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Isophote Based Center-Surround Contrast Computation for Image
Saliency Detection

Yuelong CHUANG†, Student Member, Ling CHEN†a), Gencai CHEN†, and John WOODWARD††, Nonmembers

SUMMARY In this paper, we introduce a biologically-motivated model
to detect image saliency. The model employs an isophote based opera-
tor to detect potential structure and global saliency information related to
each pixel, which are then combined with integral image to build up fi-
nal saliency maps. We show that the proposed model outperforms seven
state-of-the-art saliency detectors in experimental studies.
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1. Introduction

Image saliency can be defined as local regions that can be
easily differentiated from their surroundings, these differen-
tiators being color, orientation and intensity [1], [2]. The key
issues in detecting image saliency include the following: 1)
how to determine position and size for both center regions
and neighboring regions, and 2) how to compute differences
between center regions and adjacent regions for the three
feature channels.

Itti et al. [1] solve the problems by building image
pyramids and subtracting different image pyramids to deter-
mine center-surround contrast. Frintrop et al. [3] build im-
age pyramids by integral filters [4], and compute the center-
surround contrast by exhaustively searching at each pyra-
mid. However, both approaches have a problem: different
methods are employed to compute saliency information for
each feature channel, which results in the problem that the
fusion of the different feature channels with non-comparable
properties is somewhat arbitrary (For the different feature
channel maps, normalization has to be done to make the
maps comparable. However, normalizing maps to a fixed
range could remove important information about the mag-
nitude of the maps).Instead of building image pyramids,
Achanta et al. [5] build up the saliency map by filtering the
original image in a raster scan fashion. However, determin-
ing reasonable values for both center and surrounding re-
gions is rather hard to achieve, and the performance is easily
affected by the type of background in the image.

In recent years, several models have been proposed
to compute image saliency with mathematical methods [6]–
[8]. Achanta et al. [6] propose a frequency tuned method
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to compute pixel saliency directly. Since the model only
considers first-order average color, it could be insufficient to
analyze complicated situations. Valenti et al. [7] adopt an
isocentric feature approach to represent image saliency in a
global manner. However, the performance is seriously in-
fluenced by complicated backgrounds. Hou and Zhang [8]
propose a novel model to detect image saliency by explor-
ing spectral components in an image. The model is very
fast, but since it is based on global considerations, detailed
information about salient objects could be overlooked.

To solve these two problems, we propose an isophote
based model to detect the salient pixels in images. In the
proposed model, an isophote based operator is employed to
capture potential structure and global saliency information
related to each pixel. The potential structure is used to deter-
mine center and surrounding regions that are then combined
with global saliency to determine the final saliency informa-
tion. Moreover, the integral image is employed to compute
center-surround contrast, which is conducive to the fusion
of all feature channel maps.

2. The Framework

2.1 Isophote Based Operator

Isophotes are contour lines connecting points of equal lu-
minance. An image can be fully described in terms of its
isophotes because: 1) isophotes do not intersect each other,
and 2) the shape of each isophote is independent of changes
in contrast and brightness [7]. Moreover, it has been ob-
served that for highly curved isophotes their osculating cir-
cles tend to concentrate on small regions around an object’s
corners, while for minimally curved isophotes their oscu-
lating circles tend to concentrate on large regions around an
object’s centers, which means that the curvature of isophotes
could indicate an object’s scale (Fig. 1 (a)). Due to these
properties, we use an isophote based operator to detect each
pixel’s center and surrounding regions.

Given an input L(x, y), where x, y are the Cartesian
coordinates in the image plane, an isophote is defined as
L(x, y) = Lv (where Lv stands for a particular value of lumi-
nance). The curvature c of Lv is obtained by c = y′′

(1+y′2)
3
2

,

where y′ = dy
dx and y′′ = d2y

dx2 . The first derivative of y with
respect to x is arrived at by implicit differentiation of the
isophote:
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Fig. 1 An example of detecting potential structures by isophote based
operator (the saliency map and segmentation result of the image are shown
in fifth column of Fig. 7). In (a), only the potential structures related to the
edge of the image are shown. It is because most of the potential structures
within the smooth surface of the image could be filtered out by the center-
surround contrast computation demonstrated in Sect. 2.2.

dy
dx
= −Lx

Ly
= −LxL−1

y (1)

where Lx and Ly are the first derivatives of Lv with respect
to x and y respectively. The second derivative is:

d2y

dx2
= −L−1

y Lxx − L−1
y Lxy

dy
dx
+ LxL−2

y Lyx + LxL−2
y Lyy

dy
dx
(2)

where Lxx, Lxy, Lyx, and Lyy are the second partials in x and
y. Substituting (1) in (2):

d2y

dx2
=
−L2
yLxx + 2LxLyLxy − L2

xLyy

L3
y

(3)

According to Eq. (1) and Eq. (3), the curvature c is obtained
by:

c =
−L2
yLxx + 2LxLyLxy − L2

xLyy

(L2
x + L2

y)
3
2

(4)

We are interested in the osculating circle, and use it
to represent objects’ scale information. Knowing that the
curvature is the reciprocal of the radius of the osculating
circle, and the sign of the isophote curvature depends on
the intensity of the outer side of the curve [7]. Thus, the
final formulation of the radius is obtained by multiplying
the gradient with the inverse of the isophote curvature c:

d(x, y) =
{Lx, Ly}√

L2
x + L2

y

× (L2
x + L2

y)
3
2

−L2
yLxx + 2LxLyLxy − L2

xLyy
(5)

=
{Lx, Ly}(L2

x + L2
y)

−L2
yLxx + 2LxLyLxy − L2

xLyy

where d stands for a displacement vector to the estimated
position of a potential structure. Once d is obtained, a poten-
tial structure is available. Potential structures are distributed
in the different parts of an image. We focus on the potential
structures that are different from their surroundings. Thus,
potential structures are used as center regions for computing
center-surround contrast. As for the surrounding region, d
can be used as a cue to set its size: the radius of surround-
ing region can be set by a constant multiplicative factor

Fig. 2 The framework to build a saliency map.

k(k > 1) : douter = k×d, and the value of k is set based on ex-
periments. After determining the center and surrounding re-
gions, the center-surround contrast can be computed, which
is used to represent corresponding center pixel’s saliency in-
formation. Since center-surround contrast computation is a
local operation, the saliency information obtained by it is
called local saliency.

Another point which should be mentioned is the num-
ber of pixels that belong to a potential structure (having the
same displacement to a center pixel) (Fig. 1 (b)). The larger
the number is, the more significant the corresponding cen-
ter pixel is. Compared to the center-surround contrast com-
putation, the number of pixels belonging to it is computed
by the isophote based operator in a global manner. There-
fore, we call it global saliency S g. Valenti et al. [7] directly
use this global saliency as image saliency. However, this
strategy is liable to be affected by complicated backgrounds
and especially for images of nature (Fig. 4). In contrast to
[7], a pixel’s saliency is determined by the combination of
its global and local saliency information, which could con-
tribute to background reduction.

2.2 Center-Surround Contrast Computation and Final
Saliency Map Construction

In the previous section we introduce an isophote based op-
erator to extract potential structure and global saliency in-
formation related to each pixel. In this section, an inte-
gral image based operator is employed to compute center-
surround contrast for all three feature channels that are then
fused into a final saliency map. The overall process pro-
posed to detect image saliency is shown in Fig. 2: an image
is first converted into three sub-images based on CIELAB
color space; the isophote based operator is then employed
to determine potential structures and global saliency infor-
mation for each sub-image. These two steps are described in
the following paragraphs. The potential structures are used
to compute center-surround contrast which is then combined
with global saliency to build a final saliency map.

1) Given an image I, we first convert it into sub-images
based on CIELAB color space: I → {L, a, b}. The color
space has the dimension ‘L’ for luminosity, ‘a’ for the varia-
tion from red to green, and ‘b’ for the variation from blue to
yellow. The reason we chose CIELAB color space is its per-
ceptually uniformity, which means a change in a color value
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Fig. 3 Orientation center-surround contrast computation. S (.) represents
mean within a region, and r is the orientation contrast between center and
surrounding regions.

is perceived as approximately a change of the same amount
in the human visual perception system.

2) For each sub-image Isub image ∈{L, a, b}, the isophote
based operator is adopted to extract potential structure and
global saliency information S g related to each pixel respec-
tively. The potential structure is then used to determine the
center and surrounding regions for each pixel as mentioned
in Sect. 2.1. For the intensity and color feature channels, an
integral image mechanism is directly employed to compute
center-surround contrast. To extract the most salient pixels,
the global saliency information S g is used as a weighting for
the center-surround contrast computation:

RInt(x, y) = S L
g (x, y) · |rL

center(x, y) − rL
surround(x, y)| (6)

RCol(x, y) =
1
2

∑
η={a,b}

S ηg(x, y) · |rηcenter(x, y) − rηsurround(x, y)|

where RInt and RCol represent intensity and color feature
channel maps respectively; (x, y) is a Cartesian coordinate in
the image plane; S g is the global saliency information com-
puted by isophote based operator at the position (x, y); and
rcenter and rsurround represent the average of center and sur-
round regions around the position (x, y) within Isub image ∈{L,
a, b} respectively. The orientation computation method pro-
posed by [9] is based on an integral image strategy, and it is
naturally integrated into our model to compute orientation
center-surround contrast. Because all three feature channel
maps can be computed by the integral image based opera-
tor, it is conducive to the fusion of all three feature chan-
nel maps. Instead of computing angle and magnitude [9],
we compute orientation contrast between the center and sur-
rounding regions by the Euclidean distance between their
orientation vectors. The orientation feature map is obtained
by:

ROri(x, y) =
1
3

∑
η={L,a,b}

S ηg(x, y) · rη(x, y) (7)

where ROri is the orientation feature map; r stands for the
orientation center-surround contrast at position (x, y), and
its meaning is illustrated in Fig. 3. The final saliency map is
a linear combination of all three feature maps:

S Final =
1
3

(RInt + RCol + ROri) (8)

Figure 4 shows examples of the combination of global and

Fig. 4 Examples of the combination of global and local saliency infor-
mation: (a) inputs, (b) global saliency maps, (c) local saliency maps, (d)
final saliency maps combined by global and local saliency information, (e)
smoothed saliency maps with Gaussian filter, and (f) ground truths.

local saliency information for building the final saliency
map. As illuminated, the combination of global and local
saliency information can effectively detect the most salient
pixels.

3. Experiments

3.1 Database and Parameter Setting

We evaluated the proposed model on the publicly avail-
able database provided by Achanta et al. [6], which includes
1000 images, and has ground truths in the form of accurate
human-marked labels for saliency regions. The parameter k
is used to determine the size of outer regions for computing
center-surround contrast. As previously mentioned, a poten-
tial structure extracted by an isophote based operator would
only belong to part of an object, thus it is not necessary to
set an overly large size to outer region. First of all, the range
of values of k was limited to [1.1, 2.0]. For 100 images ran-
domly selected from the database, values of k in steps of 0.1
were used to build saliency maps. The measurement used in
[6] was employed to evaluate the performance. The thresh-
old value of what was varied from 0 to 255. For each value,
a binary mask was obtained that was used to compute the
True Positive Rate (TPR) and the False Positive Rate (FPR)
against the ground truth. The resulting Receiver Operating
Characteristic (ROC) is shown in Fig. 5. As illustrated, all
values of k delivered similar performance. Based on the ex-
periments, k was arbitrarily set to 1.4 in the following ex-
periments.

3.2 Performance Evaluation

We compared the proposed model to seven state-of-the-art
saliency detection models, which include IT [1], AC [5],
IG [6], RV [7], SR [8], MZ [10], and GB [11]. Following [6],
two measurements were employed to evaluate the perfor-
mance: segmentation by fixed thresholding and segmenta-
tion by adaptive thresholding, which we now describe.

Segmentation by fixed thresholding. This measure
has been used in Sect. 3.1, and the comparison is shown in
Fig. 6. The figure clearly shows that the proposed model
outperforms the other seven models. It is interesting to note
that the model, RV, proposed by Valenti et al. [7] shows very
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(a) (b)

Fig. 5 The comparison of different saliency maps by using different val-
ues of multiplicative factor k: (a) is ROC curvature, and (b) is ROC areas.

(a) (b)

Fig. 6 The comparison of segmentation by fixed thresholding: (a) is
ROC curvature, and (b) is ROC area.

Table 1 Precision-Recall-F-measure results for segmentation by adap-
tive thresholding.

F-measure Recall Precision
IG 0.6417 0.7950 0.6213
IT 0.6017 0.6622 0.6253
RV 0.6334 0.8513 0.5870
AC 0.5681 0.7373 0.5428
MZ 0.5249 0.6964 0.4950
GB 0.5716 0.7675 0.5328
SR 0.4900 0.6558 0.4633

Our model 0.6967 0.8566 0.6654

high accuracy for a very low FPR, but the growth of accu-
racy is slower than our model (Fig. 6 (a)). This might be
because that the RV is easily affected by complicated back-
grounds.

Segmentation by adaptive thresholding. Achanta et
al. [6] introduce an adaptive threshold method that has twice
the mean saliency of an input saliency map. The images are
segmented using a mean-shift segmentation algorithm, and
retain only those regions whose average saliency is greater
than the threshold. We replaced the mean-shift segmentation
algorithm by a graph-based segmentation algorithm [12].
Compared to the mean-shift algorithm, the graph-based seg-
mentation algorithm can provide larger and more uniform
segmentations. After segmentation, the Precision, Recall
and F-measure (Eq. 9) are obtained over the ground truth.

F =
(1 + α)Precision × Recall
α × Precision + Recall

(9)

where α is set to 0.5. The results are listed in Table 1.
RV [7] shows a high recall but low precision, indicating
that the foreground regions obtained by RV include many
background pixels, which is consistent with the results in
the above measurement. Among all models, the proposed
model shows the highest performance. Figure 7 shows ex-

Fig. 7 Examples of saliency and segmentation maps constructed by our
model. From top to down: input images, saliency maps, segmentation re-
sults and ground truth.

amples of saliency and segmentation maps constructed by
our model.

4. Conclusions

In this paper, we propose an isophote based operator to de-
tect the salient pixels in images. The operator guarantees
that most of the significant pixels can be detect, and the com-
bination of global and local saliency information can filter
out most of the background pixels. Additionally, the inte-
gral image mechanism ensures a consistent computation for
all three feature channels, which is conducive to the fusion
of all feature channel maps. The experiments have shown
that the proposed model has reliable performance for a wide
range of images.
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