
Why Classifying Search Algorithms is Essential
John R. Woodward, Jerry Swan

School of Computer Science
University of Nottingham

emails: jrw@cs.nott.ac.uk, Jerry.Swan@nottingham.ac.uk

Abstract—In chemistry, the periodic table of elements was a
huge leap of progress. It allowed elements to be placed in a
table allowing their classification. More importantly, it allowed
predictions to be made about their properties, and in some cases
predictions about elements which had not even been discovered
at the time the periodic table was proposed. We argue that the
current state of search methodologies is analogous to the state
of chemistry before the arrival of the periodic table, and such a
classification system is well overdue.

Many machine learning research papers are currently pub-
lished on the premise that the proposed algorithm does better
on a particular data set than another algorithm. This approach,
while it does produce better results on the given data set, does
not produce an understanding of why a particular algorithm
performs well on a particular problem. The No Free Lunch
Theorem, while stating this is impossible over all data sets, also
provides a possible framework. We state why the performance
table associated with No Free Lunch (which has rows and
columns similar to the periodic table), which is exactly what we
are looking for, is unworkable, as problems cannot be indexed or
enumerated in practice. We believe the classification of algorithms
and problems is the biggest issue facing machine learning today.

Progress in science is often brought about by asking the right
questions, before finding the answers, and it is this question we
address in this paper. Therefore, the contribution of this paper is
raising the profile of the challenge of classifying algorithms and
problems. An underlying aim is to reduce the number of papers
with titles of the form “Algorithm X Applied to Problem Y”, or
simply “A New Algorithm”, as new algorithms should only be
introduced with an intended class of problem instances in mind.

Keywords- search; no free lunch theorems; bias; induction;
machine learning; optimization; generalization.

I. INTRODUCTION AND OUTLINE

Machine learning attempts to find an underlying rule that
accounts for the observed data [1]. This has two purposes; to
identify a pattern in the observed data (memorization), and
to make predictions about unobserved data (generalization).
While humans and machines seem to be very good at taking
raw data and inducing a rule, what we have yet to achieve is
to do this at the meta level of algorithms and problems them-
selves [14]. That is, predict which algorithms will perform well
on which problems (i.e. classify problems and algorithms). We
consider this to be one of the most important open, yet poorly
addressed, questions in machine learning today.

The classification of algorithms and problems is synony-
mous with choosing the best algorithm in order to produce the
best solution on the given problem. As algorithms themselves
are performing a prediction task, we are just transferring the
problem from the base level (concerning raw data) to the meta
level (concerning problems and algorithms) [11]. Note that

functions and problems are taken to mean the same, and search
algorithm and algorithm are also taken to mean the same.

It is important to state the motive for wanting to classify
algorithms and problems. We are interested in classifying
algorithms in terms of their performance on problems in order
to identify the best algorithm for a problem (this is much of
the focus of machine learning, i.e. obtaining better results and
comparing the performance of algorithms).

The performance table associated with the No Free Lunch
theorems (NFL) [3,4,7,8] in a sense solves the problem of
classification. The performance table tells us all we need to
know about algorithms and problems, as it lists all algorithms
against all problems in a table, and the cell at the intersection
contains the result of applying that algorithm to that problem.
We can make predictions about any algorithm, and make pre-
cise statements about its performance on any given problem.
However there are reasons why this is not a suitable approach.

Knowing which algorithm to apply to which problems
has become something of a black-art in machine learning.
Assemble ten computer scientists in a room and ask them
what algorithm to apply to which problem and you will most
likely receive ten different responses. We do not yet have an
over-arcing method which matches problems and algorithms.

The outline of the remainder of the paper is as follows.
In section II we examine the impact of classification on
empirical sciences. In section III we consider some issues of
naively using brute force to attempt to achieve classification by
blindly executing algorithms on problems, without an overall
framework. In section IV we examine the use of a population
table associated with NFL as a way forward. In section V we
discuss a number of issues arising from attempting the goal
of classification. In section VI we conclude the paper.

II. THE IMPORTANCE OF CLASSIFICATION

In the three major scientific disciplines (physics, chemistry
and biology), classification has played a central role in the
progress of each field. The reason we go into detail here is
really to emphasize the point that classification is fundamental
to the progression of the sciences, and a new classification
system often signals a paradigm shift.

The periodic table is a method of categorizing the chemical
elements. If elements are ordered by their atomic mass one
sees a periodicity of the properties as a function of atomic
mass. In fact more regularity can be observed if elements are
plotted by their atomic number rather than their atomic mass.
The layout of the periodic table demonstrates the recurring

chemical properties. At the time, predictions could be made
about the existence and properties of a few undiscovered
elements which would later occupy the empty locations in
the table with the predicted properties.

Biological classification is the method biologists use to
categorize organisms in a tree data structure. Originally, it was
based on physical characteristics (phenotypes), but has been
revised to reflect Darwin’s principle of evolutionary ancestry
(genotypes). In this case, a whale is classified as a mammal
rather than as a fish, which reflects the fact that it is a mammal
that has returned to the water. One may also notice that whale
meat tastes more like beef than fish and a whale’s tail moves
vertically rather than horizontally like a fish. In principle, it
may be possible to state what the properties of a hypothetical
species would be, before it has even evolved, in a similar
fashion to predicting properties of elements in the periodic
table.

In particle physics, during the 1950s and 60s, a large number
of subatomic particles were discovered, and the need for a
classification system arose. The current state of classification
of these elementary particles is the Standard Model. It pre-
dicted the existence of the W and Z bosons, the gluon, the
top and charm quark before their existence was confirmed
experimentally. It also predicts the Higgs Boson, which is the
only particle predicted by the model which has not (yet?) been
observed. However the model is incomplete, as it fails to take
gravity into account, but can be credited with some success
after making many correct predictions.

These examples were chosen as they are familiar to most
readers, but also because they emphasize the underlying im-
portance of classification. In summary, classification really
is central to the empirical sciences, not only in terms of
organization, but more importantly in terms of prediction.

III. CONSIDERING CLASSIFICATION

In this section we provide a classification table of algorithms
and problems. We then draw an analogy between the process
of search and multiplication and conclude this section with a
thought experiment, where the performances of an algorithm
are entered in a classification table automatically.

In table I we illustrate what a classification scheme may look
like. The columns are different algorithms, and the rows are
different problems. The idea driving classification is that the
performance of one algorithm on one problem can be obtained
from the table, without actually having to execute the search
process. Thus when deciding between two algorithms, we can
choose the better performing one in order to obtain the solution
to our problem.

While there may be some benefit in applying a new al-
gorithm to a problem, we gain little insight into the search
process itself. Let us draw an analogy between trying to
understand the search process, and the process of multipli-
cation. If we have an interest in the actual result of the
computation (search or multiplication), then the computation
is a worthwhile investment in time, otherwise it is not.

TABLE I
A CLASSIFICATION TABLE SHOWING ALGORITHMS IN COLUMNS AND
PROBLEMS ROWS, AND THE PERFORMANCE OF THAT ALGORITHM ON

THAT PROBLEM IN THE INTERSECTING CELL.

algorithm-1 algorithm-2 . . . algorithm-m
problem-1 1.0 2.3 . . . 3.6
problem-2 1.6 6.5 . . . 7.6

.
problem-n 3.5 8.6 . . . 6.5

It is very likely that someone before us has multiplied
together the numbers 45 and 52, as they are relatively small
numbers. (I am interested in this computation as it is my salary
i.e. pay per week multipled by the number of weeks in the
year). However, as far as I am aware, no one has multiplied
the following two numbers; 37854556 and 2347337367. (I am
not interested in this computation as both numbers were typed
randomly). Would publishing a mathematical paper in a well
respected peer-reviewed journal, claiming to be the first to
calculate this number be a worthy article? Unquestionably the
answer is no. Similarly, what do we learn after applying say
an ant colony optimization algorithm to a scheduling problem
(apart from knowing how well that algorithm performs on that
problem)? So why do we adopt a similar attitude with research
into algorithms?

Generating new algorithms, and then applying them to new
problems in order to understand the working of the search
process is futile without the context of a framework in which to
place the results. A framework is required in which to state the
relationships between algorithms, problems and performance.

Imagine the following thought experiment. We write a
master-algorithm which generates a set of algorithms and a set
of problems, and then applies each algorithm to each problem,
completing the entries, row by row and column by column, of
a population table I. But would the algorithm learn to apply
which algorithm to which problem in general? In other words,
would it be able to tell us what is the best algorithm for
a new problem, without actually executing it beforehand? A
human observer may uncover some patterns, but the master-
algorithm lacks an introspective meta-level where it can draw
conclusions about the base layer (algorithms and problems).
It is only learning at the base-level and not at the meta-level.

IV. NO FREE LUNCH THEOREMS

In this section we introduce the population table [3,4], and
then explain the difficulties using it for classification. NFL
states that all algorithms perform equally over the set of all
problems so it is not surprising that it can be associated with
a framework which can be used for classification. That is,
it offers a framework in which all problems and all search
algorithms can be considered.

A. The No Free Lunch Framework

Let X and Y be finite sets and f : X → Y , where yi ≡
f(xi). The size of X is |X| and the size of Y is |Y |. There
are |Y ||X| possible functions. We can represent functions as

TABLE II
THE POPULATION TABLE FOR ALL FUNCTIONS WITH A DOMAIN {x1, x2}
AND RANGE {y1, y2}. THE COLUMNS ARE LABELED WITH ALL POSSIBLE

FUNCTIONS (4 IN THIS CASE). THE ROWS ARE LABELED WITH ALL
POSSIBLE SEARCH OPERATORS (2 IN THIS CASE). ENTRIES IN THIS TABLE
CORRESPOND TO THE PERFORMANCE VECTOR FOR THE GIVEN FUNCTION

AND SEARCH OPERATOR.

f<y1,y2> f<y1,y1> f<y2,y2> f<y2,y1>

< x1, x2 > < y1, y2 > < y1, y1 > < y2, y2 > < y2, y1 >
< x2, x1 > < y2, y1 > < y1, y1 > < y2, y2 > < y1, y2 >

sequence of ordered pairs (xi, f(xi)), and if we define an order
on the items in X , it is only necessary to list the function
values in order to define the funtion. e.g. the function with
f(x1) = y2 and f(x2) = y1 (i.e. f<y2,y1>), can be written as
the list < y2, y1 >. An algorithm V, is an ordered sequence
of points in X , V ≡ 〈xa, xb, . . . , xi, . . . , xn〉 that lists all
points in X and has length |X|. It is assumed that no point is
revisited. The ith element corresponds to the ith point visited
in X . There are |X|! distinct algorithms. A given algorithm
and function will produce a corresponding path in Y . Let us
call this sequence of points in Y a performance vector.

A population table has rows which are labeled with all |X|!
distinct algorithms, and columns are labeled by all |Y ||X|

possible functions [3,4]. Each element in the table contains
the performance vector generated by the corresponding search
vector (row) and function (column). For example, the function
f<y2,y1> (4th column) and search vector < x2, x1 > (2nd
row) generated the performance vector < y1, y2 > (see table
IV-A).

In this framework, each problem and algorithm can be
enumerated (indexed). Given that we can do this, it is easy
to make predictions about performance of a particular algo-
rithm on a particular problem, without actually executing the
algorithm on the problem. We just look it up in the cell with
the corresponding algorithm and problem. The performance
table is exactly what we require.

Unfortunately, the picture is far from as simple as this.
Firstly, in order to index a problem precisely, we would have to
know its value at every point, which is impractical. Secondly,
an algorithm is viewed as a permutation of items from the
function’s domain. Therefore indexing an algorithm would
require actually executing it. Thus in many cases indexing
problems and algorithms is out of reach.

What is apparent from this framework is that it does not
make sense to say a function is “hard to search”, or that a
particular algorithm is “good at search”. We must talk about
an algorithm in the context of a problem. One may ask which
task is easier, inserting a nail or a screw into a plank of
wood? This (ill-defined) question depends on the context. If a
hammer is available, then the task of inserting the nail is easy.
However if a screwdriver is available the converse is true. As
English [6] comments “It is much as though the community is
insisting that tools be (all purpose) Swiss army knives instead
of hammers and screwdrivers”.

V. DISCUSSION

While we currently use machine learning algorithms to
make predictions about unseen data on a given problem, what
we are not currently doing is using machine learning to make
predictions about which algorithm performs best on a given
problem. This is the same problem (i.e. classification) but at
the meta-level instead of the base-level. Just as we have been
using machine learning techniques to identify hidden patterns
in raw data, it may now be employed in the introspective way
of looking for patterns in the performance on problems of
the algorithms themselves. This is also related to the issue
regarding the necessity of meta-bias in search algorithms [14].

To re-emphasized this point, supervised learning is a two
stage process consisting of training and testing. We train an
algorithm on a set of data points drawn from a problem, and
then test in on a new set of data points drawn from the same
problem. This occurs at the base level, but the same principle
applies at the meta level. We should also train an algorithm
on a set of problems drawn from a problem class, and test
it on problems drawn from the same problem class. It does
not make sense to test an algorithm on a random collection of
problems as many research papers do.

We can reiterate this point in terms of benchmarking, the
practice of selecting a set of problems on which to demonstrate
the prowess of an algorithm [10]. Benchmarks need to define a
probability distribution over a set of problems (either implicitly
or explicitly), and should not contain just a single problem
(which is called the one-shot-scenario in [9]). Researchers
should not test their algorithms on a single problem, or a
general broad range of problems, but on a specific narrow set
of problems. In light of the fact that a problem should always
have a context (i.e. a probability distribution over problems
to which the problem belongs), this renders the UCI Machine
Learning Repository data sets (http://archive.ics.uci.edu/ml/),
often used to benchmarking, as almost useless, as this is an
unconnected collection of problems. If a set of problems is to
be useful, the individual problems should be drawn from the
same probability distribution.

Algorithms are becoming more sophisticated and the prob-
lems tackled are becoming more challenging, making it more
difficult to decide which algorithm to use on which problem.
It has been said that industry uses simple methods to solve
complex problems, while academia uses complex methods to
solve simple problems. Perhaps classification is the bottleneck
in this situation, where we can learn to apply the appropriate
algorithm to the appropriate problem. A related point is that
just as no one person understands all the components of a
large piece of complex software (constructed by millions of
man hours), it may be the case that no one person knows
all the intricacies of a given algorithm (e.g. selection criteria,
ranking scores, mutation processes, parallelization techniques,
decomposition mechanisms, ...). In other words, algorithms
and problems are complex pieces of software and need to be
managed as such. So now may be a good time to hand over the
management (i.e. classification) of organizing these algorithms

to an automated heuristic book-keeping system.
Earlier we used a table to illustrate classification (table II).

Ultimately we do not know what data structure will work
best to facilitate the classification of search algorithms and
problems. It may be that a table which approximates to a
performance table is promising. A tree data structure may be
useful, showing the ancestry of different algorithms (e.g. a hill
climber splits into a simulated annealing and the great deluge
algorithms). Or a directed acyclic graph may best reflect
the fusing of algorithms of different ancestry into a hybrid
variants. Finally a graph data structure may be appropriate
for the classification of algorithms and problems, as both
algorithms and problems can be expressed in terms of graphs.

Possible approaches to the classification issue involve using
a machine learning methodology to predict which algorithms
preform well on which problems. Random sampling of a
problem may give some information about the class of problem
it belongs to, but unbiased sampling does not necessarily
reflect the biased sampling of an algorithm. Landmarking
overcomes this to some extend by sending out a set of scouting
algorithms on a reconnaissance mission [12]. Some sort of
feature selection may also be appropriate. It may be that data
mining may be employed in order to discover patterns in the
data and decide what class a problem belongs to. It may
be that simple historical labeling of problems according to
which algorithms have performed well in the past is a fruitful
direction [13], or a case based reasoning system. However
there is the difficulty of defining a suitable metric between
algorithms. Classification is similar to learning to learn [11],
and many combinations of learners have been used at the base
and meta-levels.

Instead of deciding which algorithm is suitable for a prob-
lem class, an alternative approach is to evolve an algorithm for
the problem class. In [5] on-line bin packing algorithms are
evolved, for different problem classes. The problem classes
are defined by probability distributions over the sizes of
items to be packed, defining a hierarchy of problem classes,
giving rise to a hierarchy of bin packing heuristics. They
find general heuristics perform robustly well over all problem
classes, while more specialized heuristics do better on the
more specialized problem classes which they were intended
for, and poorly on specialized classes they were not intended
for (failing catastrophically in some case). In other words, the
narrower the problem class, the more specialized the evolved
heuristic. Thus the heuristics show a range of behavior from
general to specific, as one would expect. They are in the
strong position of being able to make precise claims about the
performance of their heuristics on new problems (or problem
classes) not seen before.

VI. CONCLUSIONS

Classification is vitally important in the empirical sciences,
and machine learning, which is also inherently empirical, is
no exception. It is hard to invent an effective classification
scheme for algorithms and problems, and would represent a
major milestone in computer science as it has done in the

other sciences. This difficulty is perhaps why researchers have
been shy of such a monumental task. Flooding the literature
with new algorithms will not help us understand how existing
algorithms work, and therefore we should resist the temptation
of generating new algorithms (which is easy) and concentrate
on the more daunting task of classification (which is hard). We
therefore emphasize that the goal of classification in machine
learning is of paramount importance to the success of the field.

The problems we are typically interested in tackling are
NP-hard and the classification of problems is possibly an NP-
hard problem itself. Real-world problems cannot be indexed
precisely for the purposes of a classification table. In addition
the number of algorithms available is also undergoing a
combinatorial explosion, as more novel algorithms saturate
the literature. Thus we will be forced to resort to employing
heuristic based methods to manage the task of classification.

Classification, meta-learning and benchmarking are intrinsi-
cally linked. Benchmarking should involve selecting a proba-
bility distribution over a set of problems, defining the problem
class. In order to learn about a problem class a learner must
have a meta-level in order to alter its bias [11]. (i.e. shift its
own bias towards that defined by the probability distribution
of the problem class). As classification is ultimately concerned
with deciding which algorithm does well which problem class,
classification is therefore connected with benchmarking. A
problem class corresponds to a representative benchmark set.
If an algorithm is intended to be used with more than a single
problem (as almost all algorithms are), then it must have a
meta layer where it can alter its own bias to match that of the
problem class.

It does not make sense to talk about an algorithm in absence
of the context of a class of problems. These problems must be
related in some way if an algorithm is to demonstrate superior
performance across a class of problem. Thus a problem class
defines a niche in which a search algorithm fits, and therefore
goes hand in hand with classification.

REFERENCES

[1] T. M. Mitchell. Machine Learning. McGraw-Hill 1997.
[2] T. M. Mitchell, The need for biases in learning gener-

alizations (Rutgers University, Department of Computer Sci-
ence, Technical Report CBM-TR-117, 1980).

[3] C. Schumacher, M. D. Vose, and L. D. Whitley. The no
free lunch and problem description length. In proceedings of
the Genetic and Evolutionary Computation Conference, 565-
570, California, USA, 7-11 July 2001. Morgan Kaufmann.

[4] C. Schumacher. Fundamental Limitations of Search.
PhD thesis, University of Tennessee, Department of Computer
Sciences, Knoxville, TN, 2000.

[5] E. K. Burke, J. Woodward, M. Hyde, G. Kendall,
Automatic heuristic generation with genetic programming:
Evolving a Jack of all trades or a master of one. Genetic and
Evolutionary Computation Conference, GECCO 2007.

[6] T. M. English, Evaluation of Evolutionary and Genetic
Optimizers: No Free Lunch 1996 MIT Press

[7] D. H. Wolpert and W. G. Macready. No free lunch
theorems for search. Technical Report SFI-TR-95-02-010,
1995

[8] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67-82, April 1997.

[9] S. Droste, T. Jansen, I. Wegener. Perhaps Not a Free
Lunch But At Least a Free Appetizer (1998)

[10] J. Brownlee. A Note on Research Methodology and
Benchmarking Optimization Algorithms [Technical Report].
Victoria, Australia: Complex Intelligent Systems Laboratory
(CIS), Centre for Information Technology Research (CITR),
Faculty of Information and Communication Technologies
(ICT), Swinburne University of Technology; 2007 Jan; Tech-
nical Report ID: 070125.

[11] S. Thrun and L. Pratt, Learning To Learn, S. Thrun and
L. Pratt, ed., Kluwer Academic Publishers, 1998, 354 pages.

[12] B. Pfahringer, H. Bensusan, C. Giraud-Carrier. Meta-
Learning by Landmarking Various Learning Algorithms. Pro-
ceedings of the Seventeenth International Conference on Ma-
chine Learning 2000

[13] J. Vanschoren, B. Pfahringer, G. Holmes, Learning
from the Past with Experiment Databases. Lecture notes in
artificial intelligence vol:5351 pages:485-496

[14] John R. Woodward, The Necessity of Meta Bias in
Search Algorithms, 2010 International Conference on Com-
putational Intelligence and Software Engineering (CiSE 2010)
http://www.ciseng.org/2010 Wuhan, China December 10-12,
2010

