(and hence in the objective space).

(b) The objective function has plateaus, providing
no direction in which the search should proceed.
This would be reflected by recently visited solu-
tions having low diversity in the objective space,
but not the decision space.

Figure 1: The objective function (solid blue) has
several features such as local optima (e.g., region
(a)) and a plateau (e.g., region (b)) which may hin-
der the search. The surrogate (dashed red) acts to
mitigate these features and provide a more useful
gradient.

Surrogates may be either static (explicit functions that
are defined as part of the problem) or dynamic (models that
are trained used samples of the “true” objective function).
The former can be used in situations 3 to 3b (essentially
as a means of introducing additional domain knowledge to
the search process) and the latter can be used in any of the
situations listed in Section 2. The UML class diagram in
Figure 2 shows how a surrogate function relates to the other

major components of metaheuristic search. The problem de-
scription provides an objective function, and zero or more
surrogate functions. Static surrogates are supplied as part of
the problem definition: for example, a count of the number
of optimal component parts of a solution can serves to add
a gradient to the search. These are provided to the solver,
and whether a function is an objective or surrogate is made
visible (so they are not simply access through the Evalu-
ationFunction interface). The solver can also have one or
more dynamic surrogates, which are typically models built
online during the search using machine learning techniques.
The function within a dynamic surrogate can be updated or
replaced over time. Such adaptive components can be seen
as an instance of the ‘Bridge’ (a.k.a. Handle/Body) pattern
[10]. A surrogate can also in turn be an ensemble of simpler
surrogates [20], which can be seen as a further example of
the ‘Composite’ pattern in metaheuristics [30]. Use of an en-
semble of surrogates allows the strengths of several different
approaches to be combined automatically.

3. CONSEQUENCES

• A surrogate provides an alternative search landscape.
This means that it can provide a gradient for the search
process where no useful gradient was present. Further-
more this allows the introduction of additional domain
information to the search process: for example a sur-
rogate can be added to indicate when a solution has
known building blocks of solutions for the problem.

• Approximation errors in the surrogate can cause the
search to diverge from a trajectory towards optimum
(termed evolution control [13]). To avoid this, the
solver must make periodic reference to the objective
function. This can be achieved by either using the sur-
rogate as a filter to choose promising offspring prior to
their evaluation by the objective function, or by eval-
uating some solutions with the surrogate and others
with the objective function.

• A surrogate can reduce calls to the costly objective
function, but model training introduces overhead. Bal-
ancing these also takes care and experimentation.

• An additional benefit of a surrogate that has been con-
structed by machine learning processes in parallel with
the optimization run is that it represents an explicit
model of the problem. This can be mined to support
decision making [4, 11, 24].

4. IMPLEMENTATION
Static surrogates are entirely problem-dependent and are

implemented alongside the true objective function. For dy-
namic surrogates, a wide variety of regression or machine
learning methods can be employed to model the objective
function. Common implementations used in the literature
are:

• Polynomials (response surface methodology).
• Kriging models.
• Artificial neural networks.
• Interpolation models.

The most suitable approach depends on the specific prob-
lem. For example, Kriging can produce a high-quality model
for continuous functions, but can be prohibitively costly to

compute for problems with many dimensions. Although it
does not involve the construction of an explicit model, a sim-
ple alternative which can be considered to be a surrogate is
fitness inheritance. This is the passing of fitness values from
parents to offspring to reduce the number of fitness evalua-
tions [8, 23, 27].

A further alternative which could be considered as a sur-
rogate is to relax the constraints of a problem [17, 21], mod-
ifying the search space. Certain constraints can either be
removed or altered, effectively making a different problem
which should be easier to solve. The constraints can be
adjusted in order to solve the original problem. A similar
situation exists with multi-objective problems. Often, many
objectives are collapsed into a single objective which is a
weighted sum of each of the individual objective. Manipu-
lating the weights changes the search space, creating a sur-
rogate function. A model with high fidelity can be trained
once and used in place of the objective function, but more
commonly it is updated as the search process proceeds.

5. EXAMPLES
Examples in which the objective function is a complex

simulation and hence computationally expensive to execute
are given in [16, 5]. Related to this, for some problems
there is no explicit mathematical function which models
the problem domain (e.g., human-in-the-loop evaluation [25,
2]). In this context, samples of the “objective function” are
very time-consuming: awaiting human input or real-world
measurement. Therefore a computational or mathematical
model of the domain can be built in order to provide an
abstraction of the problem.

Static surrogates were used in [29] for solving the Eternity
II puzzle, measuring the number of partial completed puzzles
were present in a given solution. These guided the search,
with the algorithm infrequently making reference to the full
solution.

In the bin-packing problem (both online and offline [6, 7]),
the aim is to pack a number of items into the smallest num-
ber of bins possible. The objective function therefore scores
a packing solution as the number of bins used. However a
function which only counts the number of bins is a rather
coarse measure and will consider two solutions as indistin-
guishable regardless of how the items are packed within the
bins. For example, in the first situation in which a pair of
bins are both equally occupied (i.e., contain the same total
contents), and the second situation in which one bin is al-
most full, while the second bin is almost empty. This leads to
large plateau in the search space, where many solutions are
assigned the same value and therefore such blunt functions
fail to guide the search process. In the former case a further
item may not be able to be accommodated in the current
bins, while in the latter case there may well be space in the
second bin which is almost empty. This function has proved
to be a better driver in the evolutionary search process.

A surrogate function can add noise to the objective func-
tion so the search process is less likely to become stuck in
local optima [12]. The effect of adding a small amount of
noise to an objective function (the degree of noise could of
course be determined adaptively) is to smooth small undu-
lations and local optima making the landscape less rugged.
It has been noted that adding too much noise, or the wrong
sort of noise could have a negative effect [28].

As a highly-illustrative example of the art of construct-

Figure 2: UML class diagram for the Surrogate Fitness Design Pattern

ing effective static surrogates, Cramer [9] evolves a program
which multiplies two natural numbers together. The natural
choice of objective function is the error. The author states
“after much experimentation, the following scheme for giving
an evaluation score was used”, which indicated the difficulty
of arriving at an effective surrogate function even for a very
simple synthetic problem. A multi-tiered function was used
where the following types of behaviour were noted and each
successive type given more credit:

• Output variables changed from their initial values. (Is
there any activity in the function?)

• Simple functional dependence of an output variable on
an input variable. (Is the function accounting for the
input?)

• The value of an input variable is a factor of the value
of an output variable. (Are useful loop-like structures
developing?)

• Multiplication. (Is an output variable exactly the prod-
uct of two input variables.)

The fact that the fitness function played such a vital role
in this first paper on Genetic Programming highlights the
tension between being given an objective function and de-
signing or generating a suitable surrogate.

Many other examples exist in the literature including noisy
objective functions [1], plateaus and multi-modality [22, 18,
19, 26], deceptive gradient [3] and constraints [15]. Further
examples of surrogate functions can be found in the exten-
sive reviews by Jin [13, 14].

Acknowledgment
Work funded by UK EPSRC grant EP/J017515 (DAASE).

6. REFERENCES
[1] Maumita Bhattacharya. Reduced computation for

evolutionary optimization in noisy environment. In
Proc. GECCO, pages 2117–2122. ACM, 2008.

[2] John Biles, Peter Anderson, and Laura Loggi. Neural
network fitness functions for a musical IGA. In Proc.
of the Int’l ICSC Symp. on Intelligent Industrial
Automation (IIA’96) and Soft Computing (SOCO’96),
pages 131–137. Int’l. Computing Sciences Conferences
(ICSC), 1996.

[3] A. E. I. Brownlee, O. Regnier-Coudert, J. A. W.
McCall, and S. Massie. Using a Markov network as a
surrogate fitness function in a genetic algorithm. In
Proc. IEEE CEC, pages 4525–4532, Barcelona, Spain,
2010. IEEE Press.

[4] A.E.I. Brownlee, J.A.W. McCall, and Q. Zhang.
Fitness Modeling With Markov Networks. IEEE T.
Evolut. Comput., 17(6):862–879, 2013.

[5] A.E.I. Brownlee and J.A. Wright. Constrained,
mixed-integer and multi-objective optimisation
ofbuilding designs by NSGA-II with fitness
approximation. Applied Soft Computing, (0):In press.,
2015. http://dx.doi.org/10.1016/j.asoc.2015.04.010.

[6] Edmund K Burke, Matthew R Hyde, and Graham
Kendall. Evolving bin packing heuristics with genetic
programming. In Parallel Problem Solving from
Nature-PPSN IX, pages 860–869. Springer, 2006.

[7] EK Burke, MR Hyde, G Kendall, and J Woodward.
The scalability of evolved on line bin packing
heuristics. In 2007 IEEE Congress on Evolutionary
Computation, pages 2530–2537. 2007.

[8] J.-H. Chen, D.E. Goldberg, S.-Y.Ho, and K.Sastry.
Fitness Inheritance in Multiobjective Optimization. In
Proc. GECCO, pages 319–326, New York, 2002. ACM
Press.

[9] Nichael Lynn Cramer. A representation for the
adaptive generation of simple sequential programs. In
John J. Grefenstette, editor, Proceedings of an
International Conference on Genetic Algorithms and
the Applications, pages 183–187, Carnegie-Mellon
University, Pittsburgh, PA, USA, 24-26 July 1985.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[11] Mark Hauschild, Martin Pelikan, Kumara Sastry, and
Claudio Lima. Analyzing probabilistic models in
hierarchical BOA. IEEE T. Evolut. Comput.,
13(6):1199–1217, December 2009.

[12] L. Holmstrom and P. Koistinen. Using additive noise
in back-propagation training. Neural Networks, IEEE
Transactions on, 3(1):24–38, Jan 1992.

[13] Yaochu Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
computing, 9(1):3–12, 2005.

[14] Yaochu Jin. Surrogate-assisted evolutionary
computation: Recent advances and future challenges.
Swarm Evol. Comput., 1(2):61–70, 2011.

[15] Yaochu Jin, Sanghoun Oh, and Moongu Jeon.
Incremental approximation of nonlinear constraint
functions for evolutionary constrained optimization. In
Proc. IEEE CEC, pages 2966–2973, July 2010.

[16] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff.
A framework for evolutionary optimization with
approximate fitness functions. IEEE T. Evolut.
Comput., 6(5):481–494, Oct 2002.

[17] Il Yong Kim and OL De Weck. Adaptive
weighted-sum method for bi-objective optimization:
Pareto front generation. Structural and
multidisciplinary optimization, 29(2):149–158, 2005.

[18] Ko-Hsin Liang, Xin Yao, and C. Newton. Combining
landscape approximation and local search in global
optimization. In Proc. IEEE WCCI, volume 2, pages
1514–1520, 1999.

[19] Ko-Hsin Liang, Xin Yao, and C. Newton.
Evolutionary search of approximated n-dimensional
landscapes. International Journal of Knowledge-based
Intelligent Engineering System, 4(3):172–183, 2000.

[20] Dudy Lim, Yaochu Jin, Yew-Soon Ong, and Bernhard
Sendhoff. Generalizing Surrogate-Assisted
Evolutionary Computation. IEEE T. Evolut. Comput.,
14(3):329–355, June 2010.

[21] R Timothy Marler and Jasbir S Arora. The weighted
sum method for multi-objective optimization: new
insights. Structural and multidisciplinary optimization,
41(6):853–862, 2010.

[22] Yew-Soon Ong, Zongzhao Zhou, and Dudy Lim. Curse
and blessing of uncertainty in evolutionary algorithm
using approximation. In Proc. IEEE WCCI, pages
2928 –2935, 2006.

[23] Martin Pelikan and Kumara Sastry. Fitness
Inheritance in the Bayesian Optimization Algorithm.
In Proc. GECCO, pages 48–59, 2004.

[24] Roberto Santana, Concha Bielza, Jose A. Lozano, and
Pedro Larrañaga. Mining probabilistic models learned
by EDAs in the optimization of multi-objective
problems. In Proc. of the 11th Annual Conf. on
Genetic and Evolutionary Comp. (GECCO 2009),
pages 445–452, New York, NY, USA, 2009. ACM.

[25] Mark R.N. Shackelford and Christopher L. Simons.
Metaheuristic design pattern: interactive solution
presentation. Proc. GECCO Comp. 2014, pages
1431–1433, 2014.

[26] Siddhartha K. Shakya, John A. W. McCall, and

Deryck F. Brown. Solving the Ising Spin Glass
Problem using a bivariate EDA based on Markov
random fields. In Proc. IEEE WCCI, pages 908–915.
IEEE Press, 16-21 July 2006.

[27] Robert E. Smith, B. A. Dike, and S. A. Stegmann.
Fitness inheritance in genetic algorithms. In SAC ’95:
Proc. of the 1995 ACM symp. on applied computing,
pages 345–350, New York, NY, USA, 1995. ACM
Press.

[28] Jürgen Van Gorp, Johan Schoukens, and Rik Pintelon.
Adding Input Noise to Increase the Generalization of
Neural Networks is a Bad Idea. In Proceedings of the
International Workshop on Advanced Black-Box
Techniques for Nonlinear Modeling, Leuven, Belgium,
pages 127–132, 1998.

[29] Tony Wauters, Wim Vancroonenburg, and Greet
Vanden Berghe. A Guide-and-Observe
Hyper-Heuristic Approach to the Eternity II Puzzle.
Journal of Mathematical Modelling and Algorithms,
11(3):217–233, Feb 2012.

[30] John Woodward, Jerry Swan, and Simon Martin. The
‘Composite’ Design Pattern in Metaheuristics. In
Proceedings of the 2014 Conference Companion on
Genetic and Evolutionary Computation Companion,
GECCO Comp ’14, pages 1439–1444, New York, NY,
USA, 2014. ACM.

