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Abstract Hyper-heuristics represent a novel search methodology that is motivated
by the goal of automating the process of selecting or combining simpler heuristics
in order to solve hard computational search problems. An extension of the original
hyper-heuristic idea is to generate new heuristics which are not currently known.
These approaches operate on a search space of heuristics rather than directly on a
search space of solutions to the underlying problem which is the case with most
meta-heuristics implementations. In the majority of hyper-heuristic studies so far, a
framework is provided with a set of human designed heuristics, taken from the lit-
erature, and with good measures of performance in practice. A less well studied ap-
proach aims to generate new heuristics from a set of potential heuristic components.
The purpose of this chapter is to discuss this class of hyper-heuristics, in which
Genetic Programming is the most widely used methodology. A detailed discussion
is presented including the steps needed to apply this technique, some representa-
tive case studies, a literature review of related work, and a discussion of relevant
issues. Our aim is to convey the exciting potential of this innovative approach for
automating the heuristic design process.

1 Introduction

Heuristics for search problems can be thought of as “rules of thumb” for algorithmic
problem solving [53]. They are not guaranteed to produce optimal solutions, rather,
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the goal is to quickly generate good quality solutions. They are often used when
exact methods are unable to be employed in a feasible amount of time. Genetic
Programming is a method of searching a space of computer programs, and therefore
is an automatic way of producing programs. This chapter looks at the use of Genetic
Programming to automatically generate heuristics for a given problem domain. A
knowledge of Genetic Programming is assumed, and while a brief introduction is
given, readers unfamiliar with the methodology are referred to suitable tutorials and
textbooks.

1.1 The Need for Heuristics

Combinatorial problems arise in many disciplines such as artificial intelligence, lo-
gistics, operational research, finance and bioinformatics. Prominent examples are
tasks such as finding shortest round trips in graphs (the travelling salesman prob-
lem), finding models of propositional formulae (Boolean satisfiability), or deter-
mining the 3D structure of proteins (the protein folding problem). Other well-known
combinatorial problems are found in scheduling, planning, resource and space allo-
cation, cutting and packing, software and hardware design, and genome sequencing.
These problems are concerned with finding assignments, orderings or groupings of
a discrete set of objects that satisfy certain constraints [30].

Most real-world combinatorial problems such as scheduling and planning, are
difficult to solve. The main difficulty arises from the extremely large and/or heavily
constrained search spaces, and the noisy/dynamic nature of many real-world sce-
narios. In practice, we often deal with them using heuristic methods, which have
no guarantee of optimality and that often incorporate stochastic elements. Over
the years, a large variety of heuristic methods have been proposed and are widely
applied. Often, heuristics are the result of years of work by a number of experts.
An interesting question is how can we automate the design of heuristics, and it is
this question which represents the underlying motivation for this chapter. Hyper-
heuristics [9, 49, 53] are search methodologies for choosing or generating (combin-
ing, adapting) heuristics (or components of heuristics), in order to solve a range of
optimisation problems. We begin by looking at hyper-heuristics employed across a
broad spectrum of applications in more detail.

1.2 Hyper-heuristics

The main feature of hyper-heuristics is that they search a space of heuristics rather
than a space of solutions directly. In this sense, they differ from most applications
of meta-heuristics, although, of course, meta-heuristics can be (and have been) used
as hyper-heuristics. The motivation behind hyper-heuristics is to raise the level of
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generality at which search methodologies operate. Introductions to hyper-heuristics
can be found in [9, 53].

An important (very well known) observation which guides much hyper-heuristic
research is that different heuristics have different strengths and weaknesses. A key
idea is to use members of a set of known and reasonably understood heuristics to ei-
ther: (i) transform the state of a problem (in a constructive strategy), or (ii) perform
an improvement step (in a perturbative strategy). Such hyper-heuristics have been
successfully applied to bin-packing [54], personnel scheduling [13, 17], timetabling
[1, 13, 14, 15, 59], production scheduling [61], vehicle routing problems [52], and
cutting stock [58]. Most of the hyper-heuristic approaches incorporate a learning
mechanism to assist the selection of low-level heuristics during the solution pro-
cess. Several learning strategies have been studied such as reinforcement learning
[17, 46], Bayesian learning [45], learning classifier systems [54], and case based
reasoning [15]. Several meta-heuristics have been applied as search methodologies
upon the heuristic search space. Examples are tabu search [13, 14], genetic algo-
rithms [23, 29, 58, 59, 61], and simulated annealing [4, 18, 52]. This chapter fo-
cusses on Genetic Programming as a hyper-heuristic for generating heuristics, given
a set of heuristic components.

1.3 Genetic Programming

Computers do not program themselves; they need a qualified and experienced pro-
grammer who understands the complexity of the task. An alternative to paying a
human programmer to design and debug a program, is to build a computer sys-
tem to evolve a program. This may not only be cheaper, but has the advantage that
progress can be made on problem domains where a human programmer may not
even have a clear idea of what the programming task is, as there is no formal pro-
gram specification. Instead, a partial description of the desired program’s behaviour
could be supplied in terms of its input-output behaviour.

Genetic Programming [41, 42], a branch of program synthesis, borrows ideas
from the theory of natural evolution to produce programs. The main components of
evolutionary computation are inheritance (crossover), selection and variation (mu-
tation). Inheritance implies that the offspring have some resemblance to their parents
as almost all of the offspring’s genetic material comes from them. Selection means
that some offspring are preferable to others, and it is this selection pressure which
defines which individuals are fitter then others. Variation supplies fresh genetic ma-
terial, so individuals containing genetic material which was not present in either of
the parents (or the wider gene pool) can be created. Evolutionary computation can
be thought of the interaction of these three components.

Informally, a population of computer programs is generated, and the genetically
inspired operations of mutation and crossover are applied repeatedly in order to
produce new computer programs. These programs are tested against a fitness func-
tion, that determines which ones are more likely to survive to future generations.
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The fittest programs are more likely to be selected to continue in the evolutionary
process (i.e. survival of the fittest).

More formally, a multiset of computer programs is generated. Programs are trans-
formed by a number of operations, which typically take one or two computer pro-
grams as inputs. A fitness function assigns a value to each program (typically de-
pending on its performance on the problem). A selection function generates a new
multiset of programs from the previous multiset. This process is repeated until a ter-
mination condition is satisfied. In other words, Genetic Programming is a method
of generating syntactically valid programs, according to some predefined grammar,
and a fitness function is used to decide which programs are better suited to the task
at hand.

In Genetic Programming, the programs that comprise the population are tradi-
tionally represented as tree structures. There are other program structures which can
be evolved, such as linear sequences of instructions or grammars. We will briefly
introduce tree-based Genetic Programming. Each node in the tree returns a value
to its parent node. The leaf nodes are usually input variables providing information
about the problem state, or numeric constants. The internal nodes have one or more
children nodes, and they return a value obtained by performing operations on the
values returned by their children nodes. The trees’ internal nodes are referred to as
functions, and leaf nodes are referred to as terminals.

A number of decisions needs to be made before a Genetic Programming run is
started. This includes the setting of parameters, such as the size of the population,
and the termination condition (which is typically the number of generations). It also
includes such as the function set and terminal set, along with the fitness function,
which ultimately drives the evolutionary process. The terminal set is the set of nodes
that can be the leaf nodes of the program tree, and as such, they take no arguments.
They are the mechanism through which the problem state is made available to the
program, and they act as input variables, changing their value as the problem state
changes. The example of evolving a program to control a robot to clean a floor is
given in [42]. The terminals may be defined as the movements that the robot can
make, such as ‘turn right’, ‘turn left’, and ‘move forward’. Other terminals may
provide sensory information, such as how far an obstacle is from the robot. On the
other hand, the function set is the set of operations that can be represented by the
internal nodes of the tree. For example, they can be arithmetic operators, Boolean
logic operators, or conditional operators. The functions of a Genetic Programming
tree manipulate the values supplied to the program by the terminals, and as such
their defining feature is that they take one or more arguments, which can be the
values returned by terminal nodes, or other function nodes.

There is an important distinction which can be drawn between an optimisation
problem and a learning problem. In the former, we seek the highest quality solu-
tion with respect to some evaluation function. An example is the minimisation of
a function, where we seek a value of x such that f (x) is a minimum. In the latter,
we seek a solution which optimises the value of a target function on the validation
data, which is independent of the training data. For example, consider function re-
gression, where we seek a representation of f (x), given a set of training data, but
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tested on a second set of data to confirm its ability to generalise. Typically, Genetic
Programming is used as described in the second example. However, as we shall
see, this distinction is apparent when we consider the difference between reusable
heuristics (which need to be tested on a second set of examples to confirm their
status as reusable heuristics), and disposable heuristics (which are only used on a
single set of examples, without reuse in mind). For more details, see [42].

There are numerous tutorials, introductory articles and text books on Genetic
Programming. See the series of books by Koza [38, 39, 40, 41] and the book by
Banzhaf et al. [5]. Also [42] and [50] are more recent introductory texts. Introduc-
tory articles can also be found in most current textbooks on machine learning.

Genetic Programming can be employed as a hyper-heuristic. It can operate on a
set of terminals and functions at the meta-level. Figure 1(a) shows a standard hyper-
heuristic framework presented in [9, 17]. Figure 1(b) shows how Genetic Program-
ming might be employed in this capacity. The base-level of a Genetic Programming
hyper-heuristic includes the concrete functions and terminals associated with the
problem. Across the domain barrier, abstract functions and terminals in the meta-
level can be mapped to concrete functions and terminals in the base-level.

1.4 Chapter Outline

The outline of the remainder of this chapter is as follows. In Section 2, the use of
Genetic Programming as a Hyper-heuristic is introduced. In Section 3, two cases
studies are examined, namely the applications of Boolean Satisfiability and Online
Bin Packing. In Section 4, some of the current literature concerning the automatic
generation of heuristics is covered. Section 5 summarises and concludes the chapter.

2 Genetic Programming as a Hyper-heuristic

In this section, we examine a number of issues concerning the use and suitability
of Genetic Programming to generate heuristics. A fundamental point concerning
the scalability of this method is stated. As this methodology borrows ideas from
human designed heuristics, which are then used as primitives to construct the search
space of Genetic Programming, we are then in the enviable position of being able to
guarantee heuristics which perform at least as good as human designed heuristics.
Finally, we outline the basic approach to using Genetic Programming to generate
heuristics.
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Fig. 1 (a) A generic and (b) a Genetic Programming hyper-heuristic framework.

2.1 Suitability of Genetic Programming as a Hyper-heuristic

A number of authors [5, 38, 39, 40, 41, 42] have pointed out the suitability of Ge-
netic Programming over other machine learning methods to automatically produce
heuristics. We list these advantages here (in no particular order).

• Genetic Programming has a variable length encoding. Often, we do not know (in
advance) the optimal length of representation for heuristics for the given problem
domain.

• Genetic Programming produces executable data structures. Heuristics are typi-
cally expressed as programs or algorithms.
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• Humans can easily identify the good features of the problem domain which form
the terminal set of a Genetic Programming approach.

• Human designed heuristics can readily be expressed in the language used to con-
struct the search space of Genetic Programming. A function set, relevant to the
problem domain can be determined without too much difficulty. In addition, the
Genetic Programming system could also be supplemented with a grammar.

Of course, there are a number of disadvantages of using Genetic Programming
to generate heuristics. For example, each time a Genetic Program is run it will give
a different “best-of-run” heuristic, so it needs to be run multiple times, in order to
gain a feel for the quality of the heuristics which it can produce. Other disadvan-
tages include the, often unintuitive values for parameters, which are typically found
through a trial and error process.

2.2 The Basic Approach

Given a problem domain, the application of Genetic Programming to generate
heuristics can be undertaken as follows. Many of the steps described here are the
same as those one would be required to go through in the construction of a normal
Genetic Programming application (e.g. function regression). The main difference,
which may not usually be required in a normal application of Genetic Programming,
is to decide how the heuristic function is applied to the given problem domain.

1. Examine currently used heuristics. Here, we see if currently used heuristics
can be described in a common framework, in which each existing heuristic is a
special case. These could be either human designed or produced by other ma-
chine learning approaches. This step is not trivial and can involve the detailed
understanding of the workings of a number of diverse existing heuristics, which
may work in very different ways, in order to essentially arrive at the “big picture”,
or a generalisation of the heuristics used for the problem. Often, these human de-
signed heuristics are the result of years of work by experts, so this process can
be difficult.

2. A framework for the heuristics to operate in. We are concerned here with the
question of how the heuristics are to be applied to an instance of the problem
from the given domain. In general, this will be very different depending on the
problem domain. It may be the case that many heuristics are applied in the same
way, so it may be efficient to apply evolved heuristics in the same fashion. For
example, many local search heuristics for the Boolean satisfiability problem fit
into the same framework (see [25]).

3. Decide on the terminal set. Here, we decide on a set of variables which will
express the state of the problem. These will appear as some of the terminals to the
Genetic Programming system. Other terminals will also be needed. In particular,
random constants are useful.
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4. Decide on the function set. We need to know how the variables will be con-
nected or composed together. This set of functions will form the function set of
the Genetic Programming system. As with the problem of parameter setting (de-
scribed below), it is worth revisiting this choice as the development progresses.

5. Identify a fitness function. A fitness function needs to be defined for the prob-
lem. Often, a simple naive fitness function does not perform very well, and intro-
ducing some parameters may help find a more suitable one.

6. Run the Genetic Programming approach. Often, a Genetic Programming sys-
tem will not produce good solutions on a first run as poor parameters are chosen.
This is especially the case with the novice practitioner. It is therefore essential
that different parameter settings are thoroughly investigated.

3 Case Studies

We examine two examples in detail in order to illustrate the basic methodology (gen-
erating heuristics for Boolean satisfiability and online bin packing). In both cases,
we describe the problem, a number of currently used human created heuristics, and
some design questions about using Genetic Programming to generate heuristics.
In the first example, evolving a local search heuristic for the Boolean satisfiability
problem, a number of the design decisions (e.g. what variables are needed to ex-
press the problem, and a framework in which to express possible heuristics) seem
reasonably straightforward, as similar choices were made by two independent au-
thors [3, 25]. In the second example, these choices appear to be a little more difficult.
The aim of this section, therefore, is to take the reader step by step through the pro-
cess and raise a number of issues that will arise during the steps needed to apply
Genetic Programming to generate heuristics. These domains have been chosen as
they are well known problems, which both have published results concerning the
automatic generation of heuristics.

3.1 Boolean Satisfiability – SAT

The Boolean satisfiability problem is the problem of finding the true/false assign-
ments of a set of Boolean variables, to decide if a given propositional formula or
expression (in conjunctive normal form) can be satisfied (i.e. does there exist val-
ues for the variables which make the expression evaluate to true). The problem is
denoted as SAT. It is a classic NP-complete problem [27]. For example, the formula
with three clauses (a∨b∨¬c)∧ (¬a∨ c)∧ (¬a∨¬b∨¬c) is satisfiable as the for-
mula evaluates to true when (a = true, b = false, c = true). However, the formula
a∧¬b∧ (¬a∨ b)∧ (a∨ b∨ c) is not satisfiable, as an assignment of the variables,
such that the formula is true does not exist. A clause is referred to as broken, if all
the variables in the clause are evaluated to be false under a given assignment. For
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example, in the formula (¬a∨b∨¬c)∧(¬a∨¬b)∧(¬b∨¬c)∧(¬a∨¬c), there are
two broken clauses under the assignment (a = true , b = false, c = true): (¬a∨b∨¬c)
and (¬a∨¬c).

3.1.1 Existing Heuristics

Fukunaga [24] lists a number of well known local search heuristics which have been
proposed in the SAT literature.

• GSAT selects a variable from the formula with the highest net gain. Ties are
decided randomly.

• HSAT is the same as GSAT, but it decides ties in favour of maximum age, where
age of a variable indicates the total number of bit-flips from the time when a
variable was last inverted.

• GWSAT(p) (also known as “GSAT with random walk”) randomly selects a vari-
able with probability p in a randomly selected broken clause; otherwise, it is the
same as GSAT.

• Walksat(p) picks a broken clause, and if any variable in the clause has a negative
gain of 0, then it selects one of these to be flipped. Otherwise, it selects a random
variable with probability p in the clause to flip, and selects a variable with proba-
bility (1− p) in the clause with minimal negative gain (breaking ties randomly).
Otherwise, it selects a random variable with probability p in the clause to flip,
and selects a variable with probability (1− p) in the clause with minimal negative
gain (breaking ties randomly).

Other heuristics, such as, Novelty, Novelty+ and R-Novelty are also discussed in
[24].

3.1.2 Framework for Heuristics

Fukunaga [24] first examines the original local search heuristic GSAT, and also its
many variants (including GSAT with random walk, and Walksat). Then, a template
is identified which succinctly describes the most widely used SAT local search al-
gorithms. This framework is also adopted by Bader-El-Den and Poli [3]. In this
template, the set of Boolean variables are initially given random truth assignments.
Repeatedly, a variable is chosen according to a variable selection heuristic and its
value is inverted. This new assignment of values is then tested to see if it satisfies the
Boolean expression. This is repeated until some cut off counter is reached. Notice
that in this framework, only a single Boolean variable is selected to be inverted. An
interesting alternative would be for the variable selection heuristic to return, not a
single variable, but a subset of variables.
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3.1.3 Identifying the Terminal Set

Fukunaga describes a number of factors in identifying which Boolean variables
might be advantageous to invert. Let B0 be the number of broken clauses in the
expression, under the current variable assignment. Let B1 be the number of broken
clauses in the expression, under the current variable assignment, but when variable
V is flipped. Let T , be the variable assignment and T 1 be the variable assignment
when V is flipped. By looking at the number of clauses that become satisfied or
unsatisfied when V is flipped, we can define a number of gain metrics. The net gain
of V is B1−B0. The negative gain of V is the number of clauses satisfied in T but
broken in T 1. The positive gain of V is the number of clauses satisfied in T 1 but
broken in T . Another example of a factor which can be used is the “age” of a vari-
able (i.e. the number of inversions from the time when a variable was last inverted).
These will form some of the terminals of the Genetic Programming system. For a
complete list of terminals see [25].

3.1.4 Identifying the Function Set

Some heuristics are hybrid, in the sense that they are a combination of two existing
heuristics. The “composition” (or blending) of two heuristics is achieved by first
testing to determine if a condition is true, then if the test is passed apply heuristic1
else apply heuristic2. This composition operator therefore gives us a way to com-
bine already existing heuristics. An example of the testing condition may simply
be “(random number ≤ 0.2)”. Having identified a template for local search and a
method of identifying the utility of inverting a given variable, Fukunaga then de-
fined a language in which most of the previously human designed heuristics can be
described, but more importantly, it can also be used to describe new novel heuristics.
For a complete list of functions see [25].

3.1.5 Identifying a Fitness Function

The fitness function works as follows. First, the heuristic is tested on 200 problem
instances consisting of 50 variables and 215 clauses. The heuristic is allowed 5000
inversions of the Boolean variables. If more than 130 of these local searches were
successful, then the heuristic is run on 400 problem instances consisting of 100
variables with 430 clauses. The heuristic is allowed 20000 inversions of the Boolean
variables. The idea of using smaller and larger problems, is that poor candidate
heuristics can be culled early on (very much like brood selection, reported in [5]).

f itness = (number of 50 variable successes)
+ 5(number of 100 variable successes)
+ 1/(mean number of flips in successful runs) (1)
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Fig. 2 Genetic Programming as a hyper-heuristic. At the meta-level Genetic Programming refers to
abstract functions { f1, f2, ...}, and terminals {T1,T2, ...}. At the base-level these are given concrete
meaning. For example, f1 = IF–RAND–LT , f2 = OLDER–VAR , T1 = NET–GAIN, T2 = –GAIN,
etc.

The second term carries a weight of 5, as performance on these instances is much
more important. In the case of a tie-break, the last term differentiates these heuris-
tics. It should be noted that the fitness function takes a large number of parameters,
and reasonable values for these should be arrived at with a little experimentation.

3.2 Online Bin Packing

The online bin packing problem can be described as the problem of being given
a sequence of items and assigning each one to a bin as it arrives, such that the
minimum number of bins is required [55]. There is an unlimited supply of bins,
each with the same finite capacity which must not be exceeded. We do not know in
advance either the sizes of the items, or the total number of items. This is in contrast
to the offline version of the problem where the set of items to be packed is available
from the start.
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Fig. 3 The figure shows the chosen bin for a number of heuristics. The bin capacity is 15, and the
space remaining in the open bins (in order of index 0, 1, 2, 3, 4, 5) is 3, 2, 7, 6, 4, 15. The current
item to be packed has size 2. “Best-fit”, for example would place the item in bin 1, leaving no space
remaining. “First-fit”, for example would place the item in bin 0, leaving 1 unit of space.

3.2.1 Existing Heuristics

A number of examples of heuristics used in the online bin packing problem are
described below: In each case, if the item under consideration does not fit into an
existing bin, then the item is placed in a new bin.

• Best-Fit [51]. Puts the item in the fullest bin which can accommodate it.
• Worst-Fit [16]. Puts the item in the emptiest bin which can accommodate it.
• Almost-Worst-Fit [16]. Puts the item in the second emptiest bin.
• Next-Fit [36]. Puts the item in the last available bin.
• First-Fit [36]. Puts the item in the left-most bin.

It should, of course, be noted that this list of heuristics is not exhaustive. The
selection is simply intended to illustrate some of the currently available heuristics,
and provide a background against which we can build a framework. The reader is
referred to the following article if they are particularly interested in the domain of
online bin packing . Here the HARMONIC algorithms are discussed (which in-
clude HARMONIC, REFINED HARMONIC, MODIFIED HARMONIC, MODI-
FIED HARMONIC 2, and HARMONIC+1). All of these algorithms are shown to
be instances of a general class of algorithm, which they call SUPER HARMONIC.
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3.2.2 A Framework for Heuristics

For each item
int binIndex := 0
For each bin b in A

output := evaluate Heuristic
If (output > 0 )

return binIndex
End If

End For
place item in bin binIndex

End For

Fig. 4 An item is considered for each bin in turn, until a positive score is obtained. Thus the
heuristic may not be evaluated on all bins, for a given item. The item is placed in the bin which
gives the first positive score. This method of applying heuristics differs fundamentally from the
method described in figure 5.

In [10, 11, 12], heuristics are evolved for the online bin packing problem. In
the first paper [10], a number of existing heuristics are listed. Interestingly these
heuristics do not fit neatly into a single framework. In this paper, the decision was
made to apply the evolved heuristic to the bins and place the current item under
consideration, into the first bin which receives a positive score. Using this method
of applying heuristics to problem instances, a heuristic equivalent to the “first-fit”
heuristic was evolved. The “first-fit” heuristic places an item in the first bin into
which it fits (the order of the bins being the order in which they were opened). In
this framework, the heuristic may not be evaluated on all of the bins when an item
is being placed (i.e. only the bins up until the bin that receives a positive score will
be considered).

In [11], it was decided that the heuristic would be evaluated on all the open
bins, and the item placed in the bin that receives the maximum score. This has the
advantage that the heuristic is allowed to examine all of the bins (and, therefore, has
more information available to it to make a potentially better decision). It also has
the disadvantage that it will take longer on average to apply, as it will, in general,
examine more bins (though this aspect of the evolved heuristic’s performance was
not studied). In this framework, heuristics were evolved which outperformed the
human designed heuristic “best-fit”. The “best-fit” heuristic places an item in the
bin which has the least space remaining when the item is placed in the bin (i.e. it fits
best in that bin).

The two search spaces created by these frameworks are very different. In the first
case, the “first-fit” heuristic can be expressed, but “best-fit” cannot. In the second
case, the “best-fit” heuristics can be expressed but “first-fit” cannot. The first frame-
work cannot express “best-fit”, as not all of the bins may be examined. That is, the
evaluation of the heuristic is terminated as soon as a positive score is obtained. The
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For each item
int currentMaximumScore = -∞
int binIndex := 0
For each bin b

output := evaluate Heuristic
If (output > currentMaximumScore )

currentMaximumScore = output
binIndex := b

End If
End For
place item p in bin binIndex

return binIndex

Fig. 5 In this framework, the item is placed in the bin which gives the maximum score according to
the heuristic. This method of applying heuristics differs fundamentally from the method described
in figure 4.

second framework cannot express “first-fit” as a bin which receives a larger score
may exist after one which receives a positive score. That is, an earlier bin may re-
ceive a smaller positive score, but this is overridden when a larger score is obtained.
Further effort could be put into constructing a more general framework in which
both of these heuristics could be expressed.

So far, just two frameworks have been considered which could be used to ap-
ply heuristics to the online bin packing problem. There are many different ways a
heuristic could be applied.

• They can differ in the order in which the bins are examined. For example, left to
right, right to left, or some other order.

• They can differ in the order we start to examine the bins. For example, start at a
random bin and cycle through the bins until each bin has been examined, or start
at some distance from the last bin that received an item.

• They can differ in the score used to decide which bin is employed. For example,
place the item in the bin which got the second highest score, or alternatively place
the item in the bin which gets the maximum then the next item in the bin that gets
the minimum score; in effect we are switching between two placement strategies.

There is also the question of where to place an item when there is a draw between
two bins (e.g. the item could be placed in a fresh bin, or it could be placed in a bin
using an existing human designed heuristic). The point is that there are plenty of
opportunities to design different ways of applying heuristic selection functions to
a problem domain. Therefore, instead of presenting Genetic Programming with a
single framework, it is possible to widen this and allow a number (or combination)
of different frameworks for Genetic Programming to explore. One interesting way
to tackle this would be to cooperatively co-evolve a population of heuristics and the
frameworks in which they are applied.
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It is also worthwhile pointing out that a heuristic evolved under one framework
is unlikely to perform well under another framework, so a heuristic really consists
of two parts; the heuristic function and the framework describing how the heuristic
is applied to a problem instance. In Genetic Programming, we are usually just in-
terested in the function represented by a program, and the program does not need a
context (e.g. in the case of evolving electrical circuits, the program is the solution).
However, if we are evolving heuristics, we need to provide a context or method
of applying the Genetic Programming-program. This additional stage introduces a
considerable difference.

3.2.3 Identifying the Terminal Set

The question of which variables to use to describe the state of a problem instance is
also important, as these will form some of the “terminals” used in Genetic Program-
ming. In the first stages of this work, the authors used the following variables; S the
size of the current item, C the capacity of a bin (this is a constant for the problem)
and, F the fullness of a bin (i.e. what is the total cost of all of the items occupying
that bin).

It was later decided that three variables could be replaced by two; S the size
of the current item and, E (= C−F) the emptiness of a bin (i.e. how much space
is remaining in the bin, or how much more cost can be allocated to it before it
exceeds its capacity). These two variables are not as expressive as the first set, but
are expressive enough to produce human competitive heuristics. The argument is
that it is not the capacity or fullness of a bin which is the deciding factor of whether
to put an item in a bin, but the remaining capacity, or emptiness E, of a bin. In
fact, the capacity of a bin was fixed for the entire set of experiments, so could be
considered as a constant. In other words, the output of the heuristic based on this
pair of variables, could be semantically interpreted as how suitable is the current
bin, given its emptiness, and the size of the item we would like to place in the bin.

This pair of variables can be replaced by a single variable, R (= E−S) the space
remaining in a bin if the current item were placed in the bin. The output of a heuristic
based solely on this single variable could not be interpreted as in the previous case,
but rather as the following question: If the current item were placed in the current
bin, what is the utility of the remaining space?

So far, we have only considered variables describing the current item and current
bin. However, there are other variables which could be introduced. Other examples
of variables which could be stored are

• the item number (i.e. keep a counter of how many items have been packed so far)
• the minimum and maximum item size seen so far (as more items are packed,

these bounds will diverge)
• the average and standard deviation of item size seen so far (these could provide

a valuable source of statistical information on which to base future decisions).

All of this information can be made available to the evolving heuristic.
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3.2.4 Identifying the Function Set

In [10], the function set {+, −, x, %, abs, ≤} was used, where abs is the absolute
operator and % is protected divide. There are a few points worth considering with
this chosen function set. Firstly, ≤ returns -1 or +1, rather than 0 or 1, which is
normally associated with this relational operator. This was to satisfy the property of
closure, that the output of any function in the function set, can be used as the input
of any function in the function set. Secondly, this function set is sufficient to express
some the human designed heuristics described (namely “first-fit” and “best-fit”).

Protected divide (%) is often used in Genetic Programming, as if the denominator
is zero, then the function is undefined (i.e. its value tends to infinity). Typically,
protected divide returns 0 or 1. However, this choice does not reflect the idea that
the quotient could be a very large number. Thus, in [11], a much larger value was
returned.

In [12],≤was removed from the function set as it was effectively redundant. This
is because, as the evolved heuristic function is enveloped in a loop which returns the
index of the maximum scoring bin, any test for ‘less than’ can be done by the loop.
The aim of this discussion is to outline the difficulty in choosing a function set for
the given problem domain.

3.2.5 Identifying a Fitness Function

The fitness function to determine the quality of a solution is shown in Equation 2
[22], where n = number of bins used, Fi = fullness of bin i, and C = bin capacity

Fitness :=





high penalty value, if illegal solution

1−
(

∑n
i=1 (Fi/C)k

n

)
, if legal solution (2)

It returns a value between 0 and 1, with 0 being the best result where all bins are
filled completely, and 1 representing completely empty bins.

In the bin packing problem, there are many different solutions which use the
same number of bins. If the fitness function were simply the number of bins used,
then there would be a plateau in the search space that is easily reached, but difficult
to escape from [22]. Using equation 2 as a fitness function helps the evolutionary
process by differentiating between two solutions that use the same number of bins.
The fitness function proposed by Falkenauer rewards solutions more if some bins
are nearly full and others nearly empty, as opposed to all the bins being similarly
filled.

The constant k in equation 2 determines how much of a premium is placed on
nearly full bins. The higher the value of k, the more attention will be given to the
almost filled bins at the expense of the more empty ones. A value of k = 2 was
deemed to be the best in [22] so this is the value we use here.
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Fig. 6 Genetic Programming as a hyper-heuristic. At the meta-level Genetic Programming refers to
abstract functions { f1, f2, ...}, and terminals {T1,T2, ...}. At the base-level these are given concrete
meaning. For example, f1 = +, f2 =−, T1 = F, T2 = C, etc.

4 Literature Review

In this section, we briefly discuss the area, in order to give the reader a flavour of
what has been attempted to date. We include some work specifically using Genetic
Programming as a hyper-heuristic. We also include some work on other areas which
are similar in the sense that they use a meta-level in the learning system, and can
tackle multiple problems. We now briefly review two areas of the machine learning
literature which could also be considered in the context of hyper-heuristics. The first
is learning to learn, and the second is self-adaptation.

4.1 Genetic Programming Hyper-heuristics for Generating
Reusable Heuristics

Keller et al. [37] use a grammar to describe promising meta-heuristics for the travel-
ling salesman problem. Primitives in the grammar may represent manually created
meta-heuristics, low level heuristics, or component parts of them. There are a num-
ber of heuristics used in this system, including heuristics which swap two or three
edges in the solution, and an iterative heuristic which executes another heuristic a
maximum of 1000 times unless an improvement is seen. The execution of the meta-
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heuristic is a sequential execution of a list of heuristics and so generates a candidate
solution to the given problem from a random initial route. Tours whose lengths are
highly competitive with the best real-valued lengths from the literature are found
using this grammar based Genetic Programming.

In a series of papers, Burke et al. [10, 11, 12] examine the viability of using
Genetic Programming to evolve heuristics for the online bin packing problem. Given
a sequence of items, each must be placed into a bin in the order it arrived. At each
decision point, we are only given the size of the current item to be packed. In [10],
an item is placed into the first bin which receives a positive score according to
the evolved heuristic. Thus, the heuristic may not be evaluated for all bins, as it is
terminated as soon as a positive score is obtained. This approach produces a heuristic
which performs better than the human designed “first-fit” heuristic.

In [11], a similar approach is used. However, this time, the heuristic is allowed
to examine all bins, and the item is placed in the bin which receives the maxi-
mum score. This produces a heuristic which is competitive with the human designed
heuristic “best-fit”. The difference between these two approaches, illustrates that the
framework to evaluate the heuristics is a critical component of the overall system.
In [11], the performance of heuristics on general and specialised problem classes
is examined. They show that, as one problem class is more general than another,
then the heuristic evolved on the more general class is more robust, but performs
less well than the specialised heuristic on the specialised class of problem. This is,
intuitively, what one would expect.

In [12], evolved heuristics are applied to much larger problem instances than they
were trained on, but as the larger instances come from the same class as the smaller
training instances, performance does not deteriorate and indeed, the approach con-
sistently outperforms the human designed best-fit heuristic. The paper makes the
important distinction between the nature of search spaces associated with direct and
indirect methods. With direct methods, the size of the solution necessarily grows
with the size of the problem instance, resulting in combinatorial explosion, for ex-
ample, when the search space is a permutation. However, when the search space
consists of programs or heuristics, the size of a program to solve a given class of
problem is fixed as it is a generalisation of the solution to a class of problem (i.e. the
solution to a class of problem is independent of the size of an instance).

Drechsler et al. [19], instead of directly evolving a solution, use Genetic Pro-
gramming to develop a heuristic that is applied to the problem instance. Thus the
typically large run-times associated with evolutionary runs have to be invested only
once in the learning phase. The technique is applied to a problem of minimising
Binary Decision Diagrams. They state that standard evolutionary techniques cannot
be applied due to their large runtime. The best known algorithms used for variable
ordering are exponential in time, thus heuristics are used. The heuristics which are
developed by the designer often fail for specific classes of circuits. Thus it would
be beneficial if the heuristics could learn from previous examples. An earlier pa-
per is referred to where heuristics are learnt using a genetic algorithm [20], but it
is pointed out that there are problems using a fixed length encoding to represent
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heuristics. Experiments show that high quality results are obtained that outperform
previous methods, while keeping low run-times.

Fukunaga [24, 25] examines the problem domain of Boolean satisfiability (SAT).
He shows that a number of well-known local search algorithms are combinations of
variable selection primitives, and he introduces CLASS (Composite heuristic Learn-
ing Algorithm for SAT Search), an automated heuristic discovery system which
generates variable selection heuristic functions. The learning task, therefore, is de-
signing a variable selection heuristic as a meta-level optimisation problem.

Most of the standard SAT local search procedures can be described using the
same template, which repeatedly chooses a variable to invert, and calculates the
utility in doing so. Fukunaga identifies a number of common primitives used in hu-
man designed heuristics e.g. the gain of flipping a variable (i.e. the increase in the
number of clauses in the formula) or the age of a variable (i.e. how long since it
was last flipped). He states that “it appears human researchers can readily identify
interesting primitives that are relevant to variable selection, the task of combining
these primitives into composite variable selection heuristics may benefit from au-
tomation”. This, of course, is particularly relevant for Genetic Programming.

In the CLASS language, which was shown to able to express human designed
heuristics, a composition operator is used which takes two heuristics and combines
them using a conditional if statement. The intuition behind this operator is that the
resulting heuristic blends the behaviour of the two component heuristics. The impor-
tance of this composition operator is that it maintains the convergence properties of
the individual heuristics, which is not true if Genetic Programming operators were
used. CLASS successfully generates a new variable selection heuristic, which is
competitive with the best-known GSAT/Walksat-based algorithms. All three learnt
heuristics were shown to scale and generalise well on larger random instances; gen-
eralisation to other problem classes varied.

Geiger et al. [28] present an innovative approach called SCRUPLES (schedul-
ing rule discovery and parallel learning system) which is capable of automatically
discovering effective dispatching rules. The claim is made that this is a significant
step beyond current applications of artificial intelligence to production scheduling,
which are mainly based on learning to select a given rule from among a number
of candidates rather than identifying new and potentially more effective rules. The
rules discovered are competitive with those in the literature. They state that a re-
view of the literature shows no existing work where priority dispatching rules are
discovered through search. They employ Genetic Programming, as each dispatching
rule is viewed as a program. They point out that, Genetic Programming has a key
advantage over more conventional techniques such as genetic algorithms and neural
networks, which deal with fixed sized data structures. Whereas Genetic Program-
ming can discover rules of varying length and for many problems of interest, such
as scheduling problems, the complexity of an algorithm which will produce the cor-
rect solution is not known a-priori. The learning system has the ability to learn the
best dispatching rule to solve the single unit capacity machine-scheduling problem.
For the cases where no dispatching rules produced optimal solutions, the learning
system discovers rules that perform no worse than the known rules.
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Stephenson et al. [57] apply Genetic Programming to optimise priority or cost
functions associated with two compiler heuristics; predicted hyper block formation
(i.e. branch removal via prediction) and register allocation. Put simply, priority func-
tions prioritise the options available to a compiler algorithm. Stephenson et al. [57]
state “Genetic Programming is eminently suited to optimising priority functions be-
cause they are best represented as executable expressions”. A caching strategy, is
a priority function that determines which program memory locations to assign to
cache, in order to minimise the number of times the main memory must be ac-
cessed. The human designed “least recently used” priority function is outperformed
by results obtained by Genetic Programming. They make the point that by evolv-
ing compiler heuristics, and not the applications themselves, we need only apply
our process once, which is in contrast to an approach using genetic algorithms. In
addition they emphasise that compiler writers have to tediously fine tune priority
functions to achieve suitable performance, whereas with this method, this is effec-
tively automated.

4.2 Genetic Programming Hyper-heuristics for Generating
Disposable Heuristics

Bader-El-Din et al. [3] present a Genetic Programming hyper-heuristic framework
for the 3-SAT problem domain. Their aim is not to evolve reusable heuristics, but
to solve a set of problem instances. The evolved heuristics are essentially disposed
of and are considered as a by-product of the evolutionary process. Human designed
heuristics are broken down into their constituent parts, and a grammar is used to
capture the structure of how the constituents relate to each other. The constituent
parts, along with the grammar, are used to construct a search space, which con-
tains (by definition) the human designed heuristics. The resulting space is searched
using Genetic Programming. Although the initial population of heuristics were ran-
domly generated and included no handcrafted heuristics as primitives, individuals
representing such heuristics were created in the initial population in almost all ex-
periments (i.e. heuristics equivalent to human designed heuristics were found by
random search). This is due to their simple representation in the grammar defined
in the system.

4.3 Learning to Learn

Learning to learn [60] is similar to using Genetic Programming as a hyper-heuristic
to solve a class of problem. Rather than trying to learn a single instance of a prob-
lem, a class of related problems is tackled. The key idea is to have two explicit levels
in the learning algorithm, a meta-level and a base-level. The base-level is associ-
ated with learning a function, just like regular supervised learning in the single task
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case. The meta-level is responsible for learning properties of these functions (i.e.
invariants or similarities between the problem instances). Thus, the meta-level is
responsible for learning across the distribution of problems. Any machine-learning
paradigm could be used at the base-level or meta-level.

4.4 The Teacher system

An interesting related project at the interface between machine learning and engi-
neering was termed “Teacher” [62, 63] (an acronym for TEchniques for the Auto-
mated Creation of HEuRistics), which was designed as a system for learning and
generalising heuristics used in problem solving. The objective was to find, under
resource constraints, improved heuristic methods as compared to existing ones, in
applications with little (or non-existent) domain knowledge. The Teacher system
employed a genetic-based machine learning approach, and was successfully ap-
plied to several domains such as: process mapping, load balancing on a network
of workstations, circuit placement, routing and testing. The system addressed five
important general issues in learning heuristics [62]: “(1) decomposition of a prob-
lem solver into smaller components and integration of heuristic methods designed
for each smaller component; (2) classification of an application domain into subdo-
mains so that the performance can be evaluated statistically for each; (3) generation
of new and improved heuristic methods based on past performance information and
heuristics generated; (4) evaluation of each heuristic method’s performance; and (5)
performance generalization to find heuristic methods that perform well across the
entire application domain”.

4.5 Related Areas

Heuristic search represents a major research activity at the interface of Operational
Research and Artificial Intelligence. It provides the core engine for real-world ap-
plications as diverse as timetabling, planning, personnel and production schedul-
ing, cutting and packing, space allocation, and protein folding. Several researchers
have recognised that a promising direction for developing improved and automated
search techniques is to integrate learning components that can adaptively guide the
search. Many techniques have independently arisen in recent years that exploit ei-
ther some form of learning, or search on a search space of algorithm configuration,
to improve problem-solving and decision making. A detailed review of these tech-
niques is beyond the scope of this chapter. However, we mention here some related
areas of research: adaptation and self-adaptation of algorithm parameters [2, 21, 32],
algorithm configuration [33], racing algorithms [8], reactive search [6, 7], adaptive
memetic algorithms [34, 35, 43, 44, 47, 48, 56], and algorithm portfolios [26, 31].
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5 Summary and Conclusion

Often, in the field of computational search, a single problem (sometimes even a sin-
gle instance) is tackled. This chapter describes work which is motivated by the goal
of moving away from this situation. The work described here is attempting to “raise
the level of generality”. This offers a number of long term advantages. In particular,
we can obtain more general systems rather than problem specific approaches. More-
over, we can achieve this more cheaply in terms of resource(s) used; i.e. a computer
system is much cheaper to run than a team of heuristic designers is to employ.

5.1 The Need for Automatic Heuristic Generation

Real-world intractable problems demand the use of heuristics if progress is to be
made in reasonable time. Therefore, the practical importance of heuristics is un-
questionable, and how heuristics are produced then becomes an important scientific
question. Many of the current heuristics in use today are the result of years of study
by experts with specialist knowledge of the domain area. Therefore, one may pose
the question;

Instead of getting experts to design heuristics, perhaps they would be better
employed designing a search space of heuristics (i.e. all possible heuristics or a
promising subset of heuristics) and a framework in which the heuristics operate,

and letting a computer take over the task of searching for the best ones.

This approach shows a clear division of labour; Humans, taking on the innovative
and creative task of defining a search space. Computers take on the chore of search-
ing this vast space. Due to the fact that humans often still need to play an important
part in this process, we should strictly refer to this methodology as a semi-automated
process.

One of the advantages of this methodology is that if the problem specification
were to change, the experts who engage in hand designing heuristics, would prob-
ably have to return to the drawing board, possibly approaching the problem from
scratch again. This would also be the situation with the search for automatically de-
signed heuristics, with one important difference. As the search process is automated
this would largely reduce the cost of having to create a new set of heuristics. In
essence, by employing a method automated at the meta-level, the system could be
designed to tune itself to the new problem class presented to it.

A paradigm shift has started to occur in search methodologies over the past few
years. Instead of taking the rather short term approach of tackling single problems,
there is a growing body of work which is adopting the more long term approach of
tackling the general problem, and providing a more general solution.
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5.2 Supplementing Human Designed Heuristics

Typically in the “meta-heuristics to choose heuristics” framework, the heuristics are
human designed, and therefore have all the strengths of human designed heuristics,
but also all of the weaknesses. In contrast, machine generated heuristics will have
their own strengths and weaknesses. Thus, as one of the motives of hyper-heuristics
is to combine heuristics, this would offer a method where manually and automati-
cally designed heuristics can be used side by side. It may also be possible to evolve
heuristics specifically to complement human designed heuristics in a hyper-heuristic
context, where an individual heuristic does not need to be good on its own, but is a
good team player in the environment of the other heuristics. Again this is another
example of cooperation between humans and computers.
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