
The Automatic Generation of Mutation Operators for
Genetic Algorithms

[Workshop on Evolutionary Computation for the Automated Design of Algorithms]

John Woodward
The University of Nottingham, China

199 Taikang East Road
Ningbo, Zhejiang, 315100, P.R.C.

john.woodward
@nottingham.edu.cn

Jerry Swan
Department of Computing Science and

Mathematics
School of Natural Sciences, University of Stirling,

Stirling FK9 4LA, SCOTLAND.
jerry.swan@cs.stir.ac.uk

ABSTRACT
We automatically generate mutation operators for Genetic
Algorithms (GA) and tune them to problem instances drawn
from a given problem class. By so doing, we perform meta-
learning in which the base-level contains GAs (which learn
about problem instances), and the meta-level contains GA-
mutation operators (which learn about problem classes). We
use Register Machines to explore a constrained design space
for mutation operators. We show how two commonly used
mutation operators (viz. one-point and uniform mutation)
can be expressed in this framework. Iterated local search
is used to search the space of mutation operators, and on a
test-bed of 7 problem classes we identify machine-designed
mutation operators which outperform their human counter-
parts.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming—Program synthesis

Keywords
Genetic Programming, Genetic Algorithms, Hyper-Heuristics,
Automatic Design

1. INTRODUCTION
Metaheuristics are practical solution methods to intractable

problems [13], Genetic Algorithms (GAs) being one such
method [3].

An important issue in determining the utility of a meta-
heuristic is the notion of problem classes, i.e. a probability
distribution over a set of problem instances. The notion of
a ‘best-performing’ metaheuristic must be considered as a
function of the problem instances to which it will be exposed.
For a distribution of problem instances p1, metaheuristic m1

may outperform metaheuristic m2, while for distribution p2,
the converse may be the case, i.e. best depends on the con-
text provided by the problem class.

In the approach of automatic design, we let the search pro-
cess determine which metaheuristic is better for the problem
class at hand simply by training it on problem instances sam-
pled from that problem class. The output of the automated
design process is then a GA-mutation operator designed for
the specific problem class which was used during the training
process.

In the experimental set up used in this paper, a problem
instance is never encountered twice. For the training and
testing phases, new instances are produced, as is the case
for the comparison of human-designed and machine-designed
mutation operators. In other words, we cannot meaningfully
compare algorithms on a fixed set of instances, but only on
sets of instances drawn from a given problem class.

Engineering design is an intrinsically multi-dimensional
activity, where the dimensions might be cost, energy effi-
ciency, durability or maintainability etc. These goals often
conflict, resulting in a trade-off. Similarly Software Engi-
neers design to a specification, and nature evolves organ-
isms in response to contextual environmental feedback (i.e.
an organism “fits” its environment). [2] argues that there
is a trade-off with metaheuristics which is often referred to
as the No Free Lunch theorems, and therefore supports the
meta-learning approach, i.e. it is an argument that we should
automate the design process for problem classes in general.
[10] has proved that for one problem class and algorithm,
there exists another problem class and algorithm, where the
performance is identical. This implies that we should target
algorithms at problem classes. These two papers togeth-
er imply that for a given problem class, a meta-learning
technique can be employed to automatically design a meta
heuristic (or a component thereof) for that problem class.
Indeed, the classification of metaheuristics and the problem
instances to which they should be applied are intrinsically
linked [?].

Genetic Programming (GP) [4] is a standard method for
automatically generating algorithms. With the current level
of maturity of GP, its näıve application of GP is insuffi-
cient to generate a metaheuristic (for example a GA) from
scratch (i.e. from a set of simple general purpose computa-
tional primitives such as inc and dec (see Table 1). The
breakthrough is not in using a more sophisticated search

67

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07...$10.00.

process, but rather providing a framework or template into
which GP can insert candidate programs. As evidence that
the framework is an essential part of this approach, the re-
sults obtained in this article required nothing more sophisti-
cated than hill-climbing to search the space of GP-generated
designed. The framework can be viewed as constraining the
space of algorithms (which includes e.g. sorting, prime num-
ber factorization etc.) to a more tractible subset that are be
interpreted as GA-mutation operators.

Register machines are used to implement GA-mutation
operators, and define a framework in which currently-existing
mutation operators can be expressed. Generated mutation
operators are embedded into a GA and run on a number of
problem instances to assess their utility. Mutation operators
are continually created in a repeated hill-climbing algorith-
m. We go to lengths to avoid infinite loops. For example,
we can only move forward in a program (i.e. we cannot jump
backwards), and the number of times instructions are iter-
ated over is fixed at the start of any iteration process. Thus,
the RM, rather than being Turing-complete can only express
the primitive recursive functions. However, we do not view
this as a limitation as the primitive recursive functions suf-
fice to express (for example) all mappings from Bn → Bn,
which is what is required for mutating the representations
used in this paper.

1.1 Motivation
There are a number of motives for the automated design

of mutation operators (and in the wider scheme of complete
metaheuristics). GAs are a generate-and-test approach and
therefore it makes sense to employ a generate-and-test ap-
proach to design them, i.e. to use a closed feedback loop to
contain the item being generated and repeatedly expose it
to the kind of instances it will be tested against.

With this approach, we are searching at a higher level of
abstraction, i.e. we are not searching the space of solutions
(which is what a GA does) but instead searching the space
of solution methodologies (in this case mutation operators
which form part of a GA). The key motive here is if a scal-
able mutation operator is discovered, it can be applied to
large problem instances and perhaps outperform a standard
mutation operator.

An interpretation of this proposed methodology is that it
allows researchers to propose a family of algorithms (in this
case a large set of mutation operators) rather than propos-
ing just a single algorithm which is what currently happens
in many research articles. While the human designer stil-
l controls the design space of mutation operators, we can
let the machine search this design space for an appropriate
mutation operator for the given problem class.

The final point is that machines can outperform humans
(higher quality and at lower cost) as we demonstrate in this
paper. In addition Moore’s law states that processor speed is
increasing exponentially (which is good news for automated
design), while the cost of human labor increases in-line with
inflation (which is bad news for manual design).

1.2 Outline
The outline of this paper is as follows. In Section 2 we

give the background. In Section 3 we give the experimental
methodology. In Section 4 we give the results In Section 5
we give the further work. In Section 6 we give the summary
and conclusions.

2. BACKGROUND

2.1 Meta-learning and learning to learn
Learning is defined as the improvement at a task according

to some measure [5]. This is often achieved by sampling a
search space of learners and maintaining the best. Often the
way learning occurs with many learning algorithms does not
change however. This can be achieved employing a meta-
learning approach.

The key to meta-learning is to have two levels, a base level
and a meta level [15, ?]. At the base level, learning about
a problem instance takes place. At the meta level learn-
ing about the problem class takes place. We can use any
machine learning algorithms at the base and meta levels.
Consider (as in this paper) the domain of generating func-
tion optimizers, where we use a GA as a function optimizer
in the base level and an iterative hill-climber to learn about
GA mutation operators in the meta level. At the base level
a GA samples a function f at points x1 and x2, and perhaps
learns f(x1) < f(x2) (this is all that can be learned!).

Similarly, at the meta level a hill-climber samples the s-
pace of mutation operators expressed as register-machines
and learns RM1 outperforms RM2 on the given problem
class (again, this is all that can be learned).

2.2 Genetic programming as a hyper-heuristic
In GP, functions are created from a function and terminal

set. It can be difficult for GP to evolve an entire algorith-
m (involving branching, iteration, and reading and writing
to memory) from nothing more than a set of primitives.
Hence, we adopt an approach called Genetic Programming
as a Hyper-heuristic [1] in which currently-existing heuristics
for the problem domain are examined and any commonality
is extracted in the form of a template. This template pro-
vides a framework in which the generative components of GP
are expressed as extension points (c.f. the template method
pattern of [?]). In other words, any algorithmic invariant
is identified and fixed, and GP can then be used to dis-
cover new functions which can be plugged into the variable
parts of the framework. Such a framework provides a mean-
s by which the human designer can support and constrain
what can be evolved. Thus the final algorithm consists of
a human-designed template which is filled-in with functions
produced by GP.

GP as a Hyper-heuristic can be considered as a special
case of meta-learning, where the representation employed
is the language (terminals and nonterminals) of a genetic
program. This is an important point as the human design-
er must be able to confirm that the language of the GP can
express pre-existing heuristics of interest. We do this in Sec-
tion 3 where we show how two popular mutation operators
can be expressed with a RM instruction set.

GP cannot currently be applied directly to many combi-
natorial problems and a bridge has to be built which allows
a GP program to be able to be applied to a problem in-
stance. The bridge takes the form of the framework which
defines how any GP program is to be utilized to solve the
problem (see [16] for some problems with GP). For example,
it is not immediately obvious how GP could be applied to
e.g. the knapsack problem, whereas it is easier to see how
GA can be applied directly. This difficult arises because GP
is working at a higher level of abstraction (i.e. the search
space contains algorithms which must somehow be applied),

68

whereas GA works directly on a space of solutions (which are
often easy to encode as e.g. a bit-string) In other words, G-
P produces a completely machine-made algorithm, whereas
Genetic Programming as a Hyper-heuristic produces a part
man-made (the template) part machine-made (methods in
the template) algorithm.

2.3 Literature review

2.3.1 Applications of GP as a HH
In recent years there have been a number of isolated ex-

amples of this approach: [14] evolved dispatching rules for
solving multi-objective flexible job-shop problems; [8] tack-
led image recognition problems and [7] data mining algo-
rithms.

It is interesting to note that human-designed heuristic are
often rediscovered by these systems as they can be expressed
as the composition of a few primitives. It is often in the
first generation that these heuristics are found (i.e. effective-
ly by random search, as no evolution has yet taken place).
This raises in interesting question of whether or not to seed
the initial population with human-designed heuristics (as
expressed in the language).

2.3.2 Generating search algorithms
There have been a few attempts at generating search al-

gorithms themselves. [9] decomposes search algorithms into
four components (select, replace, growth, variation) and de-
fines a grammar. Interestingly this framework can express
all of random search, hill-climbing, annealing, and GAs.
However, one major criticism of this work is that as the
grammar is not recursive — it is effectively only generat-
ing combinations of components of known search algorithm-
s. [6] creates a system which can express a steady-state GA,
a standard GA and evolutionary programming. This sys-
tem can express more complex combinations than [9].[12,
11] takes an interesting approach — the idea here is that by
using a representation which is Turing-complete, it can ex-
press any learning algorithm. This method also incorporates
the potential, not only for meta-learning, but recursively in-
cludes meta meta learning and so on. There are however a
number of issues with this approach.

• While it can express any learning algorithm, it can also
express irrelevant algorithms.

• It may fall foul of the halting problem.

• Algorithms are difficult to evolve, and evolving a learn-
ing algorithm from scratch is difficult (which is why we
seed our hill-climber with a known learning algorithm).

• Although his system cleverly allows recursive meta-
learning, we show in this paper that a two-layer learn-
ing mechanism is sufficient to produce novel algorithm-
s.

3. EXPERIMENTAL METHODOLOGY
Optimization typically has a single phase, however in this

paper we are learning to optimize, hence (as with all machine
learning approaches) there are two phases. First, there is a
training (or learning) phase where the RMs can be adjust-
ed (generated and tested). Second, there is a testing (or

validation) phase where the RMs are demonstrated to per-
form well on new problem instances drawn from the same
probability distribution as the training phase. The fact we
are designing optimizers is reflected in a methodology that
differs from that which is typical in the optimization and
machine-learning research communities.

The conventional approach to manually developing a meta-
heuristic is to implement and test on a set of benchmark in-
stances taken from the research literature or e.g. from some
online repository. A metaheuristic may be derived from the-
ory, be inspired by ‘natural computing’ metaphors etc. The
success of a metaheuristic is determined by its performance
on a set of benchmark instances.

Our methodology differs in two fundamental respects. First-
ly, the algorithms are automatically generated by machine
rather than being human-designed. Secondly, the algorithm-
s are tested on a problem class rather than ‘disconnected’
problem instances.

3.1 Function signatures
Given a function f : Bn → R+ (i.e. a non-negative real-

valued function defined over Boolean vectors of length n), a
conventional binary GA returns the Boolean vector b̄∗ that
yields the best value for f(b̄) encountered by the GA. Ignor-
ing parameters such as population size (which we keep fixed
in this paper), such a GA can be considered as a function
mapping from a function f : Bn → R to a real value R+

(via the application of f to b̄∗. The function signature for a
standard GA is therefore:

GA : (Bn → R+)→ R+

In this paper we are developing mutation operators as part
of an overall GA, having signature:

mutation : Bn → Bn

The input to this system is a list of functions [f : Bn →
R+] (where square brackets denote a list), and the output is
a GA. Therefore the signature of the whole system is [Bn →
R+] → ((Bn → R+) → R+), i.e. a list of functions maps to
a GA.

Comparing this signature with that of a standard GA
shows that we are working at a higher level of abstraction.
The output of this system is a GA in which the mutation
operator has been generated to be tuned to a specific prob-
lem class. More concretely, a GA returns the solution to a
problem instance, while in this paper, we are generating a
system which returns a solution method (i.e. algorithm) to
a problem class (i.e. a set of problem instance samples).

3.2 Framework
We describe a RM-framework for GA mutation operators

and show how two of the most well-known operators (namely
one-point and uniform mutation) can be expressed in this
framework (see Table 3).

3.2.1 Register machines
Here we describe a RM and show how its input-output

behavior can be interpreted as a mutation operator. A RM
is a list of primitive instructions (program) and a list of
addressable registers (memory) which hold data (providing
a mechanism to map input to output) [17].

Our RM formulation maintains one set of floating point
registers for input-output and one for working calculations.

69

The input-output register is initialised with the bit-string to
be mutated and is placed on registers R1 to Rn where n is
the length of the bit-string, and R0 = 0. We encode the bit-
string as {0 7→ −1, 1 7→ +1}. There is a working register (of
size 5) which can be used to calculate intermediate values.
All values in the working register are initialised to zero. Note
that the command Set stores a value which is written to a
target register, so providing a mechanism for the program to
store constants. After the execution of the RM the output
(i.e. mutated bit-string) is read from R1 to Rn. A positive
value is mapped to true, else is mapped to false.

If the register-argument to an instruction is non-negative,
it is the index of a working register. If the register-argument
to an instruction is negative, the negated argument is used
as the index of a working register. The contents of this regis-
ter is then used as the index of an input-output register. In
other words, instructions can only affect the input-output
registers by indirection via the working registers. For ex-
ample the instruction inc 1 increments the working regis-
ter R1 by 1. While the instruction inc −1 increments the
input-output register pointer to by working register R1 (i.e.
if working register R1 = 4 then the input-output register 4
is incremented). All register indices are modulo the size of
the associated register set.

A program counter (pc) stores an integer which points to
the next instruction to be executed (modulo program size).
After “arithmetic” instructions are executed (see table 1),
the next instruction in the list is executed (i.e. pc = pc +
1). Some instructions {If , IfRand,Rpt, Stp} alter the flow
of control by changing pc (see Table 2). They operate as
follows: If take 3 arguments; if the contents of the register
pointed to by the first argument is greater than the contents
of the register pointed to by the second argument then pc
jumps by the value pointed to by the third argument (the
absolute value is used).
With IfRand if the contents of the register pointed to by the
first argument is less than 100 times a dynamically generated
random number in the range [0, +1] then pc is incremented
by the value pointed to by the second argument (the absolute
value is used). Note that any changes to pc are positive so
no infinite loops are possible (i.e. we cannot jump backwards
in the program repeatedly).
The Rpt instruction executes the next Rj instructions Ri

times. While the values of Ri and Rj may change during
this execution, their initial values are stored locally in the
Rpt instruction so we can guarantee termination. In other
words, a Rpt instruction will terminate after (contentofRi)∗
(contentsofRj) instructions (assuming there are no other
instructions that affect pc in the body of the loop).

We do allow nested Rpt loops, and even though these are
guaranteed to terminate, they can still take a long time to
execute. Hence, for each execution of a program we termi-
nate it after 64*20 instructions have been executed (allowing
the program chance to iterate over the genotype). This lim-
it is set high enough to allow both hand-coded RM which
express one-point and uniform mutation to terminate natu-
rally.

3.2.2 One-point and Uniform mutation
Here we describe how one-point and uniform mutation can

be described in the RM-framework (see Table 3). One-point
mutation flips at most a single bit in the bit-string. Uniform
mutation flips all bits with equal probability.

Table 1: Instructions which do not affect the pro-
gram counter

Instruction Action Params

Add Ri ← Rj +Rk 3
Inc Ri ← Ri + 1 1
Dec Ri ← Ri − 1 1
Ivt Ri ← −1 ∗Ri 1
Clr Ri ← 0 ∗Ri 1
Rnd Ri ← Random([−1,+1]) 1
Set Ri ← value 2

Table 2: Instructions which affect the program
counter

Instruction Action Params

If if(R0 > R1) 3
pc = pc+R2

IfRand if(arg1 < 100 * random[0,+1]) 2
pc = pc + arg2

Rpt Repeat Rj times 2
next Ri instruction

Stp terminate 0

These mutation operators have parts in common. Let us
first describe uniform mutation The first instructionRpt, L, 18
repeats L times the following 18 instructions (where L is 33
or 65 in these problems). The 4th instruction Ivt, 3 inverts
(i.e. multiplies by -1) the value in the 3rd working register.
The IfRand instruction takes two arguments, the first is
the mutation probability (which is 1/(bit − stringlength))
and the second is the number of instructions to jump

The only line number where the two RM-programs differ
is line 13. If a bit is flipped then the one-point mutation
RM-program executes the Stp command (i.e. termination).

Note that the instruction Nop (no operation) is included
in the RM instruction set but is not included in the func-
tion set of GP. This was done to encourage the search for
new programs. As observed above, the presence of these
Nop instructions allows mutation to make changes with less
chance of a discontinuous effect on the original program. An
important point to note is that while these mutation opera-
tors can be expressed as RMs consisting of a few lines, in the
experiments we padded-out each program with a number of
NOPs: the rationale being that if an important instruction
is deleted, it may completely destroy any useful behavior of
the RM. However, instructions can replace the initial NOPs
without such deleterious effect.

3.3 Problem Classes
We generate problem instances for each of our 7 problem

classes in three stages (see Table 4).

1. We generate a Normally-distributed value t = −0.7 +
0.5N(0, 1)) in the range [-1, +1]. If the number, t for
target, falls outside this range it is regenerated. The
constants −0.7 and 0.5 provide an arbitrary offset and
scale which are fixed for all experiments.

2. We linearly interpolate the value t from the range [-1,

70

Table 3: Human designed RM programs
Line Uniform One-point

0 Rpt, 33, 18 Rpt, 33, 18
1 Nop Nop
2 Nop Nop
3 Nop Nop
4 Inc, 3 Inc, 3
5 Nop Nop
6 Nop Nop
7 Nop Nop
8 IfRand, 3, 6 IfRand, 3, 6
9 Nop Nop
10 Nop Nop
11 Nop Nop
12 Ivt,−3 Ivt,−3
13 Nop Stp
14 Nop Nop
15 Nop Nop
16 Nop Nop

+1] into an integer in the range [0, 2num−bits−1], and

convert this into a bit-string t
′

(using a Gray coding).

3. To calculate the fitness of an arbitrary bit-string x, the
hamming distance between x and the target bit-string

t
′

is calculated (giving a value in the range [0,num-
bits]). This value is then fed into one of the 7 functions.

Table 4: 7 function classes
no. function

p1 x

p2 sin2(x/4− 16)
p3 (x− 4) ∗ (x− 12)
p4 (value ∗ value− 10 ∗ cos(value))
p5 sin(π ∗ value/64− 4) ∗ cos(π ∗ value/64− 12)
p6 sin(π ∗ cos(π ∗ value/64− 12)/4)
p7 1/(1 + value/64)

Table 5: Parameter settings for the RM search
Parameter Value

restart hill-climbing 100
hill-climbing iterations 5

mutation rate 3
RM program length 17

Input-output register size 33 or 65
working register size 5

seeded uniform-RM
fitness best, averaged over 20

3.4 Experiments
Our aim is to generate a GA-mutation operator for each

problem class. Each time a GA is run (either with a human-

Table 6: Parameter settings for the GA
Parameter Value

Population size 100
Iterations 1000

bit-string length 32 or 64
generational model steady-state
selection method fitness proportional

fitness see table 4

designed operator or a machine generated operator) a new
problem instance is generated.

At the meta-level, we are searching the space of muta-
tion operators (i.e. RMs) for a given problem class. At the
base-level the space of bit-strings for a given problem in-
stance is being searched. Base and meta-level parameters
are as given in Tables 6 and 5 respectively. Hence a single
GA run consists of 100 fitness evaluations to initialize the
population, and 1000 fitness evaluations to conduct the evo-
lution. To search the space of RMs, we use hill-climbing,
a single-point search methodology. We initialize the search
with the human-designed RM representing uniform muta-
tion (see column 2 in Table 3). We mutate RMs uniformly
at random such that on average 3 instructions are mutated
in a program. We allow 5 hill-climbing iterations so it is
possible that 15 out of 16 of the instructions are mutated.
This process is repeated 100 times. Thus 500 RMs will have
been evaluated. At the end of each GA run, the best indi-
vidual bit-string is recorded. The GA is run 20 times, and
the fitness of the RM is the best of each GA run, averaged
over the 20 runs. The fitness of a RM is thus an indica-
tion of what value it is expected to obtain on new problem
instances.

4. RESULTS
To make a comparison between human automatically-designed

mutation operators, batches of 20 GA runs are conduct-
ed and the best-of-run is recorded for each GA execution.
These 20 best-of-run fitnesses are then averaged over the 20
runs. This is repeated 30 times to give 30 sets of data to
compare. Two tailed t-tests are conducted using two-sample
unequal variance (heteroscedastic).

The means and standard deviations can be found in tables
7 and 8 for 32 and 64 bit versions of the problem classes
respectively.

The p-values can be found in table 9. These are arrived at
by comparing the automatically generated RM with uniform
and one-point mutation operators.

5. FURTHER WORK
The methodology described in this paper has achieved su-

perior results to those of the most popular human-dsesigned
mutation operators and is therefore worthy of further study.
There are a number of interesting directions in which this
work can proceed.

While we have obtained statistically significant results
with this method, the automatically-designed operators af-
ford little insight into their effectiveness. We could take
the stance that the machine-generated operators outperfor-
m their human-designed counterparts and that is how meta-

71

Table 7: Statistics for 32-bit functions on the 7 prob-
lem classes

Uniform One-point RM-mutation

p1 mean 30.82 30.96 31.11
p1 std-dev 0.17 0.14 0.16

p2 mean 951.0 959.7 984.9
p2 std-dev 9.3 10.7 10.8

p3 mean 506.7 512.2 528.9
p3 std-dev 7.5 6.2 6.4

p4 mean 945.8 954.9 978.0
p4 std-dev 8.1 8.1 7.2

p5 mean 0.262 0.260 0.298
p5 std-dev 0.009 0.013 0.012

p6 mean 0.432 0.434 0.462
p6 std-dev 0.006 0.006 0.004

p7 mean 0.889 0.890 0.901
p7 std-dev 0.002 0.003 0.002

Table 8: Statistics for 64-bit functions on the 7 prob-
lem classes

Uniform One-point RM-mutation

p1 mean 55.31 56.08 56.47
p1 std-dev 0.33 0.29 0.33

p2 mean 3064 3141 3168
p2 std-dev 33 35 33

p3 mean 2229 2294 2314
p3 std-dev 31 28 27

p4 mean 3065 3130 3193
p4 std-dev 36 24 28

p5 mean 0.839 0.846 0.861
p5 std-dev 0.012 0.010 0.012

p6 mean 0.643 0.643 0.663
p6 std-dev 0.004 0.004 0.003

p7 mean 0.7520 0.7529 0.7684
p7 std-dev 0.0028 0.0040 0.0031

Table 9: p-values for 32 and 64-bit functions on the
7 problem classes

32 bit 32 bit 64 bit 64 bit
class Uniform One-point Uniform One-point

p1 1.98E-08 0.0005683 1.64E-19 1.02E-05
p2 1.21E-18 1.0848E-12 1.63E-17 0.00353
p3 1.57E-17 1.649E-14 3.49E-16 0.00722
p4 4.74E-23 1.219E-16 2.35E-21 9.008E-13
p5 9.62E-17 1.667E-15 4.80E-09 4.23E-06
p6 2.54E-27 4.14E-24 3.31E-24 3.64E-28
p7 1.34E-24 3.00344E-18 1.45E-28 5.14E-23

heuristics are compared. However design is an iterative pro-
cess, and understanding how these mutation operators work
can feedback into the manual part of the design process (i.e.
the design of the framework). It should also be noted that
the design of mutation operators should not be studied in

isolation, and that it is the interplay of variation (mutation),
selection and fitness evaluation (i.e. the complete process of
evolution) that needs to be understood if we are to successful
automate the design of evolutionary search algorithms.

In this paper we created a system which easily expresses
two human designed mutation operators. There are myri-
ad mutation operators reported in the literature, and fur-
ther work could include confirming that these are also read-
ily expressible within the current RM framework. If they
are not, then the framework could be extended to include
them. However, we believe we have laid the foundations
for a framework that can express a large family of mutation
operators (those which are primitive recursive).

Further work includes extending the current unary oper-
ator architecture to a binary operator architecture. This
would allow operators such as binary crossover to be ex-
pressed. This could be done by having two input-output
registers which take two bit-strings as input and using in-
structions like swap(i,j) which would swop the ith bit of the
first string with the jth bit of the second string. As in this
paper, a framework could be built which can express two
commonly used crossover operators, for example one-point
and uniform crossover.

We have used a single-point search operator (repeated hill-
climbing) to search the space of RMs and was seeded with
a RM implementing uniform mutation. We found that one-
point mutation often outperformed uniform mutation, and
perhaps using one-point mutation as the initial seed for hill-
climbing would have allowed us to either find good RMs
faster, or find better RMs than we did using uniform muta-
tion. However this adds weight to the case that automated
design can find mutation operators which are comparable
with, or better than human designed operators. Further
work would include using a more sophisticated population-
based search method such as GP, which would allow multiple
seeds (i.e. we could seed the initial population with a variety
of human-designed mutation operators but also with some
randomly generated RMs).

By inspecting the two human-designed mutation opera-
tors presented in table 3, we can see striking similarities
between these two operators. The only difference is a single
instruction (line 13). This suggests that this may be a rich
part of the search space to concentrate on. For example, it
may be that it is beneficial to have Rpt instructions which
allow the program to iterate over the bit-string, along with
some conditional instructions. Indeed many of the manu-
factured RMs do contain these features, however it is not
know whether these are due to the search being initialized
with similar programs or these features are actually advan-
tageous.

A hard upper limit is set on the total number of instruc-
tions which can be executed in a single execution of a pro-
gram. In order to investigate the scalability of the mutation
operators we obtain with this approach, this limit needs to
be removed. If the mutation operators are used on problem
instances where the size is greater than this limit currently
allows and the program is terminated before it has run to
completion, the mutation will fail to produce anything of
use.

6. SUMMARY AND CONCLUSIONS
We have defined a framework in which two of the most

commonly used GA-mutation operators can be expressed.

72

We have automatically generated register machines and used
them to implement mutation operators for a GA. These mu-
tation operators are then tested on a set of function opti-
mization problem instances.

We demonstrated that the automatic generation of muta-
tion operators for well-defined problem classes yields results
that are human-competitive in respect of the two most pop-
ular mutation operators (vizȯne-point and uniform muta-
tion). This methodology is also cooperative in that it can
incorporate human-designed operators into the framework,
and indeed this is an essential part of the methodology.

In addition, mutation operators are designed automati-
cally in the context of a problem environment, rather than
being designed manually and in isolation from the intended
problem class.

It is important to recall our methodology at this point:
we are not investigating the performance of a mutation op-
erator on a set of benchmark problem instances, nor are
we generating a single mutation operator. We are generat-
ing specific mutation operator for specific problem classes
(in this case function optimization over functions defined on
Boolean domains). To emphasize the point, we are tailor-
ing mutation operators to particular problem classes, and a
mutation operator designed for one problem class will not
necessarily perform well on a different problem class.

The automatic design of heuristic algorithms by a generate-
and-test approach has proved itself to be successful in a num-
ber of different domains including job-shop scheduling, the
traveling salesman problem, timetabling, Boolean satisfia-
bility, bin packing, and image recognition. We have added
mutation for GAs to this list.

On of the main objections to this approach may be the
long training time. However, what is not reported in the
literature is how much personnel time was spend developing
the algorithms in the first place. We also think that this
methodology works best by starting with existing heuris-
tics, rather than evolving them from scratch. Therefore
this methodology cannot be compared directly with manual
design as they are two different approaches. This method
could be considered as“algorithmically polishing”a heuristic
which has already undergone years of manual design.

This approach will bear fruit if is adopted by the re-
search community over the manual-design approach. This
will manifest itself in two ways. Firstly we will see few-
er papers that compare algorithms, but instead papers that
compare frameworks. For example another template (frame-
work) for the design of mutation operators could be proposed
and compared to the register-machine framework described
in this paper. Secondly, researchers will test their algorithms
(or the algorithms produced by their frameworks) on a class
of problem, rather than on unrelated problem instances.

7. REFERENCES
[1] Edmund K. Burke, Mathew R. Hyde, Graham

Kendall, Gabriela Ochoa, Ender Ozcan, and John R.
Woodward. Exploring hyper-heuristic methodologies
with genetic programming. In Christine L. Mumford
and Lakhmi C. Jain, editors, Computational
Intelligence, volume 1 of Intelligent Systems Reference
Library, chapter 6, pages 177–201. Springer, 2009.

[2] C. Giraud-Carrier and F. Provost. Toward a
Justification of Meta-learning: Is the No Free Lunch
Theorem a Show-stopper? In Proceedings of the
ICML-2005 Workshop on Meta-learning, pages 12–19,
2005.

[3] David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[4] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[5] Tom M. Mitchell. The need for biases in learning
generalizations. Technical report, Rutgers University,
New Brunswick, NJ, 1980.

[6] Mihai Oltean. Evolving evolutionary algorithms using
linear genetic programming. Evolutionary
Computation, 13(3):387–410, 2005.

[7] Gisele L. Pappa and Alex A. Freitas. Automatically
Evolving Data Mining Algorithms, volume XIII of
Natural Computing Series. Springer, 2010.

[8] Mark E. Roberts and Ela Claridge. A multistage
approach to cooperatively coevolving feature
construction and object detection. In Rothlauf et al.,
editor, Applications of Evolutionary Computing,
EvoWorkshops2005, volume 3449 of LNCS, pages
396–406, Lausanne, Switzerland, 30 March-1 April
2005. Springer Verlag.

[9] Brian J. Ross. Searching for search algorithms:
Experiments in meta-search. Technical report, Brock
University, 2002.

[10] Jonathan E. Rowe and Michael D. Vose. Unbiased
black box search algorithms. In Proceedings of the 13th
annual conference on Genetic and evolutionary
computation, GECCO ’11, pages 2035–2042, New
York, NY, USA, 2011. ACM.

[11] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering.
Shifting inductive bias with success-story algorithm,
adaptive levin search, and incremental
self-improvement. Machine Learning, 28(1):105–130,
1997.

[12] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering.
Simple principles of metalearning. Technical report,
SEE, 1996.

[13] El-Ghazali Talbi. Metaheuristics - From Design to
Implementation. Wiley, 2009.

[14] Joc Cing Tay and Nhu Binh Ho. Evolving dispatching
rules using genetic programming for solving
multi-objective flexible job-shop problems. Computers
& Industrial Engineering, 54(3):453–473, 2008.

[15] Sebastian Thrun and Lorien Pratt, editors. Learning
to learn. Kluwer Academic Publishers, Norwell, MA,
USA, 1998.

[16] John R. Woodward and Ruibin Bai. Why evolution is

73

not a good paradigm for program induction: a critique
of genetic programming. In Lihong Xu, Erik D.
Goodman, Guoliang Chen, Darrell Whitley, and
Yongsheng Ding, editors, GEC ’09: Proceedings of the
first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pages 593–600, Shanghai,
China, June 12-14 2009. ACM.

[17] J.R. Woodward and J. Swan. Automatically designing
selection heuristics. In Proceedings of the 13th annual
conference companion on Genetic and evolutionary
computation, pages 583–590. ACM, 2011.

74

