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In a Nutshell… 

• We are (semi)-automatically designing new mutation 
operators to use within a Genetic Algorithm.  

• The mutation operators are trained on a set of problem 
instances drawn from a particular probability distribution of 
problem instances.  

• The mutation operators are tested on a new set of problem 
instances drawn from the same probability distribution of 
problem instances. 

• We are not designing mutation operators by hand (as many 
have done in the past). “We propose a new operator ….”   

• We are using machine learning to generate an optimization 
algorithm (we need independent training (seen) and test 
(unseen) sets from the same distribution) 
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Outline 

• Motivation – why automatically design 
• Problem Instances and Problem Classes (NFL) 
• Meta and Base Learning - Signatures of GA and Automatic 

Design  
• Register Machines (Linear Genetic Programming) to model 

mutation operators. Instruction set and 2 registers.  
• Two Common mutation operators (one-point and uniform 

mutation) 
• Results (highly statistically significant)  
• Response to reviewers’ comments  
• Conclusions – the algorithm is automatically tuned to fit the 

problem class (environment) to which it is exposed 
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Motivation for Automated Design 

• The cost of manual design is increasing 
exponentially in-line with inflation (10% China).  

• The cost of automatic design in decreasing in-line 
with Moore’s law (and parallel computation). 

• Engineers design for X (cost, efficiency, 
robustness, …), Evolution adapts for X (e.g. 
hot/cold climates) 

• We should design metaheuristics for X 
• It does not make sense to talk about the 

performance of a metaheuristics in the absence 
of a problem instance/class. Needs context.  
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Problem Instances and Classes 

A problem instance is a single example of an 
optimization problem (in this paper either a 
real-valued function defined over 32 or 64 bits). 

A problem class is a probability distribution over 
problem instances.   

Often we do not have explicit access to the 
probability distribution but we can only sample 
it (except with synthetic problems).  
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Important Consequence of No Free 
Lunch (NFL) Theorems 

• Loosely, NFL states under a uniform probability 
distribution over problem instances, all 
metaheuristics perform equally well (in fact 
identically). It formalizes a trade-off.  

• This implies that under some other distributions 
(in fact ‘almost all’), some algorithms will be 
superior. 

• Automatic design can exploit the fact an 
assumption of NFL is not valid (which is the case 
with most real world applications).  
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Meta and Base Learning 
• At the base level we are 

learning about a specific 
function.  

• At the meta level we are 
learning about the 
problem class.  

• We are just doing 
“generate and test” at a 
higher level 

• What is being passed with 
each blue arrow? 

• Conventional GA  

GA 
Function to 

optimize 

Mutation 
operator 
designer 

Function 
class 

base level 

Meta level 
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Compare Signatures (Input-Output) 

Genetic Algorithm  

• (B^n -> R) -> B^n 

Input is a function 
mapping bit-strings of 
length n to a real-value.  

Output is a (near 
optimal) bit-string  

(i.e. the solution to the 
problem instance) 

GA/mutation designer 
•  [(B^n -> R)] ->  
     ((B^n -> R) -> B^n) 
Input is a list of functions 
mapping bit-strings of 
length n to a real-value (i.e. 
sample problem instances 
from the problem class).  
Output is a (near optimal) 
mutation operator for a GA  
(i.e. the solution method to 
the problem class) 
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Register Machine with Indirection 
(USED AS MUTATION OPERATORS) 

A program is a list of instructions and arguments.  

A register is set of addressable memory (R0,..,R4).  

Negative register addresses means indirection. 

A program cannot affect IO registers directly 

 
Inc  0 

Dec  1 

Add 1,2,3 

If 4,5,6 

Inc  -1 

Dec -2 

0 -1  +1 0 … 

INPUT-OUTPUT REGISTERS 

0 -1  +1 0 … 

WORKING REGISTERS 

PROGRAM 

Program counter pc 2 
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Arithmetic Instructions 

These instructions perform arithmetic operations 
on the registers.  

• Add Ri ← Rj + Rk  

• Inc Ri ← Ri + 1  

• Dec Ri ← Ri − 1  

• Ivt Ri ← −1 ∗ Ri  

• Clr Ri ← 0   

• Rnd Ri ← Random([−1, +1]) //mutation rate 

• Set Ri ← value  
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Control-Flow Instructions 

These instructions control flow (NOT ARITHMETIC). 
They include branching and iterative imperatives.  

Note that this set is not Turing Complete! 

• If if(R0 > R1) pc = pc + R2 

• IfRand if(arg1 < 100 * random[0,+1]) pc = pc + 
arg2//allows us to build mutation rates 

• Rpt Repeat Rj times next Ri instruction 

• Stp terminate  

11 



Human designed Register Machines 
• Line   UNIFORM  ONE POINT MUTATION 

• 0   Rpt, 33, 18  Rpt, 33, 18 

• 1   Nop   Nop 

• 2   Nop   Nop 

• 3   Nop   Nop 

• 4   Inc, 3   Inc, 3 

• 5   Nop   Nop 

• 6   Nop   Nop 

• 7   Nop   Nop 

• 8   IfRand, 3, 6  IfRand, 3, 6 

• 9   Nop   Nop 

• 10   Nop   Nop 

• 11   Nop   Nop 

• 12   Ivt,−3   Ivt,−3 

• 13   Nop   Stp 

• 14   Nop   Nop 

• 15   Nop   Nop 

• 16   Nop   Nop 

• One point mutation 

Flips a single bit 

• Uniform mutation 

Flips all bits with a  

fixed probability. 

Why insert NOP (No 
operation)? 
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Parameter settings for Register Machine  

• Parameter    Value 
• restart hill-climbing   100 
• hill-climbing iterations   5 
• mutation rate    3 
• program length    17 
• Input-output register size  33 or 65 
• working register size   5 
• seeded     uniform-mutation-RM 
• fitness     best in run,  
     averaged over 20 
Note that these parameters are not optimized.  

13 



Parameter settings for the GA 

• Parameter    Value 
• Population size   100 
• Iterations    1000 
• bit-string length   32 or 64 
• generational model   steady-state 
• selection method   fitness proportional 
• fitness     see next slide 
• mutation    register machine 
Note that these parameters are not optimized – 
except for the mutation operator.  
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7 Problem Classes 

1. We generate a Normally-distributed value t = 
−0.7 + 0.5 N (0, 1)) in the range [-1, +1].  

2. We linearly interpolate the value t from the range 
[-1, +1] into an integer in the range [0, 2^num−bits 
−1], and convert this into a bit-string t′. 

3. To calculate the fitness of an arbitrary bit-string x, 
the hamming distance between x and the target bit-
string t′ is calculated (giving a value in the range 
[0,numbits]). This value is then fed into one of the 7 
functions. 
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7 Problem Classes 

number  function 

• 1   x 

• 2   sin2(x/4 − 16) 

• 3   (x − 4) ∗ (x − 12) 

• 4   (x ∗ x − 10 ∗ cos(x)) 

• 5   sin(pi∗x/64−4) ∗ cos(pi∗x/64−12) 

• 6   sin(pi∗cos(pi∗x/64 − 12)/4) 

• 7   1/(1 + x /64) 
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Results – 32 bit problems 
Problem classes  
Means and standard deviations 

Uniform  
Mutation 

 One-point  
mutation RM-mutation 

p1 mean 30.82 30.96 31.11 

p1 std-dev 0.17 0.14 0.16 

p2 mean 951 959.7 984.9 

p2 std-dev 9.3 10.7 10.8 

p3 mean  506.7 512.2 528.9 

p3 std-dev 7.5 6.2 6.4 

p4 mean  945.8 954.9 978 

p4 std-dev  8.1 8.1 7.2 

p5 mean 0.262 0.26 0.298 

p5 std-dev 0.009 0.013 0.012 

p6 mean 0.432 0.434 0.462 

p6 std-dev 0.006 0.006 0.004 

p7 mean 0.889 0.89 0.901 

p7 std-dev 0.002 0.003 0.002 17 



Results – 64 bit problems 
Problem classes  
Means and stand dev 

Uniform  
Mutation 

 One-point  
mutation RM-mutation 

p1 mean  55.31 56.08 56.47 

p1 std-dev 0.33 0.29 0.33 

p2 mean 3064 3141 3168 

p2 std-dev  33 35 33 

p3 mean  2229 2294 2314 

p3 std-dev  31 28 27 

p4 mean  3065 3130 3193 

p4 std-dev  36 24 28 

p5 mean 0.839 0.846 0.861 

p5 std-dev  0.012 0.01 0.012 

p6 mean  0.643 0.643 0.663 

p6 std-dev  0.004 0.004 0.003 

p7 mean 0.752 0.7529 0.7684 

p7 std-dev 0.0028 0.004 0.0031 
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p-values for 32 and 64-bit functions on 
the7 problem classes 

32 bit  32 bit   64 bit  64 bit 

class  Uniform   One-point Uniform   One-point 

p1  1.98E-08 0.0005683 1.64E-19 1.02E-05 

p2  1.21E-18 1.08E-12 1.63E-17 0.00353 

p3 1.57E-17 1.65E-14 3.49E-16 0.00722 

p4  4.74E-23 1.22E-16 2.35E-21 9.01E-13 

p5 9.62E-17 1.67E-15 4.80E-09 4.23E-06 

p6  2.54E-27 4.14E-24 3.31E-24 3.64E-28 

p7  1.34E-24 3.00E-18 1.45E-28 5.14E-23 
19 



Example Operators 
p1 32 bit p1 64 bit p2 32 bit p2 64 bit p3 32 bit p3 64 bit p4 32 bit p4 64 bit p5 32 bit p5 64 bit p6 32 bit p6  64 bit p7 32 bit p7 64 bit 

0 Rpt 33 18  0 Ivt -54  0 Set -10 16  0 Rpt 65 18  0 Rnd -8  0 Set 6 27  0 Inc -27 0 Rpt 65 18  0 Rpt 33 18  0 Rpt 65 18  0 Rpt 33 18  0 Rpt 65 18  0 Rpt 33 18  0 Rpt 65 18  

1 Nop 0  1 Dec 38 14  1 Ivt 9  1 Inc 23 1 Clr 26  1 Nop 0  1 Rpt -2 -7  1 Rnd 36  1 Nop 0  1 Clr 7  1 Rnd -17  1 Rnd 1  1 Dec 26 27  1 Nop 0  

2 IfRand 7 4  2 Nop 0  2 Nop 0  2 Nop 0  2 Nop 0  2 Nop 0  2 Rpt 26 -17  2 Nop 0  2 Nop 0  2 Nop 0  2 Nop 0  2 Nop 0  2 Rnd -31  2 Nop 0  

3 Nop 0  3 Nop 0  3 Nop 0  3 Nop 0  3 Nop 0  3 If 40 39 -26  3 Nop 0  3 Nop 0  3 Set 32 4  3 Add 46 -38 0  3 Dec 5 29  3 Nop 0  3 Rpt -14 -23  3 Nop 0  

4 Inc 3 4 Inc 3  4 Inc 3  4 Inc 3  4 Inc 3 4 Inc 3  4 Inc 3 4 Inc 3 4 Inc 3  4 Inc 3  4 Inc 3  4 Inc 3  4 Inc 3  4 Inc 3 

5 Nop 0  5 Nop 0  5 If 8 -10 12  5 Nop 0  5 If -15 4 -11  5 Nop 0  5 Nop 0  5 Nop 0  5 Nop 0  5 Nop 0  5 IfRand 31 10  5 Add -37 28 0  5 Nop 0  5 Nop 0  

6 Nop 0  6 Nop 0  6 Nop 0  6 Nop 0  6 IfRand -3 31  6 Nop 0  6 Add -3 -19 0  6 Nop 0  6 Dec -10 25  6 Rpt 23 48  6 Nop 0  6 Nop 0  6 Clr 6  6 Nop 0  

7 Nop 0  7 Nop 0  7 Nop 0  7 Nop 0  7 Nop 0  7 Nop 0  7 Rnd -3  7 Rpt 41 -43  7 Ivt 25  7 Add 53 -42 0  7 Inc 5  7 Nop 0  7 Dec 32 0  7 Nop 0  

8 IfRand 3 6  8 IfRand 1 6  8 If 24 -16 -27  8 If 3 -32 22  8 IfRand 8 -7  8 Add -35 -35 0  8 Rpt -30 -13  8 Rpt 11 57  8 Rnd -18  8 IfRand 1 6  8 If 18 26 27  8 Ivt -9  8 Inc 23  8 Add 9 48 0  

9 Nop 0  9 Nop 0  9 Clr -8  9 Nop 0  9 IfRand -20 23  9 Nop 0  9 Nop 0  9 Nop 0  9 Nop 0  9 Clr -5  9 Nop 0  9 Nop 0  9 Rnd -28  9 If 62 26 31  

10 Nop 0  10 Nop 0  10 If -17 2 -16  10 Ivt -13  10 Rnd -32  10 Dec 30 36  10 Rpt -21 -13  10 Clr -46  10 IfRand -27 -14  10 Add 47 9 0  10 Nop 0  10 Set 19 35  10 Rpt 0 18  10 Nop 0  

11 Nop 0  11 Nop 0  11 Nop 0  11 Nop 0  11 Nop 0  11 Nop 0  11 Rpt 7 -23  11 Ivt 24  11 Rnd 1  11 Inc -42  11 Nop 0  11 Nop 0  11 Nop 0  11 Inc 56  

12 Ivt -3  12 Ivt -3  12 Rnd -23  12 Ivt -3  12 Inc -8  12 Ivt -3  12 Ivt -3  12 Ivt -3  12 Ivt -3  12 Ivt -3  12 Ivt -3  12 Ivt -3  12 Inc -29  12 Ivt -3  

13 Nop 0  13 Nop 0  13 Nop 0  13 Nop 0  13 Rnd 26  13 Nop 0  13 Dec 11 -32  13 Add 50 30 0  13 Inc 25  13 Set 17 45  13 Rpt 29 2  13 Nop 0  13 Nop 0  13 Nop 0  

14 Dec -19 -1  14 Inc -48  14 Nop 0  14 Nop 0  14 Nop 0  14 Nop 0  14 Nop 0  14 Dec -38 56  14 Nop 0  14 Nop 0  14 If -14 -32 -25  14 Nop 0  14 Nop 0  14 Nop 0  

15 Rpt -12 22  15 Nop 0  15 Nop 0  15 Nop 0  15 If 13 2 -25  15 Nop 0  15 Nop 0  15 Set -8 26  15 Nop 0  15 Nop 0  15 Nop 0  15 Nop 0  15 Nop 0  15 Nop 0  

16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  16 Nop 0  20 



Reviews comments 

1. Did we test the new mutation operators against 
standard operators (one-point and uniform 
mutation) on different problem classes?  

• NO – the mutation operator is designed (evolved) 
specifically for that class of problem.  

2. Are we taking the training stage into account? 

• NO, we are just comparing mutation operators in 
the testing phase – Anyway how could we 
meaningfully compare “brain power” (manual 
design) against “processor power” (evolution).  
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Summary and Conclusions 

1. Automatic design is ‘better’ than manual design. 
2. Signatures of Automatic Design are more general than  GA. 
3. think about frameworks (families of algorithms) rather than 
algorithms, and problem classes rather than problem instances.  
4. We are not claiming Register Machines are the best way.  
5. Shown how two common mutation operators (one-point and 
uniform mutation) can be expressed in this RM framework. 
6. Results are statistically significant 
7. the algorithm is automatically tuned to fit the problem class 
(environment) to which it is exposed 
8. We do not know how these mutation operators work. 
Difficult to interpret.  
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…and Finally 

• Thank you  

• Any questions or comments 

• I hope to see you next year at this workshop.  
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