
Automatically Designing
Selection Heuristics

John Woodward The University of Nottingham, China
john.woodward@nottingham.edu.cn

Jerry Swan
School of Computer Science, University of Nottingham,

jerry.swan@nottingham.ac.uk

GECCO 1st workshop on Evolving
Generic Algorithms.

9/1/2014 1 Automatically Designing Selection Heuristics

Outline of talk

• Generate and test – fit for a purpose.
– Generate and test generate and test methods.

• No Free Lunch, problem instances and problem
classes.

• Generic Algorithm =
Genetic Programming + Application Framework

• Selection Heuristics (rank and fitness
proportional). Two instances of a more general
setting.

• Experiments + Results.

9/1/2014 2
Automatically Designing Selection

Heuristics

test

Generate and Test Approach

A “solution” is generated.
It is tested on a problem instance
Each solution is assigned a score

(real value).
This process is repeated until
time expires or a solution is found.
Includes much of machine learning.
We try to improve the quality of

solutions generated by using
feedback in this loop.

Alternative but equivalent view is
we are sampling a space.

Test

test Generate

9/1/2014 3
Automatically Designing Selection

Heuristics

Generate and Test Examples

• Manufacture e.g. cars

• Evolution “survival of the
fittest”

• “The best way to have a
good

idea is to have lots of ideas”
(Linus Pauling).

• Computer code is also
generate and tested.

9/1/2014 4
Automatically Designing Selection

Heuristics

Fit For Purpose

Evolution
“designs/generates”
organisms for a particular
environment.

Similarly we should design
metaheuristics for
particular problem class.

“we propose a new crossover
operator…”

“what is it for…”

9/1/2014 5

Automatically Designing Selection
Heuristics

Problem Instances and Classes

• A problem instance is an instance of a given type of
problem e.g. a real valued function over bit strings of
length n.
– E.g. Hamming-Distance(x, t) the hamming distance between x

and a fixed target t.

• A problem class is a probability distribution over problem
instances.
– E.g. the bit strings t are drawn from a fixed probability

distribution.

• We can learn at the instance level or at the class level.
– Most systems concentrate on learning at the instance level.
– In this paper we learn at the class level (i.e. exploitable

properties of the class).

• We will design heuristics for a problem class.

9/1/2014 6

Automatically Designing Selection
Heuristics

No Free Lunch Theorems

• NFL theorems says no metaheuristic performs
better over all problem instances when
compared to another metaheuristic.

• It also implies that a metaheuristic that does
better on one class of problems must do
worse on another class of problems.

• Therefore we MUST design our metaheuristics
for a specific problem class.

9/1/2014 7
Automatically Designing Selection

Heuristics

Bias and Meta bias

• Bias of a metaheuristic is basically a
probability distribution over a search space.

• For a given metaheuristic this is static.

• If the bias of a metaheuristic does not match
our problem class we have no mechanism to
change it.

• Meta bias provides a method to alter bias.

• Meta bias is necessary if we are to apply our
algorithm to multiple instances of a problem.

• This is what the proposed method does.
9/1/2014 8

Automatically Designing Selection
Heuristics

Why automatically design metaheuristics?

• Faster design than human design (freer of
implicit and unconscious design decisions
made by humans)

• Better performance than human designed
heuristics (guaranteed)

• Tailored to a specific problem class (we make
no guarantees on performance on other
problem classes).

9/1/2014 9
Automatically Designing Selection

Heuristics

Generic Algorithms
• Standard metaheuristics need to be executed

each time on each problem instance and produce
a solution to that instance.

• A generic algorithm is a general solution to a
problem class.

• Generic Algorithm =
Genetic Programming + Application Framework

Genetic Programming provides the “algorithms”

The application framework provides the platform in
which the algorithms are executed and applied to the
problem.

Applied to TSP, SAT, bin-packing

9/1/2014 10

Automatically Designing Selection
Heuristics

Program Space
• A program space defines

the search space to
which we are confined.

• The space of “all
algorithms” is too large
– it includes e.g. random
number generators.

• The space of
parameterized
algorithms is too small –
it only includes a linear
weighted sum.

• We can restrict our
search to algorithms of
interest.

Space of all computable
algorithms

Space of selection
heuristic algorithms

Space of random
number generators

Space of parameterized
selection heuristics

9/1/2014 11
Automatically Designing Selection

Heuristics

Human Designed Selection Heuristics

• Rank selection
 P(i) α i
• Probability of selection is

proportional to the index in
sorted population

• Fitness Proportional
 P(i) α fitness(i)
Probability of selection is

proportional to the fitness
Fitter individuals are more

likely to be selected in both
cases.

Current population (index, fitness, bit-string)

1 5.5 0100010 2 7.5 0101010 3 8.9 0001010 4 9.9 0111010

0001010 0111010 0001010 0100010

Next generation

9/1/2014 12
Automatically Designing Selection

Heuristics

Framework for Selection Heuristics

Selection heuristics operate in the
following framework

for all individuals p

in population

select p in proportion

to value(p);

• To perform rank selection
replace value with index i.

• To perform fitness proportional
selection replace value with
fitness

• Register Machines calculate
value(p) and are used to
generate a new population
from old.

• rank selection is
the program.

 Copy R1 R0

• fitness

proportional
selection is the
program Nop

• These are just two
programs in our
search space.

Space of URM
Programs.

9/1/2014 13
Automatically Designing Selection

Heuristics

Register Machines

• A program is a list of
instructions

• A program acts on a
register.

• Inputs and outputs are
communicated to the
program via the
register.

• R0=fitness
• R1=index i.

PC R0 R1 R2

0 (initial) 2.9 3 5

1 2.9 4 5

2 4 4 5

3 (final) 4 0.33 5

PC Instruction

1 Inc R1

2 Copy R1 R0

3 Set R1 0.33

Program

Registers after each instruction

9/1/2014 14
Automatically Designing Selection

Heuristics

URM evaluation
• URMs are generated

by random search in
the top layer.

• URMs are passed to
the lower level
where they are used
as a selection
heuristic on in a GA
on a bit string
problem class.

• A value is passed to
the upper layer
informing it of how
well the URM
performed as a
selection heuristic.

test
URM program is a
selection heuristic

test
Genetic Algorithm

Program space
of selection heuristics

Framework for
selection heuristics

Genetic Algorithm
bit-string problem

bit-string problem

Problem class

9/1/2014 15
Automatically Designing Selection

Heuristics

Experiments

• Train on 50 problem instances (i.e. we run a
single Register Machine for 50 runs of a genetic
algorithm on a mimicry problem instance from
our problem class).

• The training times are ignored
– we are not comparing our search method of register

machines.
– We are comparing our selection heuristic with rank

and fitness proportional selection.

• Selection heuristics are tested on a second set of
problem instances drawn from the same problem
class.

9/1/2014 16
Automatically Designing Selection

Heuristics

Parameter settings for GA

• Parameter Value

• num-bits 64

• metaheuristic-num-runs 50

• metaheuristic-population-size 30

• metaheuristic-num-generations 50

• metaheuristic-mutation-probability 0.1

9/1/2014 17
Automatically Designing Selection

Heuristics

Parameter Values for Register Machine
Search

• Parameter Value

• Random-search-iterations 100

• RM program length 2

• register size 3

• output register R0

• contents of R0 fitness

• contents of R1 rank

• contents of R2 0 (working register)

9/1/2014 18
Automatically Designing Selection

Heuristics

Instruction Set

• Instruction Action Arguments
• Inc Ri ← Ri + 1 1
• Dec Ri ← Ri − 1 1
• Add Rk ← Ri + Rj 3
• Sub Rk ← Ri − Rj 3
• Mul Rk ← Ri ∗ Rj 3
• Div Rk ← Ri=Rj if Rj ̸= 0; 0 3
• Set Ri ← x ∈ R 2
• Copy Ri ← Rj 2
• Clear Ri ← 0 1
• Swap Ri ↔ Rj 2

9/1/2014 19
Automatically Designing Selection

Heuristics

Problem Classes

1. Generate values N(0,1) in interval [-1,1] (if we
fall outside this range we regenerate)

2. Interpolate values in range [0, 2^{num-bits}-
1]

3. Target bit string given by Gray coding of
interpolated value.

The above 3 steps generate a distribution of
target bit strings which are used for hamming
distance problem instances.

9/1/2014 20
Automatically Designing Selection

Heuristics

Results

Fit Prop Rank RM-select

mean 0.831528 0.907809 0.916088

std dev 0.003095 0.002517 0.006958

min 0.824375 0.902813 0.9025

max 0.838438 0.914688 0.929063

• Performing t-test comparisons of fitness-
proportional selection and rank selection against
RM-selection resulted in a p-value of better than
10^{15} in both cases. In both of these cases the
RM outperforms the standard selection
operators.

9/1/2014 21
Automatically Designing Selection

Heuristics

Take Home Points

• Contribution is a mechanism for automatically
designing selection heuristics.

• We should design metaheuristics for classes of
problems i.e. with a context/niche.

• This approach is human competitive and human
cooperative.

• Meta bias is necessary if we are to tackle multiple
problem instances.

• Think frameworks not algorithms – we don’t
want to solve problem instances we want to solve
classes!

9/1/2014 22
Automatically Designing Selection

Heuristics

