
Automated Design of Probability Distributions

as Mutation Operators for Evolutionary
Programming Using Genetic Programming

Libin Hong1, John Woodward1, Jingpeng Li1, and Ender Özcan2

1 Department of Computer Science, University of Nottingham P.R.C.
2 Department of Computer Science, University of Nottingham U.K.
{Libin.HONG,John.WOODWARD,Jingpeng.LI}@nottingham.edu.cn

Ender.Ozcan@nottingham.ac.uk

Abstract. The mutation operator is the only source of variation in Evo-
lutionary Programming. In the past these have been human nominated
and included the Gaussian, Cauchy, and the Lévy distributions. We auto-
matically design mutation operators (probability distributions) using Ge-
netic Programming. This is done by using a standard Gaussian random
number generator as the terminal set and and basic arithmetic operators
as the function set. In other words, an arbitrary random number gen-
erator is a function of a randomly (Gaussian) generated number passed
through an arbitrary function generated by Genetic Programming.

Rather than engaging in the futile attempt to develop mutation oper-
ators for arbitrary benchmark functions (which is a consequence of the
No Free Lunch theorems), we consider tailoring mutation operators for
particular function classes. We draw functions from a function class (a
probability distribution over a set of functions). The mutation probabil-
ity distribution is trained on a set of function instances drawn from a
given function class. It is then tested on a separate independent test set
of function instances to confirm that the evolved probability distribution
has indeed generalized to the function class.

Initial results are highly encouraging: on each of the ten function
classes the probability distributions generated using Genetic Program-
ming outperform both the Gaussian and Cauchy distributions.

Keywords: Evolutionary Programming, Genetic Programming, Func-
tion Optimization, Machine Learning, Meta-learning, Hyper-heuristics,
Automatic Design.

1 Introduction

Evolutionary Programming (EP) is one of the branches of Evolutionary Compu-
tation and is used to evolve numerical values in order to find a global optimum of
a function. The only genetic operator is mutation. The probability distributions
used as mutation operators include Gaussian, Cauchy and Lévy, among others.

K. Krawiec et al. (Eds.): EuroGP 2013, LNCS 7831, pp. 85–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 L. Hong et al.

In 1992 and 1993, Fogel and Bäck et al. [4][1] indicated that Classical Evolution-
ary Programming (CEP) with adaptive mutation usually performs better than
CEP without adaptive mutation.

In 1996, a new mutation operator, the Cauchy distribution, was proposed
to replace the Gaussian distribution. The authors Yao and Yong have done
experiments which followed Bäck and Schwefel’s algorithm [1]. Fast EP (FEP)
[14] uses a Cauchy distribution as mutation operator. The aim of this paper
is to develop a Genetic Programming (GP) system which has a function set
and terminal set which is capable of (easily) expressing either the Gaussian or
Cauchy distribution, and then embracing the search utility of GP to discover
more suitable mutation probability distributions.

In recent years, many improvements on EP have been proposed. Improved
FEP (IFEP) [13], mixes mutation operators, and uses both Gaussian and Cauchy
distributions. Later a mixed mutation strategy (MSEP) [3] was proposed: four
mutation operators are used and the mutation operator is selected according to
their probabilities during the evolution.

In 2004, EP that uses Lévy probability distribution Lα,γ (y) as mutation
operator was proposed [5]. According to their experimental results, they obtained
the following conclusion: Lévy based mutation can lead to a large variation and
a large number of distinct values in evolutionary search, in comparison with
traditional Gaussian mutation [5]. From 2007, Ensemble strategies with adaptive
EP (ESAEP), Novel adaptive EP on four constraint handling techniques, and
EP using a mixed mutation strategy were proposed [7][6][3]. Thus research into
EP is still very much an active area of research.

This paper proposes a novel method to generate new mutation operators to
promote the convergence speed of EP. It applies GP to train EP’s mutation
operators, and then use the new GP-generated distribution (GP-distribution) as
new mutation operator for EP on functions similar (i.e. drawn from the same
function class) to functions in the training set, which we now explain.

In previous work on function optimization, typically an algorithm is applied
to a single function to be optimized. As the algorithm is applied, it learns better
values for its best-so-far value. We regard a function instance as a single function
drawn from a probability distribution over functions, which we call a function
class. In this paper we are employing a meta-learning approach consisting of a
base-level and meta-level [9] [10]. EP sits at the base-level, learning about the
specific function, and GP sits at the meta-level, which is applied across function
instances, learning about the function class as a whole. By taking this approach
we can say that one mutation operator developed by GP on one function class
is suitable for function instances drawn from that class, while another mutation
operator is more suited to function instances drawn from a different function
class. To phrase it differently, a mutation operator developed on one function
class will be able to exploit characteristics of functions that are drawn from that
function class.

In Section 2 we describe function optimization and the EP algorithm. In
Section 3 we describe how GP is applied to the task of finding a probability

Automated Design of Probability Distributions as Mutation Operators for EP 87

distribution which can be used as a mutation operator in EP, and define the
Function Classes used in this study are also presented. In Section 4 we compare
Gaussian, Cauchy and the GP-distributions found by GP, and plot histograms of
GP-distributions. We also list the experimental results. In Section 5 we discuss
and explain future work. In Section 6 we summarize and conclude the article.

2 Function Optimization by Evolutionary Programming

Global minimization can be formalized as a pair (S, f), where S ∈ R
n is a

bounded set on R
n and f : S −→ R is an n-dimensional real-valued function.

The aim is to find a point xmin∈ S such that f(xmin) is a global minimum on
S. More specifically, it is required to find an xmin∈ S such that

∀x ∈ S : f(xmin) ≤ f(x)

Here f does not need to be continuous or differentiable but it must be bounded.
According to the description by Bäck et al [1], the EP is implemented as follows:

1. Generate the initial population of p individuals, and set k = 1. Each indi-
vidual is taken as a pair of real-valued vectors, (xi, ηi), ∀i ∈ {1, · · ·, μ}.The
initialization value of the strategy parameter η is set to 3.0.

2. Evaluate the fitness value for each (xi, ηi), ∀i ∈ {1, · · ·, μ}.
3. Each parent (xi, ηi), ∀i ∈ {1, · · ·, μ}, creates λ/μ offspring on average, so

that a total of λ offspring are generated: for i=1, · · ·, μ, j=1, · · ·, n.
xi

′(j) = xi(j) + ηi(j)Dj (1)

η′(j) = ηi(j)exp(γ
′N(0,1) + γNj(0,1)) (2)

The above two equations are used to generate new offspring. Objective func-
tion is used to calculate the fitness value, the survival offspring is picked up
according to the fitness value. The factors γ and γ′ have set to (

√
2
√
n)−1

and (
√
2n)−1.

4. Evaluate the fitness of each offspring (x′
i, η

′
i), ∀i ∈ {1, · · ·, μ}, according to

f(x′).
5. Conduct pairwise comparison over the union of parents (xi, ηi) and offspring

(x′
i, η

′
i), ∀i ∈ {1, · · ·, μ}. Q opponents are selected randomly from the par-

ents and offspring for each individual. During the comparison, the individual
receives a “win” if its fitness is no greater than those of opponents.

6. Pick the μ individuals out of parents and offspring, i ∈ {1, · · ·, μ}, that have
the most wins to be parents, to form the next generation.

7. Stop if the stopping criterion is satisfied; otherwise, k++ and goto Step3.

If Dj in Eq.(1) is the Gaussian distribution, then the algorithm is CEP. If Dj

is the Cauchy distribution, it is FEP [14]. If Dj is the Lévy distribution, it is
LEP [5]. Thus this algorithm acts as a template into which we can substitute
distributions evolved by GP, which is the contribution of this paper.

88 L. Hong et al.

3 Genetic Programming to Train Mutation Operators for
Function Classes

In this section, we give the details of how we use GP to train an EP mutation
operator. In the past, candidate distributions have been nominated by humans
and tested on a set of benchmark function instances. Here we automate this pro-
cess by using GP to generate-and-test the distributions. The research question
we are addressing in this paper is the following: is it possible for GP to auto-
matically generate mutation operators (i.e. probability distributions) which can
be used in EP to outperform the human generated distributions? As we have a
terminal set containing a Gaussian distribution, it is not surprising that we can
evolve a new distribution which can outperform a Gaussian distribution. Nor
is it surprising that we can evolve a new distribution which can outperform a
Cauchy distribution, as a Cauchy distribution can be generated by dividing a
Gaussian distribution by another and can easily be generated by GP containing
division in its function set.

At this stage we should also point out that we are doing more than “just”
parameter tuning. That is, we are not just altering the numerical parameters
(mean and variance) of a Gaussian distribution, but actually generating new
distributions which do not belong to the Gaussian distribution.

3.1 Genetic Programming and Automatic Design

GP can be considered a specialization of the more widely known Genetic Algo-
rithms (GAs) where each individual is a computer program [8]. GP automatically
generates computer programs to solve specified tasks. It is a method of searching
a space of computer programs, and therefore is an automatic way of producing
computable probability distributions [8]. Over last few years, the application of
GP has become more ambitious, and has been applied to other branches like
combinatorial optimization [9][2]. However this new direction is probably due
largely to the availability faster machines on which our implementations can be
executed, rather than any break through or deep understanding of the search
mechanisms of GP. In particular GP can be applied to the task of automated
design of components of search algorithms [12] [11] though in these cases random
search and iterative hill-climbing were used.

3.2 Function Classes

In the past, researchers use particular functions as a benchmark to test the
performance of their algorithms. Our work differs markedly in this respect. We
define a set of function classes from which functions are drawn from. In this
way, we can train an EP mutation operator and tune it to that function class.
It would not make sense to apply an EP algorithm (or any other optimization
algorithm for that matter) to arbitrary functions and hope for good performance,
a consequence of the No Free Lunch theorems.

Automated Design of Probability Distributions as Mutation Operators for EP 89

As an example of a function class (a
∑n

i=1 x
2
i), where a is a random variable

in the range [1, 2], and f(x) =
∑n

i=1 x
2
i is an instance of a function from this

function class (i.e. when a = 1). The motivation for defining a function class like
this is that we can then evolve a mutation operator which is fit-for-purpose i.e.
as a mutation operator on functions drawn from that function class. Evolution
is adapting the distribution to fit the environment (function class).

3.3 Algorithm Using GP to Train EP Mutation Operator

Below is the pseudo-code of the training algorithm:

1: Initial gp population

2: while gpGen < gpMaxGen do

3: gpPop = 1 /*Set GP iteration*/

4: while (gpPop < gpMaxPop) do /*Evaluate individuals in GP*/

5: epIteration = 1 /*Set EP iteration*/

6: while (epIteration < epMaxIteration) do

7: Randomly generate a (and b)

8: Evaluate fitness of pop[gpPop]/*Compute fitness values by EP*/

9: Set fitness value to fitness[epIteration]

10: epIteration++

11: end while

12: Calculate mean fitness value meanFitness[epMaxIteration]

13: gpPop++

14: end while

15: Select best pop by meanFitness[epMaxIteration]

16: Crossover pop /*Crossover pop in GP*/

17: Mutate pop /*Mutation pop in GP*/

18: end while

The terminal set consists of the Gaussian distribution N(μ, σ2). We set the value
of μ = 0 and the value of σ is randomly assigned from the range [0, 5]. The value
of μ could be allowed to alter, but it was deemed not necessary in these initial
experiments. The value of σ was fixed for a given GP run, but could be allowed
to vary between GP programs and within GP programs. We assign the function
set as {+,−,×,÷}, where ÷ is protected, if a value a is divided by zero, then the
value is a. This simple function set is expressive enough to be able to generate a
wide range of functions (and therefore probability distributions). In Step 8, we
use EP as fitness function to evaluate the GP-distribution. In Step 9 we assign it
the best fitness of each EP run, averaged over the 20 EP runs. When evaluating
the fitness value, EP runs 20 times and we calculate the mean value in last
generation as fitness value for GP as was done in the original work by Yao [14].

3.4 Unimodal and Multimodal Function Classes

In Table 1, we list all the function classes used in this paper. In the function
class suite, f1-f7 are unimodal function classes, f8-f10 are multimodal function

90 L. Hong et al.

classes. f8 is a special case , the fmin for function class 8 is not fixed. However
for an instance of function class 8, the value of fmin is fixed, and depending on
the value of a.

Table 1. The 10 function classes used in our experimental studies, where n is the
dimension of the function, fmin is the minimum value of the function, and S ⊆ R

n.
n is 30, a is random number in the range [1, 2], and b is random number from the
specified range or N/A.

Function Classes S b fmin

f1(x) = a
∑n

i=1 x
2
i [−100, 100]n N/A 0

f2(x) = a
∑n

i=1 | xi | +b
∏n

i=1 | xi | [−10, 10]n b ∈ [0, 10−5] 0

f3(x) =
∑n

i=1(a
∑i

j=1 xj)
2 [−100, 100]n N/A 0

f4(x) = maxi{a | xi |, 1 ≤ i ≤ n} [−100, 100]n N/A 0
f5(x) =

∑n
i=1[a(xi+1−x2

i)
2+(xi−1)2] [−30, 30]n N/A 0

f6(x) =
∑n

i=1(�axi + 0.5�)2 [−100, 100]n N/A 0
f7(x) = a

∑n
i=1 ix

4
i + random[0, 1) [−1.28, 1.28]n N/A 0

f8(x) =
∑n

i=1 −(xi sin(
√|xi|) + a) [−500, 500]n N/A [-12629.5, -

12599.5]
f9(x) =

∑n
i=1[ax

2
i + b(1− cos(2πxi))] [−5.12, 5.12]n b ∈ [5, 10] 0

f10(x) = −a exp(−0.2
√

1
n

∑n
i=1 x

2
i)

− exp(1n
∑n

i=1 cos 2πxi) + a+ e

[−32, 32]n N/A 0

4 Experimental Studies

In previous work, most of the authors have tested their algorithms on a bench-
mark suit of 23 function instances. In this paper, we use the first 10 (see Table 1).
This is largely due to the fact that we have to repeatedly run GP to train a mu-
tation operator for each function class. We run EP 20 times with each mutation
operator, and use the mean value of all 20 runs as the fitness value for GP. If a
mutation operator (GP-distribution) found by GP which has good performance
on a function class, it should have good performance on other function instance
drawn from that function class.

The new methods we proposed has successfully found a new mutation operator
for each function class. All the mutation operators found beat both Cauchy and
Gaussian mutation operator. The only function on which good results were not
found was f10, but this may be because GP was either over-fitting or under-
fitting and is discussed in future work.

4.1 Parameters Setting

A different maximum number of generations is used as a termination criterion in
EP as provided in section 4.3. Table 2 provides the rest of the parameter values

Automated Design of Probability Distributions as Mutation Operators for EP 91

that we used in our approach. We regard the parameters of EP as fixed for this
experiment (in the sense we are comparing a method against others for these
EP parameter settings). We are not claiming optimality for the GP parameter
settings, which are set rather low compared to traditional values, however we did
find in these preliminary experiments that these settings were adequate enough
to obtain human competitive results.

Table 2. Parameter settings for GP and EP

Parameter Meanings Settings Parameter Name in Section 3.3

Max Generation of GP 5 gpMaxGen
Population Size of GP 9 gpMaxPop

Operators of GP Crossover Mutation N/A
GP Function Set {+,−,×,÷} N/A
GP Terminal Set N(0, [0, 5]2) N/A

Number of Iteration of EP 20 epMaxIteration
Population Size of EP 100 N/A
Tournament Size of EP 10 N/A

4.2 Analysis and Comparisons

The best GP-distribution found for each of the ten function classes is listed
in Table 3. In our test, μ has a fixed value 0, σ is randomly generated in the
range [0, 5]. To compare the difference between GP-distributions, Gaussian and
Cauchy, we plot all distributions in Fig.1 and Fig.2. For each distribution we
plot it for 3000 samples (please note the scale of x-axis).

Table 3. All GP-distributions for function classes

Function
Class

Best Distribution Survived in GP (GP-distribution) Value of σ

f1(x) (÷ (÷ (−(0 N(0, σ2))) N(0, σ2)) N(0, σ2)) 0.171281
f2(x) N(0, σ2) 0.010408
f3(x) N(0, σ2) 1.749545
f4(x) (+(N(0, σ2) (−(÷(÷(+(N(0, σ2) N(0, σ2)) N(0, σ2))

N(0, σ2)) N(0, σ2)))))
2.962383

f5(x) N(0, σ2) 0.056501
f6(x) (+(N(0, σ2) (−(N(0, σ2) N(0, σ2))))) 3.879682
f7(x) N(0, σ2) 4.851848
f8(x) (÷(÷(×(×(N(0, σ2)× (N(0, σ2)N(0, σ2))) N(0, σ2))

N(0, σ2))N(0, σ2)))
4.918542

f9(x) (÷(N(0, σ2) (−(÷(N(0, σ2) (−(N(0, σ2) N(0, σ2))))
N(0, σ2)))))

0.157557

f10(x) (+(N(0, σ2) (+(N(0, σ2) N(0, σ2))))) 0.276311

92 L. Hong et al.

Fig. 1. Histograms of the distributions for 3000 samples

Fig. 2. Histograms of the distributions for 3000 samples

4.3 Test Function Classes

The results in Table 4 show that GP-distribution outperforms both Cauchy and
Gaussian on all function classes. The results in Table 5 show that GP-distribution
statistically outperforms both Cauchy and Gaussian on all function classes except
f10 at the 0.05 level of confidence. In these initial experiments (which will form
the start of a PhD thesis), even by allowing just σ of the Gaussian distribution
to be altered we can outperform standard mutation operators on this set of
function classes.

Automated Design of Probability Distributions as Mutation Operators for EP 93

Table 4. The results for GP-distribution, FEP and CEP on f1-f10. All results have
been averaged over 50 test runs, where “Mean Best” is the mean best function values
found in the last generation, and “Std Dev” is the standard deviation.

Function FEP CEP GP-distribution
Class Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

f1 1.24×10−3 2.69×10−4 1.45×10−4 9.95×10−5 6.37×10−55.56×10−5

f2 1.53×10−1 2.72×10−2 4.30×10−2 9.08×10−3 8.14×10−48.50×10−4

f3 2.74×10−2 2.43×10−2 5.15×10−2 9.52×10−2 6.14×10−38.78×10−3

f4 1.79 1.84 1.75×10 6.10 2.16×10−16.54×10−1

f5 2.52×10−3 4.96×10−4 2.66×10−4 4.65×10−5 8.39×10−71.43×10−7

f6 3.86×10−2 3.12×10−2 4.40×10 1.42×102 9.20×10−31.34×10−2

f7 6.49×10−2 1.04×10−2 6.64×10−2 1.21×10−2 5.25×10−28.46×10−3

f8 -11342.0 3.26×102 -7894.6 6.14×102 -12611.6 2.30×10
f9 6.24×10−2 1.30×10−2 1.09×102 3.58×10 1.74×10−34.25×10−4

f10 1.67 4.26×10−1 1.45 2.77×10−1 1.38 2.45×10−1

Table 5. 2-tailed t-tests comparing EP with GP-distributions, FEP and CEP on f1-f10

Function Number of GP-distribution vs FEP GP-distribution vs CEP
Class Generations t-test t-test

f1 1500 2.78×10−47 4.07×10−2

f2 2000 5.53×10−62 1.59×10−54

f3 5000 8.03×10−8 1.14×10−3

f4 5000 1.28×10−7 3.73×10−36

f5 20000 2.80×10−58 9.29×10−63

f6 1500 1.85×10−8 3.11×10−2

f7 3000 3.27×10−9 2.00×10−9

f8 9000 7.99×10−48 5.82×10−75

f9 5000 6.37×10−55 6.54×10−39

f10 1500 9.23×10−5 1.93×10−1

Note that if we had only allowed EP to alter σ, then this method would
have been regarded as parameter tuning (i.e. σ is simply a parameter of the al-
gorithm). However we are automatically synthesizing new distributions by com-
bining (by adding, subtracting, dividing and multiplying) Gaussian distributions
so are engaging in an activity more expressive than tuning a numerical param-
eter. We have only allowed the Gaussian distributions to vary in their standard
deviation, and while it makes complete sense to allow their means to be evolved
too, this result supports the approach of the automatic design of algorithms, or
a component of (in this case probability distributions). As it is sufficient to out-
perform human designed heuristics. Further work will address the shortcomings
of these initial experiments, which we will now consider.

94 L. Hong et al.

5 Discussion and Future Work

The initial aim of this paper is to build a system which is capable for synthe-
sizing distributions for use as a mutation operator in EP. So far we have only
compared it with FEP and CEP which has been successful. Later work therefore
will address comparisons with more recent developments in EP including LEP
[5], IFEP [13] and MSEP [3].

We have run the GP system for a fixed number of iterations, but have not
optimized these parameters. Hence there is further scope for improvement of
results in this regard. Further work includes using more sophisticated methods
of terminating the meta-search (i.e. GP), such as early stopping to prevent either
under-fitting or over-fitting. This is a more crucial issue than with traditional
base-level only approaches as each evaluation is itself done over 20 EP runs.

We have defined function classes in terms of a random variable which is a
coefficient in the function. This provides a source of related functions to be
optimized. Each of these function classes (see Table 1) are either unimodal or
multimodal functions. None of the currently defined function classes contain
both, so it would be interesting to evolve a distribution capable of performing
well on both types of function instances.

In the GP terminal set we used a normal distribution with fixed μ (μ=0) and
allowed σ to be set in the training phase. However, just by allowing σ to vary
was enough to generate distributions which could beat Gaussian or Cauchy. Due
to not allowing μ to vary meant, we could only generate symmetric distributions
(see Fig.1 and Fig.2), but this is a reasonable assumption in the knowledge that
all of the functions we are optimizing are symmetrical (why would be bias the
search in one direction over another). However a hypothesis that comes out of
this is the following: if we know a function is symmetrical (due to some real
world domain knowledge) then a symmetric mutation operator will outperform
an asymmetrical distribution. Similarly if we have little or no knowledge about
the functions we are optimizing, then restricting the GP system to only produce
symmetric distributions might over-constrain it.

One avenue of further work in GP is always to examine the parameters and
components in more detail. In this paper we used a Gaussian distribution in the
terminal set, but obviously it would be interesting to see if other distributions
would give better results. However, we do not want to get involved in a circular
argument, as we could try a Cauchy distribution in the GP terminal set (instead
of a Gaussian). However nominating specific distributions (in the context of EP)
is what we are trying to avoid in the first place (i.e. the whole point of the
paper), and we are just raising the level of abstraction from the base-level to
the meta-level [10]. Regardless of this dilemma we have still produced a system
which outperforms the two human proposed systems we are comparing with.

6 Summary and Conclusions

EP is a robust method of solving numerical optimization problems. In the
past this has involved using probability distributions (Gaussian and Cauchy)

Automated Design of Probability Distributions as Mutation Operators for EP 95

nominated by researchers as the mutation operator. In this paper we automati-
cally generate probability distributions using GP, in a meta-learning approach,
for use in EP. GP operates at the meta-level and contains a population of prob-
ability distributions which are inserted into an EP algorithm operating at the
base-level and contains a population of numerical vectors. The fitness of a proba-
bility distribution is given by its performance over a number of function instances
optimized by it in an EP algorithm. While EP is learning about values of single
functions, GP is learning about distributions to be used by EP on functions
drawn from a particular function class.

In a deviation from the approach used by other researcher, who tackle single
isolated benchmark instances, we tackle function instances drawn from a func-
tion class by effectively implementing a probability distribution over function
instances. During the training and testing phases the same function is highly
unlikely to be seen twice. This is to demonstrate that the mutation operator has
learned to generalize to the function class as a whole, rather than to any single
instances.

Our initial results are highly encouraging. While we cannot claim that the
distributions our method produces outperforms either Gaussian or Cauchy dis-
tributions on a single function (due to the statistical nature of EP), we can claim
that on all but one function class (f10) our method does produce distributions
which statistically outperform the others (at a confidence level of 0.05) and at
least does not under-perform on function class f10.

One possible criticism of this method is the long training time required to
evolve the distributions. After all we are evolving an evolutionary process itself.
One line of future research is to speed-up this method, which is a central question
for the GP community. For example, are GP trees the best representation for
distributions? However, we claim that the amount of processor time required to
generate distributions is still vastly less than the number of man-hours typically
used in the design phase of new mutation operators (though of course the two
are not directly comparable), and therefore the methodology proposed in this
paper is a viable one.

References

1. Back, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1, 1–23 (1993)

2. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring Hyper-heuristic Methodologies with Genetic Programming. In: Mum-
ford, C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201.
Springer, Heidelberg (2009)

3. Dong, H., He, J., Huang, H., Hou, W.: Evolutionary programming using a mixed
mutation strategy. Information Science, 312–327 (2007)

4. Fogel, D.B.: Evolving artificial intelligence. PhD thesis, University of California,
San Diego (1992)

5. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the lévy
probability distribution. IEEE Transactions on Evolutionary Computation 8 (2004)

96 L. Hong et al.

6. Mallipeddi, R., Suganthan, P.N.: Evaluation of novel adaptive evolutionary pro-
gramming on four constraint handling techniques. In: IEEE Congress on Evolu-
tionary Computation, pp. 4045–4052 (2008)

7. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N.: Ensemble strategies with adaptive
evolutionary programming. Information Science, 1571–1581 (2010)

8. Poli, R., Langdon, W.B., et al.: A field guide to genetic programming (2008) ISBN
978-1-4092-0073-4

9. Su Nguyen, M.Z., Johnston, M.: A genetic programming based hyper-heuristic
approach for combinatorial optimization. In: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1299–1306 (2011) ISBN
978-1-4503-0557-0

10. Woodward, J.: The necessity of meta bias in search algorithms. In: IEEE Interna-
tional Conference on Computational Intelligence and Software Engineering, CiSE
(2010)

11. Woodward, J., Swan, J.: Automatically designing selection heuristics. In: ACM
Proceedings of the 13th Annual Conference Companion on Genetic and Evolution-
ary Computation, pp. 583–590 (2011)

12. Woodward, J., Swan, J.: The automatic generation of mutation operators for ge-
netic algorithms. In: ACM Proceedings of the Fourteenth International Confer-
ence on Genetic and Evolutionary Computation Conference Companion, pp. 67–74
(2012)

13. Xin Yao, Y.L., Lin, G.: Evolutionary programming made faster. IEEE Transactions
on Evolutionary Computation 3, 82–102 (1999)

14. Yao, X., Liu, Y.: Fast evolutionary programming. In: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, pp. 451–460. MIT Press (1996)

	Automated Design of Probability Distributions as Mutation Operators for EvolutionaryProgramming Using Genetic Programming
	Introduction
	Function Optimization by Evolutionary Programming
	Genetic Programming to Train Mutation Operators for Function Classes
	Genetic Programming and Automatic Design
	Function Classes
	Algorithm Using GP to Train EP Mutation Operator
	Unimodal and Multimodal Function Classes

	Experimental Studies
	Parameters Setting
	Analysis and Comparisons
	Test Function Classes

	Discussion and Future Work
	Summary and Conclusions
	References

