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Abstract—One of the basic features of life is replication. Indeed
one of the three components of evolution is inheritance, which
implies some similarity (both phenotypic and genotypic) between
parents and offspring. Life is a process and not a substance
(e.g. being carbon-based does not capture what life is), and
this therefore justifies an algorithmic definition. Artificial life is
concerned with the study of synthetic life, and is implemented on
a digital computer. Tierra is a particularly prominent instance,
where rudimentary life forms compete for space and time. In
this system interesting eco-systems emerge, for example demon-
strating parasitic behavior.

The second law of thermodynamics states that the entropy
of an isolated system is nondecreasing. The second law is a
consequence of statistics, and that there are many more states
with high entropy than low entropy. Entropy has connections with
coding theory, data compression and Kolmogorov Complexity,
as well as thermodynamics and statistical mechanics. When
transmitting a coded message, the length of the message is
proportional to the entropy. The shortest computer description
is a universal code which is good for all probability distributions.
The second law could therefore be restated as the Kolmogorov
Complexity of a system is nondecreasing. Kolmogorov Complex-
ity is incomputable, however we can use compression tools to
give an approximate upper bound.

We implement a simple digital world consisting of a bit string
of 0s and 1s. We implement a system like Tierra, firstly with
just thermal noise and no life and observe that the compression
size of the world increases according to the second law. Secondly
we introduce Tierra-like creatures which replicate, and observe
that the size of the compressed world decreases. The question we
address in this paper is, does the basic replication mechanism
underpinning life cause a decrease in entropy. The contribution
of this paper is a demonstration, that in an artificial life scenario,
entropy, as measured by a compression algorithm, decreases
violating the second law of thermodynamics. Thus we can use
this as an algorithmic definition of the process of life.
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I. INTRODUCTION

Due to space limitations we let the abstract serve as our
introduction and directly give the outline of the paper. In
section II we discuss some of the characteristics of living
things, and state that reproduction is the key feature (both
at the level of the organism and the cell). We discuss one
implementation in particular of artificial life, Tierra, which is
the background for the system we implement in this paper.
In section III we examine entropy and the second law of
thermodynamics. In section IV we examine the connection

between information entropy used in coding and Kolmogorov
Complexity. In section V we report on two experiments, one
which shows an increase in the compression length of a digital
world, and one which shows a decrease. This decrease is due
to many copies of the same species accumulating in the world
and allowing the compression length to decrease. In section VI
we engage in a discussion and suggest intended future work.
In section VII we summarize the article.

II. LIFE AND ARTIFICIAL LIFE

The notion of life is difficult to define. Living entities
move, grow, metabolize, are sensitive to their environment,
reproduce and adapt under evolution. There are a number of
physical characteristics that superficially link all life forms
witnessed on earth, for example, they contain RNA, protein
and carbon. The existence of water is also key to the existence
of many entities. However, perhaps the ability to reproduce is
the key characteristic underlying what it means to be “living”.
Reproduction is essentially a rewrite rule (i.e. make a copy
of me). When individuals reproduce (sexually or asexually)
they make a copy of themselves. Though a living organism
need not necessarily reproduce it is a characteristic of any
species overall. That is, an organism may meet all of the
other characteristics of living things, but may not produce any
off spring of their own. A definition of life should perhaps
include viruses and prions, which have been described as
being “at the edge of life”, but importantly also demonstrate
replication. Life is a process rather than a material substance
(i.e. being composed of carbon), and therefore an algorithmic
definition of life is appealing. Therefore we turn our attentions
to Artificial Life which will allow us to study the algorithmic
aspects of life more easily.

Tierra (Spanish for earth) is an artifical life system which
was set up to study the dynamics of the synthesis of life.
It is the study of open ended evolution, rather than having
a particular termination condition in mind, when a solution
to a problem is evolved (e.g. as in genetic algorithms). Ray
[2] starts with organisms which can already replicate (this is
given at the starting point), and the aim is to generate in-
creasing diversity similar to that associated with the Cambrian
explosion. A “slice of time” is handed out to each individual
in the community approximating parallelism (as long as the
time slices are small compared to the time to replicate). Ray



Fig. 1. An illustration of the second law of thermodynamics. A system
performs a random walk through the space of states of equal energy.

achieves his aim, and creates an interesting interacting collec-
tion of parasites and hyper-parasites. The three components of
evolution are present (selection, inheritance and variation). In
this paper we have implemented a simple Tierra-like scenario.

III. ENTROPY AND THE SECOND LAW OF
THERMODYNAMICS

In statistical mechanics, entropy is the number of ways a
system can be arranged. Entropy is often considered as an
indication of “disorder” or uncertainty about a system. The
macroscopic description can be considered as a sort of sum-
mary of a microscopic state. This definition (see equation 1)
describes the number of possible microstates which give rise to
the observed macrostate. Statistical mechanics states entropy
is statistical in nature and therefore there is a probability that
it will increase.

S = klnW (1)

where k is Boltzmann’s constant and W is the number
of microstates corresponding to the macrostate. Entropy is
proportional to the logarithm of the number of microstates
a system could be in for a given macrostate. A system of
atoms and molecules is a microscopic system. We observed
macroscopic properties such as temperature, pressure and
volume. At the microscopic level, everything is reversible (e.g.
two atoms colliding). At the macroscopic level, state changes
are irreversible, in the probabilistic sense (e.g. a concentration
of gas diffuses towards a uniform distribution).

Entropy is a measure of the disorder in a system. The
second law of thermodynamics states that a closed system
has nondecreasing entropy. This is simply stating that there
are more disordered states than ordered states. For example,
imagine a jar of marbles which is seperated into black and
white marbles. If the jar is shaken, the marbles will mix
and become more disordered. However, there is always a
small chance that the system can return to its initial state.
Interestingly this is the only laws of physics which has a

direction of time, all other physical laws remain unchanged
when time is reversed.

A system is in a microstate which maps onto a macrostate.
The system, under normal thermodynamics, randomly walks
from one microstate to another microstate. We assume all
microstates are equally likely. Macrostates are just equivalence
classes of microstates. As a system meanders around state
space, it moves to a state of higher entropy because there are
more macrostates that correspond to higher entropy. Typically
as humans, we are only aware of (i.e. make observations about)
the macrostates. What decides which microstates map to the
same macrostate? We will return to this question in the next
section.

IV. CODING THEORY AND KOLMOGOROV COMPLEXITY

Imagine we have a random variable, X , generated by a 4
sided dice with sides labeled {a, b, c, d}. Let us suppose the
dice is not evenly weighted and the probabilities of each face
are (1/2, 1/4, 1/8, 1/8) respectively. We generate a sequence
of rolls e.g. acdbac and we want to transmit this sequence
using a binary sequence of symbols. a, b, c, and d are called the
source symbols, and 0 and 1 are called the code symbols. We
want to code a sequence of dice rolls so assign the following
code words to each face

C(a) = 0, C(b) = 10, C(c) = 110, C(d) = 111

H(X) = −
n∑

i=1

p(xi) logb p(xi), (2)

The entropy, H(X), of X is 1.75 and the expected length
L(C) = El(X) of the code is also 1.75 (this is example 5.1.1
from [1]). This is a prefix free code, and can be uniquely and
instantaneously decoded into its source symbols. (Think of the
0 representing the end of a codeword, except in the case of
d).

If we want a code to be optimal in the sense that we can
transmit a message with the shortest message length, we need
to assign the shortest code words to the most probable source
symbols, as one would intuitively expect. Morse code, for
example, is fairly efficient for English as the frequently occur-
ring “E” is represented by a single dot while the infrequently
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Fig. 2. A Huffman coding tree. Symbols with high probability are assigned
short codes e.g. a is assigned 0, and symbols with low probability are assigned
long codes e.g. c is assigned 11l.



occurring “Q” is coded for by the cumbersome dash dash dot
dash.

The expected length L of a D − ary code for a random
variable X is greater than or equal to the entropy HD(X)
(see Theorem 5.3.1 [1]); that is

L ≥ HD(X) (3)

with equality if and only if D−li = pi.
There is one concern with Huffman coding, which assumes

a probability distribution at the start. Also Huffman coding
is not optimal if we drop the symbol-to-symbol constraint. If
we toss a fair coin (where p(H) = 0.5 and p(T ) = 0.5,
then the entropy is maximum) and obtain a sequence e.g.
HTTHTHHTHTTTHT , or HTHTHTHT..., which also
has entropy 1 but appears very regular. If we code this with
C(HT ) =“0” then entropy becomes zero (i.e. we are certain
about the outcome), and we can transmit the message as a
string of 0s. Let us now think about a different approach to
coding messages.

Lets consider using a computer to compress three messages;

0000000000000000000000000000000000000000,
0000100001000010000100001000010000100001,
1010101010100001111000110001010101010110.

The first can be transmitted as a program; print “0” n times.
The second can be represented by a slight longer program;
print “00001” m times. The final is random (in the algorithmic
sense), and there is probably no shorter program, and the short-
est program simply prints the literal string. The Kolmogorov
Complexity of a bit string s is the length of the shortest
computer program which outputs s and halts (with respect
to machine U ).

KU (s) = minU(p)=sl(p) (4)

where l(p) is the length of a program p that prints s and
halts. This is important when we realize that this definition is
independent of the choice of computer up to a constant.

KU (s) = KV (s) + C (5)

where the positive constant C depends on U and V but not on
s, thus we can drop the subscript which refers to the machine.
This is important because it allows us to define macrostates
independently of the computer model. Two microstates fall
into the same macrostate (equivalence class) if and only if
they have the same complexity;

s1 ∈ [K(s2)]⇔ K(s1) = K(s2)

We can take the Kolmogorov Complexity of a string as the
measure of disorder and is independent of the choice of
computing machine. Thus 0101010101... and 010101000111...
have the same entropy (as they were generated with the same
probability distribution) but they have different Kolmogorov
Complexity. The shortest computer description is a universal

code which is good for all probability distributions. The en-
tropy of a system is equal to its Kolmogorov Complexity. The
expected length of the shortest binary computer description of
a random variable is approximately equal to its entropy.

E(1/n)K(Xn)→ H(X) (6)

Thus, we can use the Kolmogorov Compexity as a measure
of the disorder in a system. While this is imcomputable, we
can use compression tools to measure the compression size of
a virtual world as creatures replicate in this world.

V. EXPERIMENTS

The “world” consists of a bit string of length 103 bits. While
this is small it is sufficient to demonstrate that life decreases
compression length. We conduct two experiments, the first
with only thermal noise and the second with replicating virtual
creatures. In both experiments thermal noise is modeled by the
random flipping of bits. The compression length of the “world”
is plotted against time. In both experiments we use gzip, a
standard unix utility, to compress the bit string world. This is
used to give an upper bound on the Kolmogorov Complexity,
and is plotted on the vertical axes figures 3 and 4.

In the first experiment, we begin with an ordered world of
103 0s (which is compressible). After the action of thermal
noise the world becomes less compressible. We show the
results in figure 3. Note that momentarily the compression
length does reduce, but overall it increases in accordance with
the second law.

In the second experiment two species of creature are present,
represented by 0000 and 1111. These creatures are particu-
larly simple. These creatures compete for processor time and
space in the bit string world. The creatures replicate each
generation (shown on the horizontal) in proportion to their
population size. There are two variations of this experiment;
non-aggressive and aggressive. In the non-aggressive case,
copies of a species are made and may overwrite members
of its own species (in whole or in part). In the aggressive
case, copies of a species are made and do not overwrite its
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Fig. 3. Experiment 1. Thermal noise causes an increase in the entropy of a
system, as measured by the compression length.



own species. The world starts off in a random configuration,
and during the replicating process there is background thermal
interference causing the occasional perterbation. One figure is
presented (due to space limitations). However, in both cases
we observe a decrease in the compression length, see figure
4. Again, as with the first experiment, we occasionally see a
temporary increase in the compression length, reinforcing the
statistical nature of the second law.

VI. DISCUSSION AND FURTHER WORK

In our implementation we have only implemented a very
simple system as “proof of principle” that supports the concept
that a reduction in entropy can be used as a definition of life.
Further work includes using a more intricate Artificial Life
system which could demonstrate open ended evolution. We
also intend using a broader range of compression algorithms,
though we suspect this is not critical. It would be interesting
to see if computer viruses qualify as life under this definition.
Neither have we explored the effects of extinction dynamics.

Books on information theory often consider the entropy of
English ([1] [4]). The entropy of The Complete Works of
Shakespeare is low because English is a predictable (e.g. u
often follows q), however what make The Complete Works
of Shakespeare have even lower information content is that
there are many issues of the collection in print. Thus know-
ing the contents of one copy allows you to compress the
Complete Works of Shakespeare into the single expression
“The Complete Works of Shakespeare”. That is, once we have
compressed one copy, other copies can be referenced by the
name alone. This is precisely the mechanism which makes life
compressible too; many copies of the same book is analogous
to making many copies of an issue of a book. This type of
repetition can be exploited by a computer when compressing
data (i.e. like a macro).

Freeland [6] states that one of the beauties of implementing
a virtual system is that we do not need to remain faithful to
the original biology. In our system there is minimal biology.
We also state that we have not modeled energy in this system
and, while this will play a central role, it is difficult to define
what energy means in a virtual world. Of course, underlying an
implemented universe is a physical computer so future work
intends to take into account the energy requirements needed
to support a replicating electronic organism [5].
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Fig. 4. Experiment 2. With basic replicating life forms, the entropy of the
system, measured as compression size, decreases.

VII. SUMMARY

The second law states that entropy is a non-decreasing
quantity. One of the interpretations of entropy is a measure
of disorder, that is the higher the number of microstates a
system can be in, corresponding to a given macrostate, the
higher the entropy. The second law is a consequence of the
system performing a random walk in the space of microstates
and is more likely to move to a state corresponding to higher
entropy because there are more corresponding microstates.

Thermodynamic entropy is related to information entropy.
Messages with low entropy can be sent with a shorter message
length than messages with a high entropy. Indeed, the average
message length is equal to the entropy (within rounding errors,
as messages are integer length while random variables may
take on continuous values). One of the issues with Huffman
code and entropy as a measure of disorder is that it assumes
a known fixed initial probability distribution. Also, we can
generate two sequences with a fair coin (i.e. the probability of
head or tails is equal and therefore has maximum entropy)
e.g. HTHTHTHTHT and HHTHHTTT , however the
first clearly has a pattern which can be exploited. Kolmogorov
Complexity is therefore a more robust definition of order and
is independent of the choice of probability distribution or
choice of computing machine. In fact the average Kolmogorov
Complexity is equal to the entropy.

The contribution of this paper is the drawing together of the
second law and Kolmogorov Complexity to show that entropy,
as measured by a compression algorithm, can decrease in a
digital world containing replicating entities. Defining life in
terms of abstract mathematical concepts (i.e. a reduction in
entropy) makes more sense than defining it in terms of physical
concepts (e.g. carbon based, or containing RNA). Therefore an
algorithmic definition of life is an attractive avenue of future
research, and artificial life senarios allow us to embark upon
this.
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