The Necessity of Meta Bias in Search Algorithms

John R. Woodward
School of Computer Science
The University of Nottingham
Nottingham, UK
Email: john.woodward @nottingham.edu.cn

Abstract—Bias is necessary for learning [1], and is a probability
over a search space. This is usually introduced implicitly by the
designer of a search algorithm, for example by designing a new
search operator [6]. This bias is does not change; each time a
stochastic search algorithm is executed it will give a different
answer. However, if executed repeated it will give the same
solution on average. In other words, the bias is static (even if we
include a self adaptive component to the search algorithm). One
desirable property of search algorithms is that they converge (i.e.
given enough time they will eventually reach the global optima).
In terms of bias, this means that there is a non-zero probability
of visiting each item in the search space.

Search algorithms are intended to be reused on many instances
of a problem. These instances can be consider to be drawn from a
probability distribution. In other words, a search algorithm and
problem class can both be viewed as probability distributions over
the search space. If the bias of a search algorithm does not match
the bias of a problem class, it will under perform, if however,
they do match, it will perform well. Therefore we need some
mechanism of altering the initial bias of the search algorithm to
coincide with that of the problem class. This mechanism can be
realized by a meta level which alters the bias of the base level.
In other words, if a search algorithm is to be applied to many
instances of a problem, then meta bias is necessary. This implies
that convergence at the meta level means a search algorithm shift
its bias to any probability distribution. Additionally, shifting bias
is equivalent to automating the design of search algorithms.

KEYWORDS meta, search, machine learning, convergence, no
free lunch theorems, optimization, bias, learning to learn.

I. INTRODUCTION

Search is the process by which items in a space are sampled
in order to find high quality solutions [12] (see figure 1).
This is a broad paradigm for machine learning [5]. The vast
majority of search algorithms are stochastic, and therefore
a probabilistic setting is appropriate. We will use the word
algorithm to mean stochastic search algorithm. An algorithm
therefore identifies with a probability distribution across the
search space, and is often called bias [1]. The vast majority of
search algorithms have no way to adjust their bias, and we will
argue that this is a flawed approach purely because we intend
the algorithm to be reused on multiple problem instances.

Almost all search algorithms are intended for use on many
problem instances, and not just on a single instance of a
problem [2], [13]. The set of problem instances can be
characterized by a probability distribution and corresponds to a
probability distribution over a search space. Just as we evolve
programs to fit a given data set and make reliable predictions
about future data [5], [6], we would be wise to adopt the same

attitude to problem instances belonging to a problem class and
being drawn from an underlying target distribution.

If an algorithm has a bias which does not match that of the
problem class (i.e. the probability distribution over the search
space), it will under perform (see figure 3), and will need to
adjust its bias to that of the problem class (see figure 4). The
central issue is that many search algorithms have a static bias
over a number of problem instances. That is, an algorithm
does not change its bias from one problem instance to the
next. Even self adaptive search algorithms have a static bias
across problem instances (see section II-A). If we intend our
algorithms to be used on a number of problem instances, then
it is imperative that a meta level exists which can shift the
bias to the problem class (see figure 2).

The three contributions of this paper are;

1. If we apply our search algorithms to more than a single
instance of a problem, then meta bias is necessary so the bias
of the search algorithm converges towards the global optima.
Automatically altering bias at the meta level is equivalent to
automatically designing search algorithms.

2. At the meta level, convergence means that the bias can
shift to any bias (i.e. probability distribution).

3. Problem classes defined as probability distributions are
an essential part of the machine learning methodology. A
problem class defines a niche in which a suitable search
algorithm can fit. It does not make sense to consider an
algorithm in the absence of a problem class which gives it
context. Therefore algorithms should be tested on problem
instances which are drawn from this distribution and NOT
randomly selected benchmark instances from the literature.

II. PRELIMINARIES

A space or search space is a set of items, which could be
numbers in the domain of a function (in the case of function
optimization), permutations of solutions to a combinatorial
problem (i.e. routes to a traveling salesman problem) [12], or
programs in the case of genetic programming [12]. It may also
be called a “hypothesis space” in some areas of machine learn-
ing [5]. The items in a search space are also called (potential
or candidate) solutions, points, members or individuals. One
of the main issues with search is to decide how to sample it.
The process of searching a space is equivalent to the “generate
and test” paradigm. The definition of learning [5] is closely
associated with the search process.

Mitchell [1] defines bias as “any basis for choosing one
generalization over another, other than strict consistency with
the observed training instances”. Bias is a probability distribu-
tion over the items in the search space and is just a sampling
bias in the statistical sense. An unbiased search would just
uniformly sample the space at random. Two syntactically
different algorithms that yield the same probability distribution
over the search space will behave indistinguishably.

We often compare algorithms in terms of the number of
evaluations of items in the search space. Bias is a reasonable
way to compare search algorithms. as the time taken to gener-
ate a new candidate solution takes a fraction of the time that
it does to test it. This is a realistic assumption for the majority
of search algorithms and real-world problems thought we
acknowledge the fact that a computation complexity setting is
more robust. Thus, comparing search algorithms as probability
distributions over a search space is reasonable. Woodward [8§]
has showed that search and bias are intrinsically linked.

Search algorithm

Search space

Fig. 1. A search algorithm conducts a sampling over a search space.

1) What are the sources of bias in a search algorithm?:
Genetic programming [6] uses of different search operators
such as crossover to affect the bias. It is important to report
these parameters for the purpose of replication as it is the bias
which we are trying to replicate. In short, every parameter
or choice that can be made about a search algorithm will
affect its bias. Any parameter which does not affect the bias of
an algorithm is redundant. Some parameters will have greater
influence than others on the bias of the algorithm. For example,
the temperature in simulated annealing algorithms [12].

2) An lllustration of Bias: Langdon [7] generated all of
the programs up to a given size. Programs are build up from
different sets of logical functions. He plots histograms showing
the numbers of programs that represent different functions.
The first point to note from the figures is that the distribution of
functions is far from uniform, with some functions being rep-
resented much more frequently than others. Secondly, different
choices of function set, for example {NAND} and {AND, OR,
NAND, NOR}, highly influences the distribution over the set
of logical functions. Of course the choice of function set in
genetic programming is just one component of how bias can
be affected, but this paper illustrates this very well.

3) Meta Bias: An algorithm has a bias over a search space.
We can call this the base bias (see figure 1). If the algorithm is
presented with different instances of a problem class, it will on

average produce the same performance if presented the same
set of instances. as the base bias does not change. While an
algorithm is demonstrating learning during its execution on a
single problem instance, it is not demonstrating learning about
the problem class This is important, as we typically do not care
about the performance of an algorithm on a single instance,
but its performance on a class of problem. This is the situation
with most search algorithms in the literature today.

The notable exception to this is algorithms that “learn how
to learn” [2]. An algorithm needs some method of altering its
base bias as it is presented with sets of instances. The major
claim of this paper is that, as the vast majority of algorithms
are intended for use on a collection of problem instances, that
meta bias is therefore necessary. Evidence for the fact that
algorithms are intended to be reused is that the proponents of
newly proposed algorithm test them on a number of problem
instances which are reported in their papers. Meta bias is any
mechanism which can adjust the base bias (see figure 2 i.e. it
is a probability distribution over a set of base biases).

Search algorithm

Search space

Fig. 2. Meta bias can alter the bias of a search algorithm.

A. Self Adaptation is not Meta bias

Self adaption is a technique used in a number of algorithms,
where the algorithm “takes on the responsibility” of altering
itself during the search process. This has the advance that the
algorithm has the potential of recovering from a poor initial
choice of parameter setting, but also the drawback that it may
alter a good initial choice for a poorer value. This trade off is
a consequence of the NFL theorem [4].

Self adaptation does not provide meta bias. When the same
algorithm is executed again it will do the same thing on
average as there is no mechanism by which it can remember
from one problem instance to the next. While it will change
the way it operates during its execution on a single problem
instance (in comparison with a none adaptive version of the
algorithm), if it is applied to another problem instance, it will
not have learn anything from one instance to the next. As it
does the same thing, it has by definition, not learnt.

B. Problem Classes

A problem instance is a single example of a problem which
could be used for training or testing purposes, and is often
called a (test or training) case. A training or test set in machine
learning consists of a set of problem instances.

A problem class is a probability distribution over problem
instances. A problem class is usually presented to a learning
algorithm as representative set of problem instances. We rarely
have access to the exact probability distribution, unless we are
dealing with synthetically manufactured problem classes. Thus
a set of test cases is a sample from the problem class.

Any source of problem instances in the real world will have
the potential to generate an infinite sequence of problem in-
stances. In reality, problem classes are probability distributions
over a set of problem instances.

C. Property of Convergence

Convergence is the property that a search algorithm will
eventually sample the global optima. In terms of bias, this
simply means all items in the search space have a non-zero
probability. The property of convergence is often achieved in
one of two ways (but can be both). Firstly by introducing a
“global” search operator which can generate any solution in
the search space. For example, with genetic programming, the
primary search operator is crossover which shuffles existing
genetic material around in the population, while the mutation
operator introduces new genetic material into the gene pool,
meaning that there is always a non-zero chance that an
individual can jump to any point in the search space. Secondly,
a “non-greedy” acceptance condition is used instead of one
which only allows better solutions to replace the current best.
For example, with simulated annealing there is the chance of
accepting a lower quality individual according to a “cooling
schedule”, allowing the current solution to escape from local
optima, which its cousin Hill Climbing suffers from [12].

One of the contributions is to say what it means to have
convergence at the meta level, and the many search algorithms,
while demonstrating the property of convergence at the base
level, do not demonstrate it at the meta level.

search bias
Problem class

/

Aujigeqoud

\

search space

Fig. 3. The bias of the problem class and search algorithm are not aligned.
Therefore the search algorithm will perform poorly on this problem class.

III. DISCUSSION AND FUTURE WORK
A. Meta Learning is Necessary and Sufficient

Rarely is it the case that an algorithm is intend for a single
problem. The “one shot scenario” in [13], is quoted here “It
makes no sense to compare optimization techniques in this
scenario. One may be lucky and start with some optimal value.
Therefore, a problem (from a scientific point of view) has to

have a lot of problem instances”. If an algorithm is intended
to tackle more than a single problem, it must have meta
level. A problem class is equivalent to defining a probability
distribution over the set of problems. An algorithm defines a
probability distribution over the set of solutions (the bias [2],
i.e. each time a stochastic algorithm is executed it produces
a different solution, and therefore a probability distribution
over the possible solutions). Ideally we want the bias of the
algorithm to match the probability distribution of the problem
class. For learning to occur at the base level, a learner must
improve at that problem (almost all algorithms satisfy this).
For a learner to improve over a set of problems, its bias must
alter at the meta level. i.e. the probability distribution over
solutions produced by the algorithm must converge towards the
probability distribution over the problem class (see figure 4).
Therefore meta learning is essential if an algorithm is intended
to be used on more than a single problem, and most algorithms
described in the machine learning literature lack this ability.

search bias problem class

Avjigeqoud

/

search space

Fig. 4. The bias of the search algorithm converges towards that of the
problem class (i.e. they move closer together).

B. Useful Meta Biases

One meta bias which makes sense in machine learning is
Occam’s Razor [5]. Occam’s Razor is the tenancy toward
simpler explanations. Interestingly Occam’s Razor is mutually
exclusive to No Free Lunch [10]. It has been argued that Oc-
cam’s Razor is a sensible bias from a probabilistic perspective
rather than the traditional complexity perspective [9].

Physicists and mathematicians are usually interested in
continuous and differentiable functions. Indeed we are usually
interested in the class of primitive recursive functions which
is a subset of the computable functions [11]. Thus we are not
usually interested in ““all functions” and this could be a starting
point for introducing useful meta biases.

Finally, with some search spaces such as program spaces in
genetic programming [6], we have some build-in knowledge.
For example, if two programs compute the same function, then
we can reduce the probability of sampling one program to
zero, as we still have the possibility of sampling the second
program with the same functionality.

C. On Line Bin Packing as an Illustration

In this subsection we describe a system which effectively
evolves a probability distribution, though not over a search
space, will serve as an illustration. It also encapsulates the

idea of problem classes in the approach. In [3], algorithms
for the on-line bin packing problem are evolved. The on-
line bin packing involves packing a sequence of items as
they arrive into the least number of bins. The item sizes
are drawn from a probability distribution, and this defines
a problem class. Genetic programming is used to evolve a
function which decides in which bin to place the current item.
The evolved function is evaluated for each bin and the item
is placed in the bin which obtained the maximum score. This
function can be interpreted as a probability distribution (after
adding a constant, to make it non-zero, and multiplying by
a scaling factor, to make the sum equal to one), and the
placement operation can be interpreted as “place the item in
the bin with maximum probability”. The point of including
this paper here is that the function set used by the genetic
programming system is capable of producing any “reasonable”
probability distribution (i.e. continuous and differentiable).
Thus this paper representant a problem class which is defined
by a probably distribution over the items to be packed, and a
solution which is effectively a probability distribution function
over the bins. Thus, as the genetic programming system has
the ability to express any probability distribution, then it is
effectively shifting its bias, from some initial bias towards that
of the problem class i.e. it is converging towards an optimal
probability distribution.

IV. SUMMARY AND CONCLUSION

The bias of a stochastic search algorithm is just a probability
distribution over a search space. A problem class defines
a probability distribution over the search space too. It is
important to consider a problem class rather than a small set
of problem instances as we usually intend our algorithm to
be executed on a large number of problem instances. This
is also important from an application point of view, as most
applications are sources of a large set of problem instances.
We require the bias of the search algorithm to match the bias
of the problem class (see figure 4).

A search algorithm typically has a static bias. If it is run on
the same problem instance, it will give different solutions as
it is a stochastic algorithm. However, if we run the algorithm
many times on a set of problem instances, it will give the
same distribution of solutions on average. The probability
distribution over the search space does not change as the
algorithm has no method to alter its bias from one problem
instance to the next.

If the bias of an algorithm matches the problem class, we
do not need to tailor the bias of the algorithm any further.
However, if the bias of our algorithm does not match the bias
of the problem class, then the algorithm will perform sub-
optimally on that problem class. Hence there is a need to shift
the bias of the search algorithm towards that of the problem
class (see figure 4). If there is not mechanism for this, then
it cannot occur (which is the case with many algorithms).
A mechanism is required which will allow the bias of a
search algorithm to alter as it is exposed to more and more
problem instances. Shifting the bias of the search algorithm, is

equivalent to automatically designing search algorithms, as all
search algorithms can be expressed as probability distributions.

Convergence at the base level means that there is a non-zero
probability of visiting all the items in a search space. There
is always a chance of hitting the global optima. At the meta
level, we would like our algorithm to have the property that it
can shift its bias towards that of any probability distribution.
That is, the bias of the search algorithm converges to the bias
of the problem class.

In many papers concerning search algorithms, the perfor-
mance is bench marked against a set of isolated, unrelated
problem instances. It is not surprising then that they report
mixed results such as “our new algorithm performs better on
some problem instances, and worse on others”. Rarely is it the
case that results are obtained across a set of problem instances
which universally outperform another algorithm. This points
to a flaw in the current methodology of comparing algorithms
on a set of isolated problem instances. It is also the case
that we intend an algorithm to be used with a problem class
(i.e. a specific application), and therefore we should report its
performance on a problem class [3].

Meta bias is not new [2], but our central claim is that it
is essential because we use our algorithms on many problem
instances.

REFERENCES

[1] T.M. Mitchell, The Need for Biases in Learning Generalizations, Rutgers
Computer Science Department Technical Report CBM-TR-117, May,
1980. Reprinted in Readings in Machine Learning, J. Shavlik and T.
Dietterich, eds., Morgan Kaufmann, 1990.

[2] S. Thrun and L. Pratt, Learning To Learn, S. Thrun and L. Pratt, ed.,
Kluwer Academic Publishers, 1998, 354 pages.

[3] E. K. Burke, J. Woodward, M. Hyde, G. Kendall, Automatic heuristic
generation with genetic programming: Evolving a Jack of all trades or
a master of one. Genetic and Evolutionary Computation Conference,
GECCO 2007.

[4] C. Schumacher, M. D. Vose, and L. D. Whitley. The no free lunch
and problem description length. In proceedings of the Genetic and
Evolutionary Computation Conference, 565-570, California, USA, 7-11
July 2001. Morgan Kaufmann.

[S] T. M. Mitchell. Machine Learning. McGraw-Hill 1997.

[6] Riccardo Poli, William B. Langdon and Nicholas Freitag McPhee, A Field
Guide to Genetic Programming, Lulu.com, freely available under Creative
Commons Licence from www.gp-field-guide.org.uk, March 2008.

[7] William B. Langdon: Scaling of Program Fitness Spaces. Evolutionary
Computation 7(4): 399-428 (1999)

[8] Woodward J. Computable and Incomputable Search Algorithms and
Functions. IEEE International Conference on Intelligent Computing and
Intelligent Systems (IEEE ICIS 2009) November 20-22,2009 Shanghai,
China.

[9] Woodward, J., Evans A., Dempster, P. 2008, A Syntactic Justification of
Occam’s Razor. October 31 to November 2, 2008 Midwest, A New Kind
of Science Conference Indiana University Bloomington, Indiana

[10] Marcus Hutter, “Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability” Springer,2004,
http://www.hutter1.net/ai/uaibook.htm.

[11] Hartley Rogers, Theory of Recursive Functions and Effective Com-
putability, The MIT Press (April 22, 1987) ISBN-10: 0262680521

[12] Edmund K.Burke and Graham Kendall (editors), Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques,
Springer 2005.

[13] Stefan Droste, Thomas Jansen, Ingo Wegener: Perhaps Not a Free Lunch
But At Least a Free Appetizer, 13-17 July 1999: 833-839 Proceedings of
the Genetic and Evolutionary Computation Conference, Orlando, Florida,
USA, Morgan Kaufmann,

