
The Automatic Generation of
MutationOperators.pptx for

Genetic Algorithms
[Workshop on Evolutionary

Computation for the Automated
Design of Algorithms 2012]

John Woodward – Nottingham
(CHINA)

Jerry Swan - Stirling

1

In a Nutshell…

• We are (semi)-automatically designing new mutation
operators to use within a Genetic Algorithm.

• The mutation operators are trained on a set of problem
instances drawn from a particular probability distribution of
problem instances.

• The mutation operators are tested on a new set of problem
instances drawn from the same probability distribution of
problem instances.

• We are not designing mutation operators by hand (as many
have done in the past). “We propose a new operator ….”

• We are using machine learning to generate an optimization
algorithm (we need independent training (seen) and test
(unseen) sets from the same distribution)

2

Outline

• Motivation – why automatically design
• Problem Instances and Problem Classes (NFL)
• Meta and Base Learning - Signatures of GA and Automatic

Design
• Register Machines (Linear Genetic Programming) to model

mutation operators. Instruction set and 2 registers.
• Two Common mutation operators (one-point and uniform

mutation)
• Results (highly statistically significant)
• Response to reviewers’ comments
• Conclusions – the algorithm is automatically tuned to fit the

problem class (environment) to which it is exposed

 3

Motivation for Automated Design

• The cost of manual design is increasing
exponentially in-line with inflation (10% China).

• The cost of automatic design in decreasing in-line
with Moore’s law (and parallel computation).

• Engineers design for X (cost, efficiency,
robustness, …), Evolution adapts for X (e.g.
hot/cold climates)

• We should design metaheuristics for X
• It does not make sense to talk about the

performance of a metaheuristics in the absence
of a problem instance/class. Needs context.

4

Problem Instances and Classes

A problem instance is a single example of an
optimization problem (in this paper either a
real-valued function defined over 32 or 64 bits).

A problem class is a probability distribution over
problem instances.

Often we do not have explicit access to the
probability distribution but we can only sample
it (except with synthetic problems).

5

Important Consequence of No Free
Lunch (NFL) Theorems

• Loosely, NFL states under a uniform probability
distribution over problem instances, all
metaheuristics perform equally well (in fact
identically). It formalizes a trade-off.

• This implies that under some other distributions
(in fact ‘almost all’), some algorithms will be
superior.

• Automatic design can exploit the fact an
assumption of NFL is not valid (which is the case
with most real world applications).

6

Meta and Base Learning
• At the base level we are

learning about a specific
function.

• At the meta level we are
learning about the
problem class.

• We are just doing
“generate and test” at a
higher level

• What is being passed with
each blue arrow?

• Conventional GA

GA
Function to

optimize

Mutation
operator
designer

Function
class

base level

Meta level

7

Compare Signatures (Input-Output)

Genetic Algorithm

• (B^n -> R) -> B^n

Input is a function
mapping bit-strings of
length n to a real-value.

Output is a (near
optimal) bit-string

(i.e. the solution to the
problem instance)

GA/mutation designer
• [(B^n -> R)] ->
 ((B^n -> R) -> B^n)
Input is a list of functions
mapping bit-strings of
length n to a real-value (i.e.
sample problem instances
from the problem class).
Output is a (near optimal)
mutation operator for a GA
(i.e. the solution method to
the problem class)

8

Register Machine with Indirection
(USED AS MUTATION OPERATORS)

A program is a list of instructions and arguments.

A register is set of addressable memory (R0,..,R4).

Negative register addresses means indirection.

A program cannot affect IO registers directly

Inc 0

Dec 1

Add 1,2,3

If 4,5,6

Inc -1

Dec -2

0 -1 +1 0 …

INPUT-OUTPUT REGISTERS

0 -1 +1 0 …

WORKING REGISTERS

PROGRAM

Program counter pc 2

9

Arithmetic Instructions

These instructions perform arithmetic operations
on the registers.

• Add Ri ← Rj + Rk

• Inc Ri ← Ri + 1

• Dec Ri ← Ri − 1

• Ivt Ri ← −1 ∗ Ri

• Clr Ri ← 0

• Rnd Ri ← Random([−1, +1]) //mutation rate

• Set Ri ← value

10

Control-Flow Instructions

These instructions control flow (NOT ARITHMETIC).
They include branching and iterative imperatives.

Note that this set is not Turing Complete!

• If if(R0 > R1) pc = pc + R2

• IfRand if(arg1 < 100 * random[0,+1]) pc = pc +
arg2//allows us to build mutation rates

• Rpt Repeat Rj times next Ri instruction

• Stp terminate

11

Human designed Register Machines
• Line UNIFORM ONE POINT MUTATION

• 0 Rpt, 33, 18 Rpt, 33, 18

• 1 Nop Nop

• 2 Nop Nop

• 3 Nop Nop

• 4 Inc, 3 Inc, 3

• 5 Nop Nop

• 6 Nop Nop

• 7 Nop Nop

• 8 IfRand, 3, 6 IfRand, 3, 6

• 9 Nop Nop

• 10 Nop Nop

• 11 Nop Nop

• 12 Ivt,−3 Ivt,−3

• 13 Nop Stp

• 14 Nop Nop

• 15 Nop Nop

• 16 Nop Nop

• One point mutation

Flips a single bit

• Uniform mutation

Flips all bits with a

fixed probability.

Why insert NOP (No
operation)?

12

Parameter settings for Register Machine

• Parameter Value
• restart hill-climbing 100
• hill-climbing iterations 5
• mutation rate 3
• program length 17
• Input-output register size 33 or 65
• working register size 5
• seeded uniform-mutation-RM
• fitness best in run,
 averaged over 20
Note that these parameters are not optimized.

13

Parameter settings for the GA

• Parameter Value
• Population size 100
• Iterations 1000
• bit-string length 32 or 64
• generational model steady-state
• selection method fitness proportional
• fitness see next slide
• mutation register machine
Note that these parameters are not optimized –
except for the mutation operator.

14

7 Problem Classes

1. We generate a Normally-distributed value t =
−0.7 + 0.5 N (0, 1)) in the range [-1, +1].

2. We linearly interpolate the value t from the range
[-1, +1] into an integer in the range [0, 2^num−bits
−1], and convert this into a bit-string t′.

3. To calculate the fitness of an arbitrary bit-string x,
the hamming distance between x and the target bit-
string t′ is calculated (giving a value in the range
[0,numbits]). This value is then fed into one of the 7
functions.

15

7 Problem Classes

number function

• 1 x

• 2 sin2(x/4 − 16)

• 3 (x − 4) ∗ (x − 12)

• 4 (x ∗ x − 10 ∗ cos(x))

• 5 sin(pi∗x/64−4) ∗ cos(pi∗x/64−12)

• 6 sin(pi∗cos(pi∗x/64 − 12)/4)

• 7 1/(1 + x /64)

16

Results – 32 bit problems
Problem classes
Means and standard deviations

Uniform
Mutation

 One-point
mutation RM-mutation

p1 mean 30.82 30.96 31.11

p1 std-dev 0.17 0.14 0.16

p2 mean 951 959.7 984.9

p2 std-dev 9.3 10.7 10.8

p3 mean 506.7 512.2 528.9

p3 std-dev 7.5 6.2 6.4

p4 mean 945.8 954.9 978

p4 std-dev 8.1 8.1 7.2

p5 mean 0.262 0.26 0.298

p5 std-dev 0.009 0.013 0.012

p6 mean 0.432 0.434 0.462

p6 std-dev 0.006 0.006 0.004

p7 mean 0.889 0.89 0.901

p7 std-dev 0.002 0.003 0.002 17

Results – 64 bit problems
Problem classes
Means and stand dev

Uniform
Mutation

 One-point
mutation RM-mutation

p1 mean 55.31 56.08 56.47

p1 std-dev 0.33 0.29 0.33

p2 mean 3064 3141 3168

p2 std-dev 33 35 33

p3 mean 2229 2294 2314

p3 std-dev 31 28 27

p4 mean 3065 3130 3193

p4 std-dev 36 24 28

p5 mean 0.839 0.846 0.861

p5 std-dev 0.012 0.01 0.012

p6 mean 0.643 0.643 0.663

p6 std-dev 0.004 0.004 0.003

p7 mean 0.752 0.7529 0.7684

p7 std-dev 0.0028 0.004 0.0031
18

p-values for 32 and 64-bit functions on
the7 problem classes

32 bit 32 bit 64 bit 64 bit

class Uniform One-point Uniform One-point

p1 1.98E-08 0.0005683 1.64E-19 1.02E-05

p2 1.21E-18 1.08E-12 1.63E-17 0.00353

p3 1.57E-17 1.65E-14 3.49E-16 0.00722

p4 4.74E-23 1.22E-16 2.35E-21 9.01E-13

p5 9.62E-17 1.67E-15 4.80E-09 4.23E-06

p6 2.54E-27 4.14E-24 3.31E-24 3.64E-28

p7 1.34E-24 3.00E-18 1.45E-28 5.14E-23
19

Example Operators
p1 32 bit p1 64 bit p2 32 bit p2 64 bit p3 32 bit p3 64 bit p4 32 bit p4 64 bit p5 32 bit p5 64 bit p6 32 bit p6 64 bit p7 32 bit p7 64 bit

0 Rpt 33 18 0 Ivt -54 0 Set -10 16 0 Rpt 65 18 0 Rnd -8 0 Set 6 27 0 Inc -27 0 Rpt 65 18 0 Rpt 33 18 0 Rpt 65 18 0 Rpt 33 18 0 Rpt 65 18 0 Rpt 33 18 0 Rpt 65 18

1 Nop 0 1 Dec 38 14 1 Ivt 9 1 Inc 23 1 Clr 26 1 Nop 0 1 Rpt -2 -7 1 Rnd 36 1 Nop 0 1 Clr 7 1 Rnd -17 1 Rnd 1 1 Dec 26 27 1 Nop 0

2 IfRand 7 4 2 Nop 0 2 Nop 0 2 Nop 0 2 Nop 0 2 Nop 0 2 Rpt 26 -17 2 Nop 0 2 Nop 0 2 Nop 0 2 Nop 0 2 Nop 0 2 Rnd -31 2 Nop 0

3 Nop 0 3 Nop 0 3 Nop 0 3 Nop 0 3 Nop 0 3 If 40 39 -26 3 Nop 0 3 Nop 0 3 Set 32 4 3 Add 46 -38 0 3 Dec 5 29 3 Nop 0 3 Rpt -14 -23 3 Nop 0

4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3 4 Inc 3

5 Nop 0 5 Nop 0 5 If 8 -10 12 5 Nop 0 5 If -15 4 -11 5 Nop 0 5 Nop 0 5 Nop 0 5 Nop 0 5 Nop 0 5 IfRand 31 10 5 Add -37 28 0 5 Nop 0 5 Nop 0

6 Nop 0 6 Nop 0 6 Nop 0 6 Nop 0 6 IfRand -3 31 6 Nop 0 6 Add -3 -19 0 6 Nop 0 6 Dec -10 25 6 Rpt 23 48 6 Nop 0 6 Nop 0 6 Clr 6 6 Nop 0

7 Nop 0 7 Nop 0 7 Nop 0 7 Nop 0 7 Nop 0 7 Nop 0 7 Rnd -3 7 Rpt 41 -43 7 Ivt 25 7 Add 53 -42 0 7 Inc 5 7 Nop 0 7 Dec 32 0 7 Nop 0

8 IfRand 3 6 8 IfRand 1 6 8 If 24 -16 -27 8 If 3 -32 22 8 IfRand 8 -7 8 Add -35 -35 0 8 Rpt -30 -13 8 Rpt 11 57 8 Rnd -18 8 IfRand 1 6 8 If 18 26 27 8 Ivt -9 8 Inc 23 8 Add 9 48 0

9 Nop 0 9 Nop 0 9 Clr -8 9 Nop 0 9 IfRand -20 23 9 Nop 0 9 Nop 0 9 Nop 0 9 Nop 0 9 Clr -5 9 Nop 0 9 Nop 0 9 Rnd -28 9 If 62 26 31

10 Nop 0 10 Nop 0 10 If -17 2 -16 10 Ivt -13 10 Rnd -32 10 Dec 30 36 10 Rpt -21 -13 10 Clr -46 10 IfRand -27 -14 10 Add 47 9 0 10 Nop 0 10 Set 19 35 10 Rpt 0 18 10 Nop 0

11 Nop 0 11 Nop 0 11 Nop 0 11 Nop 0 11 Nop 0 11 Nop 0 11 Rpt 7 -23 11 Ivt 24 11 Rnd 1 11 Inc -42 11 Nop 0 11 Nop 0 11 Nop 0 11 Inc 56

12 Ivt -3 12 Ivt -3 12 Rnd -23 12 Ivt -3 12 Inc -8 12 Ivt -3 12 Ivt -3 12 Ivt -3 12 Ivt -3 12 Ivt -3 12 Ivt -3 12 Ivt -3 12 Inc -29 12 Ivt -3

13 Nop 0 13 Nop 0 13 Nop 0 13 Nop 0 13 Rnd 26 13 Nop 0 13 Dec 11 -32 13 Add 50 30 0 13 Inc 25 13 Set 17 45 13 Rpt 29 2 13 Nop 0 13 Nop 0 13 Nop 0

14 Dec -19 -1 14 Inc -48 14 Nop 0 14 Nop 0 14 Nop 0 14 Nop 0 14 Nop 0 14 Dec -38 56 14 Nop 0 14 Nop 0 14 If -14 -32 -25 14 Nop 0 14 Nop 0 14 Nop 0

15 Rpt -12 22 15 Nop 0 15 Nop 0 15 Nop 0 15 If 13 2 -25 15 Nop 0 15 Nop 0 15 Set -8 26 15 Nop 0 15 Nop 0 15 Nop 0 15 Nop 0 15 Nop 0 15 Nop 0

16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 16 Nop 0 20

Reviews comments

1. Did we test the new mutation operators against
standard operators (one-point and uniform
mutation) on different problem classes?

• NO – the mutation operator is designed (evolved)
specifically for that class of problem.

2. Are we taking the training stage into account?

• NO, we are just comparing mutation operators in
the testing phase – Anyway how could we
meaningfully compare “brain power” (manual
design) against “processor power” (evolution).

21

Summary and Conclusions

1. Automatic design is ‘better’ than manual design.
2. Signatures of Automatic Design are more general than GA.
3. think about frameworks (families of algorithms) rather than
algorithms, and problem classes rather than problem instances.
4. We are not claiming Register Machines are the best way.
5. Shown how two common mutation operators (one-point and
uniform mutation) can be expressed in this RM framework.
6. Results are statistically significant
7. the algorithm is automatically tuned to fit the problem class
(environment) to which it is exposed
8. We do not know how these mutation operators work.
Difficult to interpret.

22

References

• C. Giraud-Carrier and F. Provost. Toward a Justification of Meta-
learning: Is the No Free Lunch Theorem a Show-stopper? In
Proceedings of the ICML-2005 Workshop on Meta-learning, pages
12–19, 2005.

• Jonathan E. Rowe and Michael D. Vose. Unbiased black box search
algorithms. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pages 2035–2042,
NewYork, NY, USA, 2011. ACM.

• J.R. Woodward and J. Swan. Automatically designing selection
heuristics. In Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation, pages 583–590. ACM,
2011.

• Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela
Ochoa, Ender Ozcan, and John R. Woodward. Exploring hyper-
heuristic methodologies with genetic programming.

23

…and Finally

• Thank you

• Any questions or comments

• I hope to see you next year at this workshop.

24

