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Outline of talk 

• Generate and test – fit for a purpose. 
– Generate and test generate and test methods.  

• No Free Lunch, problem instances and problem 
classes. 

• Generic Algorithm =  
Genetic Programming + Application Framework 

• Selection Heuristics (rank and fitness 
proportional). Two instances of a more general 
setting.  

• Experiments + Results.  
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test 

Generate and Test Approach 

A “solution” is generated. 
It is tested on a problem instance 
Each solution is assigned a score 

(real value). 
This process is repeated until 
time expires or a solution is found.  
Includes much of machine learning.  
We try to improve the quality of 

solutions generated by using 
feedback in this loop.  

Alternative but equivalent view is 
we are sampling a space.  
 

 

Test 
 

test Generate 
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Generate and Test Examples 

• Manufacture e.g. cars 

• Evolution “survival of the 
fittest”  

• “The best way to have a 
good  

idea is to have lots of ideas” 
(Linus Pauling). 

• Computer code is also 
generate and tested.    
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Fit For Purpose  

Evolution 
“designs/generates” 
organisms for a particular 
environment.   

Similarly we should design 
metaheuristics for 
particular problem class.  

“we propose a new crossover 
operator…” 

“what is it for…” 
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Problem Instances and Classes 

• A problem instance is an instance of a given type of 
problem e.g. a real valued function over bit strings of 
length n.  
– E.g. Hamming-Distance(x, t) the hamming distance between x 

and a fixed target t.  

• A problem class is a probability distribution over problem 
instances. 
– E.g. the bit strings t are drawn from a fixed probability 

distribution.   

• We can learn at the instance level or at the class level.  
– Most systems concentrate on learning at the instance level.  
– In this paper we learn at the class level (i.e. exploitable 

properties of the class).  

• We will design heuristics for a problem class.  
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No Free Lunch Theorems 

• NFL theorems says no metaheuristic performs 
better over all problem instances when 
compared to another  metaheuristic.  

• It also implies that a metaheuristic that does 
better on one class of problems must do 
worse on another class of problems.  

• Therefore we MUST design our metaheuristics 
for a specific problem class.  
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Bias and Meta bias 

• Bias of a metaheuristic is basically a 
probability distribution over a search space.  

• For a given metaheuristic this is static.  

• If the bias of a metaheuristic does not match 
our problem class we have no mechanism to 
change it.  

• Meta bias provides a method to alter bias.  

• Meta bias is necessary if we are to apply our 
algorithm to multiple instances of a problem.  

• This is what the proposed method does.   
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Why automatically design metaheuristics? 

• Faster  design than human design (freer of 
implicit and unconscious design decisions 
made by humans) 

• Better  performance than human designed 
heuristics (guaranteed) 

• Tailored to a specific problem class (we make 
no guarantees on performance on other 
problem classes).  
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Generic Algorithms 
• Standard metaheuristics need to be executed 

each time on each problem instance and produce 
a solution to that instance.  

• A generic algorithm is a general solution to a 
problem class.  

• Generic Algorithm =  
Genetic Programming + Application Framework 

Genetic Programming provides the “algorithms” 

The application framework provides the platform in 
which the algorithms are executed and applied to the 
problem. 

Applied to TSP, SAT, bin-packing  
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Program Space 
• A program space defines 

the search space to 
which we are confined.  

• The space of “all 
algorithms” is too large 
– it includes e.g. random 
number generators. 

• The space of 
parameterized 
algorithms is too small – 
it only includes a linear 
weighted sum.   

• We can restrict our 
search to algorithms of 
interest.  

Space of all computable 
algorithms 

Space of selection  
heuristic algorithms 

Space of random 
number generators 

Space of parameterized 
selection heuristics 
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Human Designed Selection Heuristics 

• Rank selection 
 P(i) α i 
• Probability of selection is 

proportional to the index in 
sorted population 

• Fitness Proportional 
 P(i) α fitness(i) 
Probability of selection is 

proportional to the fitness 
Fitter individuals are more 

likely to be selected in both 
cases.  

 

Current population (index, fitness, bit-string) 

1 5.5 0100010 2 7.5 0101010  3 8.9 0001010 4 9.9 0111010 

0001010 0111010 0001010 0100010 

Next generation 
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Framework for Selection Heuristics 

Selection heuristics operate in the 
following framework 

for all individuals p 

in population 

select p in proportion 

to value( p ); 

• To perform rank selection 
replace value with index i.  

• To perform fitness proportional 
selection replace value with 
fitness 

• Register Machines calculate 
value( p )  and are used to 
generate a new population 
from old.  

 

 

 

• rank selection is 
the program.  

 Copy R1 R0 

 
• fitness 

proportional 
selection is the 
program  Nop 
 

• These are just two 
programs in our 
search space.  
 

Space of URM 
Programs.  
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Register Machines 

• A program is a list of 
instructions 

• A program acts on a 
register.  

• Inputs and outputs are 
communicated to the 
program via the 
register. 

• R0=fitness 
• R1=index i.  

PC R0 R1 R2 

0 (initial) 2.9 3 5 

1 2.9 4 5 

2 4 4 5 

3 (final) 4 0.33 5 

PC Instruction 

1 Inc R1 

2 Copy R1 R0 

3 Set R1 0.33 
 

Program 

Registers after each instruction 
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URM evaluation 
• URMs are generated 

by random search in 
the top layer.  

• URMs are passed to 
the lower level 
where they are used 
as a selection 
heuristic on in a GA 
on a bit string 
problem class.  

• A value is passed to 
the upper layer 
informing it of how 
well the URM 
performed as a 
selection heuristic.   

test 
URM program is a  
selection heuristic 
 

test 
Genetic Algorithm 
 

Program space  
of selection heuristics 

Framework for  
selection heuristics 

Genetic Algorithm 
bit-string problem 
 

bit-string problem 
 

Problem class 
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Experiments 

• Train on 50 problem instances (i.e. we run a 
single Register Machine for 50 runs of a genetic 
algorithm on a mimicry problem instance from 
our problem class).  

• The training times are ignored  
– we are not comparing our search method of register 

machines. 
– We are comparing our selection heuristic with rank 

and fitness proportional selection.  

• Selection heuristics are tested on a second set of 
problem instances drawn from the same problem 
class.  
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Parameter settings for GA 

 

• Parameter      Value 

• num-bits      64 

• metaheuristic-num-runs    50 

• metaheuristic-population-size   30 

• metaheuristic-num-generations  50 

• metaheuristic-mutation-probability  0.1 
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Parameter Values for Register Machine 
Search 

• Parameter    Value 

• Random-search-iterations  100 

• RM program length   2 

• register size    3 

• output register   R0 

• contents of R0    fitness 

• contents of R1    rank 

• contents of R2    0 (working register) 
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Instruction Set 

• Instruction   Action    Arguments 
• Inc    Ri ← Ri + 1    1 
• Dec    Ri ← Ri − 1    1 
• Add   Rk ← Ri + Rj    3 
• Sub    Rk ← Ri − Rj    3 
• Mul   Rk ← Ri ∗ Rj    3 
• Div    Rk ← Ri=Rj if Rj ̸= 0; 0  3 
• Set    Ri ← x ∈ R    2 
• Copy   Ri ← Rj    2 
• Clear   Ri ← 0     1 
• Swap   Ri ↔ Rj    2 
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Problem Classes 

1. Generate values N(0,1) in interval [-1,1] (if we 
fall outside this range we regenerate) 

2. Interpolate values in range [0, 2^{num-bits}-
1] 

3. Target bit string given by Gray coding of 
interpolated value. 

The above 3 steps generate a distribution of 
target bit strings which are used for hamming 
distance problem instances.   
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Results 

Fit Prop  Rank RM-select 

mean 0.831528 0.907809 0.916088 

std dev 0.003095 0.002517 0.006958 

min 0.824375 0.902813 0.9025 

max 0.838438 0.914688 0.929063 

• Performing t-test comparisons of fitness-
proportional selection and rank selection against 
RM-selection resulted in a p-value of better than 
10^{15} in both cases. In both of these cases the 
RM outperforms the standard selection 
operators. 
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Take Home Points 

• Contribution is a mechanism for automatically 
designing selection heuristics.  

• We should design metaheuristics for classes of 
problems i.e. with a context/niche.  

• This approach is human competitive and human 
cooperative.  

• Meta bias is necessary if we are to tackle multiple 
problem instances.  

• Think frameworks not algorithms – we don’t 
want to solve problem instances we want to solve 
classes! 
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