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ABSTRACT
Search spaces sampled by the process of Genetic Program-
ming often consist of programs which can represent a func-
tion in many different ways. Thus, when the space is exam-
ined it is highly likely that different programs may be tested
which represent the same function, which is an undesirable
waste of resources. It is argued that, if a search space can
be constructed where only unique representations of a func-
tion are permitted, then this will be more successful than
employing multiple representations. When the search space
consists of canonical representations it is called a canoni-
cal search space, and when Genetic Programming is applied
to this search space, it is called Canonical Representation
Genetic Programming.

The challenge lies in constructing these search spaces.
With some function sets this is a trivial task, and with some
function sets this is impossible to achieve. With other func-
tion sets it is not clear how the goal can be achieved. In
this paper, we specifically examine the search space defined
by the function set {+,−, ∗, /} and the terminal set {x, 1}.
Drawing inspiration from the fundamental theorem of arith-
metic, and results regarding the fundamental theorem of al-
gebra, we construct a representation where each function
that can be constructed with this primitive set has a unique
representation.

Categories and Subject Descriptors
I [Computing Methodologies]: Artificial Intelligence—
Automatic Programming
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1. INTRODUCTION

1.1 Genetic Programming
Genetic Programming (GP) is the search of the space of

objects or ‘computer programs’[1, 2]. This search space may
consist of representations of integers, rational numbers, bit
strings, logical expressions, arithmetic functions, computer
programs and other representations specifically designed for
the purpose of evolution including Cartesian Genetic Pro-
gramming[3] and Cramer’s seminal work on evolving prim-
itive recursive functions[4]. The set of objects which can
potentially be evolved using Evolutionary Computation, is
as broad as the objects which can be represented on a com-
puter. In some sense these objects can the thought of purely
as numbers (or bit strings), but in a different sense they can
be thought of as data structures, depending on how we de-
cide to interpret our objects[5].

The representations being manipulated directly by the ge-
netic operators are contained in the search space. These are
the genotypes. Objects in the space of genotypes are then
interpreted and expressed as phenotypes. For example, the
space of genotypes may contain bit strings, which could be
used to express integers or programs in the phenotype space.
Objects in the phenotype space are in effect manipulated in-
directly by the genetic operators (i.e. we cannot manipulate
a function directly, we can only directly manipulate a rep-
resentation of a function).

1.2 Re-sampling
While there is a plethora of representations which could

be the focus of evolutionary processes, most of these repre-
sentations have in common the fact that, when representing
functions there is, typically, multiple ways of representing
the same thing. Given that our goal is to find a solution to
a problem as efficiently as possible, having a search space in
which items are represented only once is a better approach
than having items represented multiple times. The reason
for this is that if we are repeatedly sampling the search space
at each generation, while it is possible to re-sample the same
object, it is not desirable if different items in the genotype
space map to the same object in the phenotype space. Thus
there are two reasons why the same function may be re-
sampled. Firstly, the same representation of that function
may be sampled again (i.e. the same point is visited twice
in the search space). Secondly, a different representation of
that function may be sampled (i.e. two different points are
visited which represent the same function).

Langdon[6] examines the nature of the search spaces ex-



Figure 1: Many search spaces in GP consist of mul-
tiple representations of the same object. This is
illustrated by many points (trees) in the genotype
space mapping to single points (functions) in the
phenotype space. There is a many to one mapping
between the genotype and phenotype space. The
program (genotype) space is the left ellipse and the
function (phenotype) space is the right ellipse.

plored by GP by examining the frequency with which func-
tions are represented. He proves in some cases, and argues
in others, that the frequency with which functions are rep-
resented does not change after the size of the search space
is greater than some threshold. What is also evident is that
these distributions are far from uniform. Hence we can con-
clude from this work that some functions are represented far
more frequently than other functions. This is regarding the
search space, and does not explicitly say anything about the
sampling done by GP.

Howard[7] examines the frequency of functions represented
by modules in the encapsulation process. Here he shows that
some functions are represented more frequently than others
as modules.

1.3 The aim and outline of this paper
The aim of this paper is to show how, given a non-trivial

function set, a search space can be constructed where only
one representation of a function exists. That is, our search
space consists only of canonical forms. In other words, the
mapping between the phenotype space and genotype space
is one to one.

Initially, we study how the fundamental theorem of arith-
metic can help us construct rational numbers in a canonical
form. This can be done because expressing rationals as ra-
tios of integers which are in turn expressed as powers of
prime numbers, allows us to spot immediately and trivially
whether there are common factors. The fundamental the-
orem of algebra states that a polynomial of degree n, can
be written as the product of n 1-degree polynomials (with
certain conditions pertaining). We use this motivation to
build ratios of polynomials in a canonical form, analogous
to the case with rational numbers.

Let us clarify our aim by stating what we are not attempt-
ing to do. We are not taking a canonical representation of a
function, applying a genetic operator to it, which may pro-
duce a non-canonical form, and then employing a ‘repair’
method to return it to a canonical form. We want to de-
sign a representation, which is in a canonical form, and the
result of the application of a search operator will still be in

a canonical form i.e. we only want to work in the space of
canonical representations.

The outline of the paper is as follows; In section 2 we
examine the nature of the representation of functions and
why functions have multiple representations. In section 3
we give some background mathematics. In section 4 we give
some examples of canonical representations. In sections 5
and 6 we show how canonical representations of numbers
and functions can be constructed. In section 7 we comment
on the relevance of the No Free Lunch Theorem. In section
8 Koza’s lens effect is interpreted for canonical representa-
tions. We end the paper with the customary discussion,
further work, summary, and conclusions in sections 9 - 12.

2. THE NATURE OF THE REPRESENTA-
TION OF FUNCTIONS.

In Machine Learning, many types of representation are
used to express functions (tree based expressions, artificial
neural networks, classifier systems, radial basis functions, bi-
nary decision diagrams, support vector machines...)[8]. Given
one type of representation, there are many ways to express
a given function. In this section, we examine four reasons
why a function can be represented in more than one way by
a given type of representation.

2.1 Symmetric Functions.
Some functions have a symmetric property in that the

result of the function will be independent of the order of the
arguments to the function. Hence there will be a number
of ways of representing the same function. For example,
a + b = b + a, max(a, b) = max(b, a), and a ∨ b = b ∨ a.
Clearly, if a function set contains symmetric functions, there
will be more than one way of representing functions which
require this primitive in their construction.

Similarly the following are functionally equivalent;
if (!condition) then (statement2) else (statement1)
if (condition) then (statement1) else (statement2)

where ! is the logical not operation. Thus there is more
than one way of expressing a conditional statement. Though
strictly if-then-else is not a symmetric function, it clearly
has symmetric properties. Similarly switch statements could
be reordered yet represent the same procedure.

Ordered Binary Decision Diagrams avoid this issue in the
following way[9]. Each node consists of a Boolean variable,
and if the value of the variable is true we descend down the
right hand branch, otherwise we decend down the left hand
branch. Thus, for each node in the tree, we cannot have the
situation above with if-then-else statements.

2.2 Null and Inverse Functions
In some GP set ups, primitives have been used which have

no affect on the function being calculated. For example,
Huelsbergen[10] includes a nop instruction (‘no operation’)
in his machine language. This instruction has no effect on
the register. The instruction nop can be removed from the
instruction (function) set without affecting the expressitivity
of the representation. A null function can be thought of as
an identify function (i.e. f(x) = x). In Boolean Logic, the
logical NOT is its own inverse function ( !(!a) = a ).

The inverse function, f−1(x), is defined as f−1(f(x)) =
x (assuming it exists). In effect, the inverse of a function
‘undoes’ the function, thus there are many ways a given



function can be constructed if a function and its inverse are
present in the function set. The alert reader will notice that
an indentity function can be constructed if the inverse is
present in the function set (i.e. f−1(f(x)) = x).

2.3 Complementary Functions.
Some functions have a corresponding ‘complementary’ func-

tion, for example +,−. In the expression x+a−a, the first a
is added and the second is subtracted, essentially ‘undoing’
or reversing the addition. In some branches of GP, languages
similar to assembly have been used [10]. These languages of-
ten contain instructions like inc and dec, which increment
and decrement a memory location respectively. These are
clearly complementary instructions. Having complementary
functions in a function set will allow combinations of prim-
itives to represent the same function.

2.4 Isomorphic Data Structures.
The type of representation used may allow a function to

be expressed in more than one way. These types of represen-
tation include Automatically Defined Functions (ADFs) [1],
Cartesian Genetic Programming[3], Artificial Neural Net-
works, Finite State Automata. There may be many ways
to express a function due to the nature of the data struc-
ture used to represent the function as some instances of data
structures can be considered equivalent under isomorphism.

Consider a GP program which consists of a main proce-
dure and a number of ADFs. Two programs are equivalent
if the order of their ADFs is altered and the references to
the ADFs are altered accordingly. Just as with a computer
program, the order of two procedures can be switched, but
the program will perform the same operation (as the correct
procedure is called by name irrespective of its position in
the overall program, however the two programs clearly are
different).

Another example of the way the isomorphic nature of the
representation contributes to the number of ways a func-
tion can be represented maybe seen in neural networks; the
hidden nodes can be permuted and this will be the same
function [11]. This is similar to the situation with Cartesian
Genetic Programming[3], and this is because the underlying
representation used is a Directed Acyclic Graph.

Finally, there are many ways in which a finite state au-
tomata can represent a function. However, the minimum
sized finite state automata is unique under isomorphism[12],
and thus a function has a canonical representation when fi-
nite state automata are used.

3. BACKGROUND MATHEMATICS.
In this section we review some background mathematics.

We firstly remind ourselves of some classes of numbers. Sec-
ondly, we look at how primes can be used to represent inte-
gers in a unique fashion. Finally, some results from abstract
algebra concerning polynomials are presented.

3.1 Numbers.
We use the standard notation for the different classes of

numbers;
N = {0, 1, 2, ...}, natural numbers,
Z = {...,−2,−1, 0, 1, 2, ...}, integers,
Q are the quotient of two integers, rational numbers
R are the reals.
C = {a+ ib‖a, b ∈ R, i =

√
− 1}, complex numbers.

The complex conjugate of c = a + ib is c∗ = a − ib, and
has the property c.c∗ = a2 + b2, i.e. cc∗ ∈ R ; We call
c and c∗ a conjugate pair. (Note also that the operation
of conjugation is its own inverse function and complemen-
tary function). Complex numbers have two common rep-
resentations; cartesian and polar. Note that the cartesian
representation is canonical, while the polar is not unless we
define the angular coordinate to be between 0 and 2π, and
the radial coordinate to be non-negative. Numbers can be
ordered, with complex numbers being ordered too, first by
ordering on one coordinate and then on the second.

3.2 The Fundamental Theorem of Arithmetic.
In number theory, the fundamental theorem of arithmetic

(or the unique factorization theorem) states that every nat-
ural number can be written as a unique product of prime
numbers [13]. For instance, 6936 = 23.31.172 and 1200 =
24.31.52. This canonical representation of integers will allow
us to build a canonical representation of rationals.

3.3 The Fundamental Theorem of Algebra.
The fundamental theorem of algebra states that a complex

polynomial of degree n has n roots [13]. In other words a
polynomial of degree n can be written as

α
∏i=n

i=0 (x− ci)

where ci are the roots, and α is some constant. It follows
from this theorem that every polynomial with real coeffi-
cients can be written as a product of polynomials of degree
1 or 2 with real coefficients. As a complex number multiplied
by its conjugate is real, it follows that every polynomial with
real coefficients can be written as a product of polynomials
of degree 1 with real coefficients, or coefficients which are
conjugate pairs. In other words, polynomials of degree 2 are
replaced by pairs of polynomials of degree 1 whose roots are
complex conjugates of each other. If we impose some order-
ing on the product of these 1 degree polynomials, then we
have a canonical representation of polynomials.

4. CANONICAL REPRESENTATIONS
An object is said to be in canonical form if there is only

one way of representing it in the given representation. This
allows the mathematical or abstract object to be uniquely
identified, or encoded. In other words the mapping function
between the representation and its interpretation is one to
one. In many cases this will mean that it is easy to switch be-
tween the representation of an object and the interpretation
of the object i.e., it will be easy to produce the interpreta-
tion, given the representation, and vica versa. There may
be more than one canonical representation of an object.

There is a one to one mapping between the binary encod-
ing and the integer being represented. For example, 1101
= 23.1.22.1.21.0.20.1. Given an integer or a bit code, it is
easy to switch between the two. An alternative canonical
representation is the Gray code, or reflected binary code.
An important difference between these two representations
is that with the Gray scale, two successive values differ only
by a single digit, whereas with the binary representation
two successive values may differ by a large number of digits.
This gives rise to Hamming Cliffs which have consequences
for the efficiency of the search[14].

A Binary Decision Diagram (BDD) is a directed acyclic
graph used to represent Boolean functions. If an ordering



Figure 2: With a canonical search space, each object
has only a single representation. This is illustrated
by single points (trees) in the genotype space on
the left mapping to single points (functions) in the
phenotype space on the right. In other words, each
object has a unique representation.

is imposed on the Boolean variables, the Binary Decision
Diagram is said to be an ordered Binary Decision Diagram,
which have a canonical form unlike e.g. conjunctive normal
forms[9]

Some objects do not have a canonical form. The represen-
tation of a program on a Turing Machine (or its equivalent),
does not have a canonical form (by Rice’s Theorem) [12].

5. AN EXAMPLE USING NUMBERS.
In this section, we illustrate the idea of a canonical repre-

sentations using rational numbers as the objects we wish to
represent. We firstly look at numbers in standard form or
scientific notation, then an alternative canonical representa-
tion using the Fundamental Theorem of Arithmetic.

Rational numbers are typically represented on a computer
as a floating point number. They will have a fixed length (e.g
10 places) and therefore fixed accuracy (e.g. 12345.67890,
i.e. 10 places of accuracy). An alternative representation
is to store a number (between 0.000000000 and 9.99999999,
i.e to 10 decimal places) followed by and exponent (power
of ten), e.g. 1.234567890E33. In this case, a number has a
single representation.

A rational number can also be represented as the ratio of
two integers, but for the rational number to be in its canon-
ical representation any common factors must be removed
(e.g. 2/4 can be reduced to 1/2). However, it is not imme-
diately clear how these numerators and denominators can be
altered by genetic operators to guarantee that they remain
in canonical form, without going through the repair process
of finding common factors. This is addressed below.

In number theory, the fundamental theorem of arithmetic
states that every natural number can be written as a unique
product of prime numbers. We can therefore represent an
integer as a vector of the powers of primes, the ith element
of the vector being the power of the ith prime (Note that we
restrict the order of the primes so that the ordering is fixed
and unique). Each power is a natural number. A natural
number can be written as

∏i=n
i=1 pvi

i ,

where pi is the ith prime, and vi is the ith element of the
vector V and vi ∈ N.

The first few primes are (2, 3, 5, 7, 11, 13, 17, ...). Thus,
6936 can be represented by the vector (3, 1, 0, 0, 0, 0, 2)
and 1200 by (4, 1, 2). The rational number 6936/1200 can
now be represented in our new prime powers representation
as ((3, 1, 0, 0, 0, 0, 2), (4, 1, 2)), the first vector being the
numerator and the second vector being the denominator i.e.
((numeratorVector), (denominatorVector)). We can see im-
mediately using this representation that there are common
factors i.e. 23.31 = 24. Thus the canonical representation
of 6936/1200 is ((0, 0, 0, 0, 0, 0, 2), (1, 0, 2)). If the ith
component of the numerator and denominator vector are
both non-zero, then a common factor exists, and the ratio-
nal number is not in its canonical form. A rational number
is therefore in its canonical representation if either (or both)
the ith element of the numerator or denominator are zero,
and this is true for all i in the pair of vectors. We can
go one step further, and combine the numerator vector and
denominator vector into a single vector, as powers in the
denominator can be interpreted as having negative power.
Thus in this case ((0, 0, 0, 0, 0, 0, 2), (1, 0, 2)), can be
re-written as (-1, 0, -2, 0, 0, 0, 2). This encoding means
2−1.30.5−2.70.110.130.172. In general a rational number can
be written uniquely as ∏i=n

i=1 pvi
i ,

where pi is the ith prime, and vi is the ith element of the
vector and vi ∈ Z (i.e negative and positive powers).

Also, at this stage it is worth pointing out that it is easy
to design genetic operators which could generate new ratio-
nal numbers from old rational numbers which are in their
canonical form, without the need for further processing (i.e.
finding common factors).

6. AN EXAMPLE USING FUNCTIONS.
In this section we look at how a canonical representation

can be constructed for different function and terminal sets.
We begin with an arithmetic function set and a terminal
set consisting only of 1 and no variables. We then look at
a number of cases, starting with a trivial function set and
show how a canonical representation can be constructed.
This primitive set is then supplemented to finally create a
set which would be used in a GP system.

6.1 Primitive Set {+,−, ∗, /} ∪ {1}
Given {+,−, ∗, /} ∪ {1}, we can generate rational num-

bers. Rational numbers, as we have seen, have a number of
canonical representations. This terminal set does not con-
tain any variables (e.g. x), and so can only generate trees
which compute constants (i.e. rational numbers). We could
carry out function optimisation, using GP to generate ra-
tional numbers with this primitive set. However this would
probably not be as efficient as using a GA approach to op-
timisation, where each number has a single representation.

6.2 Function set {+}.
Let us start with the function set {+} and the terminal

set {x}, which gives us the primitive set {+} ∪ {x}. This
defines a search space consisting of trees like (x + x) and



((x + x) + (x + x)) and so on. However, it is clear that,
there are many ways of constructing the same function. All
of these functions are of the form {n.x|n ∈ N}. We can
easily restrict the space of these trees to contain only a single
representation of a given function. We could think of these
restricted trees as lists e.g. (x + x + x + x) rather than a
tree ((x+x)+(x+x)), as the brackets are redundant in the
case of this primitive set.

6.3 Function set {+,−}.
Let us now extend the function set to include {−}, which

is the complementary operand of {+}. Thus the primitive
set now consists of {+,−} ∪ {x}. Just as in the previous
example, there are multiple ways of representing the same
function, but now we have the additional interaction of two
functions which can counteract one another and in effect
cancel each other out. Now we can represent functions of
the form {z.x|z ∈ Z}. Any tree in the traditional search
space (e.g. (((x+x)-(x-x)....) can be represented in a canon-
ical way. Again in a bracketed representation of a tree,
the brackets are redundant and can be removed, and the
plusses (+) and minuses (-) can be summed up to give a
total of z. Further, the constant 1 can be added to the
terminal set to give a new primitive set {+,−} ∪ {x, 1}.
This primitive set allows us to express functions of the form
{z1.x+ z2|z1, z2 ∈ N}.

6.4 Function set {+,−, ∗}.
Adding {∗} to the primitive set gives us {+,−, ∗}∪{x, 1}.

This allows us to express integer powers of x, and integer
coefficients. In other words, we can express polynomials
with integer coefficients. We can write this in a closed form;∑i=n

i=0 ai.x
i

where ai ∈ Z and n is finite. Note also ai are all integers
(there is no division present in this function set to allow us to
create rational numbers, that is the next stage). One simple
encoding of a polynomial with integer coefficients would be
simply to list the coefficients, and the ith coefficient in the
vector is the coefficient of xi. While this is one closed canon-
ical form, we can also represent a polynomial with integer
coefficients as

α
∏i=N

i=0 (xi − bi).

where bi ∈ Z or pairs of complex conjugates of the form
∓ 2
√
b, and bi < bi+1 (to imposes an order). For example,

x2 + 2 can be written as (x − i 2
√

2)(x + i 2
√

2). Note that
this requires the use of reals, which we can at present not
represent exactly on current day computers. However, we
can approximate them arbitrarily closely with rationals of
increasing precision. Alternatively, rather than factoring a
polynomial of degree 2 into two linear functions with conju-
gate roots, and running the risk of rounding errors, we could
keep this in “quadratic form” (i.e. a polynomial of degree
2). Both are canonical forms.

6.5 Function set {+,−, ∗, /}.
Let us now add {/} to the function set to give us a primi-

tive set {+,−, ∗, /}∪{x, 1}. This set is now starting to look
like a function set one might actually use in a GP system. In
general, functions generated using this primitive set can be

written as a quotient of two polynomials with rational coef-
ficients. Rational coefficients can be generated by dividing
two natural numbers (1+1+1+...)/(1+1+1+...). One might
be tempted to construct a canonical representation as Q/P
where Q and P are polynomials, however, one may have
difficulty identifying factors as polynomials of degree 5, or
above do not have a general solution[13].

We therefore turn our attention to the representation of
integer polynomials and rational numbers of the previous
sections. An integer can be written uniquely as the prod-
uct of primes. Similarly a polynomial can be written as the
product of polynomials of degree 1. As shown above, ra-
tios of integers (i.e. rationals) can be constructed uniquely
as a product and division of primes, where each prime has
either a positive or negative power depending on whether
it appears in the numerator or denominator. Similarly the
quotient of polynomials can be written as the product and
division of polynomials of degree 1, where each polynomial
of degree 1 has either a positive or negative power depending
on whether it appeared in the numerator or denominator.
Thus we can write expression of the form

α
∏i=n

i=0 (x− bi)expi .

where bi ∈ R or are paired complex conjugates (to ensure
real coefficients when multiplied together). Again, some or-
der is imposed, i.e. bi < bi+1, so we have a canonical or-
dering, and expi are integers. Again, real are required if
we want to represent a function as the product of integer
powers of linear functions. Again we can leave these in their
quadratic form.

Thus a function can be represented as a list of the roots
of the polynomial and the number of times that root occurs
(i.e. the power). Hence a function can be written as a set or
list of points and exponents (i.e. bi, expi). Let us consider
representing the list of points bi on an argand diagram (i.e.
in the complex plane). If bi ∈ Q, then it will appear on
the real line. If bi = x + iy (y > 0), then it will appear
in the upper half of the complex plane. If x + iy is in the
list, then its conjugate will also appear i.e. bi = x − iy,
and this will be placed symmetrically in the lower half of
the plane. With each point bi we associate expi. Thus a
function created by this function set can be thought of as
a set of points, each labelled with an integer exponent, in
the complex plane symmetrically distributed about the real
line.

7. THE NO FREE LUNCH THEOREM.
In this section we give an introduction to the No Free

Lunch Theorem (NFL)[15, 16] using a simple analogy with
a bicycle combination lock. We then state that NFL is not
valid for standard GP due to the many to one mapping be-
tween the space of genotypes and phenotype [5]. We then
state that because each function has only one canonical rep-
resentation, NFL is valid when GP is applied to a canonical
search space.

7.1 Intuitive Example of the No Free Lunch
Theorem.

The NFL theorem is often misunderstood, and because of
this we wish to give an everyday practical example. Imag-
ine a combination lock often used for bicycles. Typically
the lock consists of four rings, each having the digits 0− 9.



Figure 3: The space of ADFs, can be thought of as
mapping onto a space of trees (i.e. each ADF has an
equivalent tree representation). The space of trees
maps onto the space of functions. Some functions
have many different representations as trees. These
many to one mapping between these spaces is re-
sponsible for the lens effect. In effect, looking at
the space of functions using an ADF representation,
is like using a compound lens: the first lens corre-
sponding to the mapping between ADFs and trees,
and the second lens corresponding to the mapping
between trees and functions.

There are 10 possible positions for each ring and therefore
104 possible settings for the lock. In an abstract sense the
lock can be thought of as the representation of a function.
The domain (or inputs) of the function is the set of all pos-
sible setting of the lock from 0000 to 9999. The range (or
output) of the function is {open, closed}, i.e. any combina-
tion of the lock will either map to open or closed. The lock
essentially computes a “needle in a haystack” type function
[17], where all the combinations of the lock except one map
to closed, and one maps to open. The question is, given that
we do not know the combination which opens the lock, what
is the best approach to open the lock? There are 10000! pos-
sible strategies (i.e. 10000 settings for our first choice, and
having eliminated that, 9999 settings for our second choice,
9998 for our 3rd and so on....). Given that we do not know
what the combination is, it is purely luck when we find the
correct sequence of 4 digits. This is essentially an illustra-
tion of the NFL theorem, which says that over all functions
(specifically, only all permutations of a function are neces-
sary), then no one search strategy is better than any other.
In the case of the lock, and ascending enumeration of the
combinations (starting at 0000 and moving through to 9999)
is just as fast on average as a descending enumeration (start-
ing at 9999 and moving through to 0000).

7.2 The No Free Lunch Theorem for Canoni-
cal Representation Genetic Programming.

The NFL theorems are valid for phenotype genotype map-
ping, where all functions can be considered. In traditional
GP, where there is a many to one mapping between these two
spaces, NFL is not valid and it is possible, in principle, to
construct a search operator which will do better than aver-
age [5]. However, given that we are dealing with a canonical
search space, any bias due to representation is lost and the
validity of NFL are reinstated.

8. BIAS AND KOZA’S LENS EFFECT.
Bias is necessary if a learning system is to learn. An

unbiased system cannot meaningfully learn[18]. Bias is any
effect that causes us to select one function over another. In
search based systems, bias can arise due to the nature with
which functions are represented and the order in which they
are sampled (i.e. the effect of the search operators).

Koza[19] (chapter 26) talks about the role of representa-
tion and the lens effect. He examines the probability of gen-
erating a solution to the even-3-parity problem with three
different types of representation; look up tables, trees and
ADFs. A look up table is simply a list of all the input-
output tuples (i.e. the function is represented explicitly).
If we impose an ordering on the inputs, then look up ta-
bles are a canonical representation. Using trees to represent
functions is more sophisticated and allows some functions to
be represented more compactly (depending on the function)
compared to representing them as look up tables. ADFs are
more sophisticated still, as repeated sub-structures in a tree
can be collapsed into a single ADF, saving even more space.
These differences in the way functions are represented have
an affect on the frequency with which functions are repre-
sented with the three types of representation, and in effect
distort the space of functions depending on which represen-
tational lens we look through. This is refered to as the lens
effect. We can of course extend this representational heirar-
chy to include Turing Complete representations, and this
would be a very fundamental lens through which to view
the space of functions due to Church’s thesis[12].

The chance of generating a given function with a look up
table is 1 in 256 (i.e. 1/28). There is a uniform distri-
bution of generating any 3 arity Boolean function. Given
a function set {AND,OR,NAND,NOR}, Koza generates
107 trees at random, but finds no solutions. In fact if we look
at the work of Langdon[6], we can see distributions for dif-
ferent Boolean function sets and see that they are far from
uniform. However, if ADFs are used (two, two argument
ADFs), Koza manages to generate 35 solutions. Koza talks
about the problem environment (i.e the space of functions)
being viewed through the “lens of a given type of representa-
tion”. We can in fact think of the space of trees being viewed
through the space of ADFs, as each program expressed as an
ADF corresponds to a tree. Hence we can think of looking
through a compound lens.

Teller [20] (section 1.1.2) in his thesis states “in the space
of functions, ..., the density of functions that do something
‘interesting’ is very low. This is increasingly the case as
the expressiveness of the language in which the programs are
written moves up the ladder from regular languages to Tur-
ing Machines”. This is also the case with the hierarchy
presented here as we have tried to illustrate in figure 3. As
we move from one type of representation to the next, the fre-
quency with which functions are represented changes, and
as we move up the hierarchy, ‘interesting’ (more complex)
functions are represented less frequently.

In terms of a canonical search space, each function is rep-
resented once, and therefore with equal frequency. There is
no representational distortion of the space of functions when
viewing the space with canonical lenses.



9. DISCUSSION

9.1 Genetic Operators.
In this paper we have shown that a search space can be

constructed which contains only a single representation of
a given function. This is unlike most previous versions of
GP. What we have not considered at this stage is how this
space can best be searched i.e. what are the suitable oper-
ators? While we have achieved the aim of the paper and
constructed a canonical search space, which should give us
a huge benefit over conventional search spaces, this benifit
could be lost by the use of unsuitable search operators. A
landscape is defined by both the representation and the op-
erators which dictate how we move around the space. An
individual can be represented as a set of points which lie
in the complex plane (symmetrically distributed about the
real line). We need to investigate how a set of points can be
meaningfully manipulated by mutation and crossover.

Here we have a representation, where component parts
consist of the product of linear functions (x−r) with integer
powers. If r is changed in one or many of the linear functions
by a small amount, this will lead to a small change in the
function expressed. The smaller the change in r, the smaller
the change in the function expressed. Thus, one obvious
mutation operator we wish to propose is to change the values
of r in one or many of the linear components. A second issue
is how to introduce or remove points (i.e. alter the degree
of the polynomial).

9.2 Extending to Multiple Variables.
It is not immediately obvious how this approach can be

extended to include terminal sets which consist of multiple
variables. It may be impossible to construct a canonical
representation given a function set consisting of divisions of
multivariate polynomials. However, we may be able to con-
struct a space which reduces the number of representations
of a function, so that although we do not achieve a canonical
representation, we do improve on the chances of re-sampling
experienced with traditional search space. Alternatively, we
may be able to construct a space which does not contain rep-
resentations of all possible functions, but is canonical and
contains approximations to most of the functions we would
practically require.

9.3 Bloat.
One problem with GP is bloat; the uncontrolled explosion

in the size of individuals in the population. If a canonical
representation is used this will not be a problem and there
will be no redundancy in the representation. While this
may sound advantageous, some researchers may take a con-
tradictory position, arguing that neutrality is an important
property for a representation to have if it is to be used suc-
cessfully for Evolutionary Search[17].

9.4 Diversity.
Diversity is an issue in GP. Often syntactic diversity is

taken into account by defining a diversity measure on items
in the phenotype space, however syntactic diversity does
not imply semantic diversity. If a canonical representation
is used genotypic diversity implies phenotypic diversity.

9.5 A Single Divide Node.
In the function set explored in this paper, a division func-

tion exists. In a standard GP tree, it is possible that a di-
vision node exists at multiple points in a tree (e.g. (x/(x−
1)/(x−1))). However, basic algeba shows that these types of
expression can be written using a single division operation.
We could therefore generate only trees with a single division
node at the root and no where else. While this may seem
like a restriction, the same set of functions can be expressed.
Thus, the search space would consist of trees containing a
division node at the root and the left and right branches
contain trees build from the primitive set {+,−, ∗}∪ {1, x}.
While this would not produce expressions in canonical form,
it does drastically reduce the size of the search space (com-
pared to allowing / to exist at any non-leaf nodes).

10. FURTHER WORK.
So far we have shown how to construct a search space for

a function set consisting of a number of arithmetic opera-
tors. This is one domain, and of course we need to extend
this work to other non-trivial domains, for example the logi-
cal function set {AND,OR,NOTXOR}. This function set
contains symmetric functions (e.g. AND), and an inverse
function (e.g. NOT). Thus within this logical function set,
there are lots of opportunities to create the same function
in different ways. Again, it is not immediately obvious how
a canonical representation of logical functions (for a given
function set) can be achieved, and at the same time design
genetic operators which will preserve the canonical nature
of the representation.

This paper is theoretical in nature. The next stage, now
we have created a canonical search space, is to apply it to
a real world problem. This will demand the investigation of
suitable search operators. In previous work we have tackled
a real world combinatorial problem, to which the function
set considered in this paper is applicable. It is our intention
to compare the search of a canonical search space with the
traditional tree based search space.

11. SUMMARY.
A canonical representation is a representation where an

object (function) has a unique representation. GP search
spaces typically do not contain canonical representations (a
given function has multiple representations), and therefore
the chance of re-sampling a function (phenotype) is high
as the function is represented by many different tree data
structures (genotypes). We have shown, for a given function
set containing arithmetic operators, a search space can be
constructed, where each function which can be expressed is
expressed only once. It is suggested that a search space of
this type makes the induction of target functions easier than
using conventional search spaces.

The main result of this paper is the following. Functions,
which can be expressed with the primitive set {+,−, ∗, /} ∪
{x, 1}, can be expressed uniquely as

α
∏i=n

i=0 (x− bi)expi .

where bi ∈ R or are pair of complex conjugates (to ensure
real coefficients), expi ∈ Z and α ∈ Q.

This work has fundamental implications for NFL, a cen-
tral theorem in search. While NFL is not valid for tradi-
tional GP, where functions have multiple representations, it



is valid for GP when applied to a canonical search space as
the genotype phenotype mapping is one to one.

Suggestions were made for suitable genetic operators for
the new canonical representation. It was brought to the
attention of the reader that this will result in different land-
scapes, which are probably smoother than those encountered
in traditional GP. A slight change in the genotype leads to
slight changes in the phenotype i.e. a slight perturbation
in one of the values used in the representation will cause
a slight change in the function represented. This is unlike
standard GP, where the operation of a mutation operator
many have huge consequences for the function expressed.

12. CONCLUSIONS
This paper is concerned with the nature of function repre-

sentation and the construction of search spaces. Typically,
the GP search space consists of many representations of the
same function and this is likely to be detrimental to the
search process due to re-sampling. This is because when
sampling syntactically different GP trees, there is a large
likelihood that the same semantic function is being sampled.
It is undesirable to resample functions repeatedly. One ap-
proach would be to construct search operators which sam-
ple trees which represent different functions. The approach
taken is this paper is to construct a search space which only
consists of unique representations of a particular function.
There is of course nothing stopping re-sampling due to the
revisiting of the same tree.

Given one type of object we wish to represent, there may
be many different ways of representing canonical representa-
tions. This choice, along with the genetic operators, define
the landscape, and it is the interplay of these factors which
ultimately determine the success of the search process.

We believe that there is worth in investing time to create
these canonical search spaces. They will be able to be reused
by the GP community and by researchers in the broader field
of Machine Learning.
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