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Abstract Hyper-heuristics comprise a set of approaches that share the common goal

of automating the design and tuning of heuristic methods to solve hard computational

search problems. The main goal is to produce more generally applicable search method-

ologies. The term hyper-heuristic was coined in the early 2000’s to refer to the idea of

‘heuristics to choose heuristics’. However, the idea of automating the heuristic design

process can be traced back to the early 1960’s. With the incorporation of Genetic Pro-

gramming into hyper-heuristic research, a new type of hyper-heuristics has emerged

that we have termed ‘heuristics to generate heuristics’. In this paper we overview previ-

ous categorisations of hyper-heuristics and propose a unified classification. Our goal is

to both clarify the main features of existing approaches and to suggest new directions

for hyper-heuristic research.

1 Introduction

Hyper-heuristics comprise a set of approaches that share the common goal of automat-

ing the design and tuning of heuristic methods to solve hard computational search

problems. The motivation behind these approaches is to raise the level of generality

at which search methodologies can operate. The term hyper-heuristic was introduced

in the early 2000’s [18] to describe ‘heuristic to choose heuristics’ that is, high-level

approaches that given a particular problem instance and a number of low-level heuris-

tics, select and apply an appropriate low-level heuristic at each decision point [6]. The

idea of automating the heuristic design process, however, is not new. Indeed it can be

traced back to the early 1960s [20,27,28], and was independently developed by a num-

ber of authors during the 1990s [25,33,34,43,53,57]. Some historical notes, and a brief

overview of early approaches can be found in [6] and [48], respectively. A more recent

research trend in hyper-heuristics attempts to automatically generate new heuristics

suited to a given problem or class of problems, by combining, mainly through the use

of genetic programming, components or building-blocks of human designed heuristics

[7].
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A variety of hyper-heuristic approaches using different high level techniques, low-

level heuristics, and applied to different combinatorial problems, have been proposed in

the literature. In this paper, we build upon previous categorisations of hyper-heuristics

and provide a unified classification. Our goal is to both clarify the main features of

existing approaches and to suggest new directions for hyper-heuristic research.

The following section surveys previous classification of hyper-heuristic approaches.

Thereafter, section 3 proposes a unified classification. Sections 4 and 5, describe in

more detail the main categories of the proposed classification, giving references to a

number of representative examples in the literature. Finally, section 6 summarises our

categorisation of approaches and points toward future research directions in hyper-

heuristics.

2 Previous Classifications

In [52] hyper-heuristics are categorised into two types: (i) with learning, and (ii) with-

out learning. Hyper-heuristics without learning included approaches that use several

heuristics (neighborhood structures), but select the heuristics to call according to a

predetermined sequence. Therefore, this category contains approaches such as variable

neighbourhood search [42]. The hyper-heuristics with learning include methods that

dynamically change the preference of each heuristic based on their historical perfor-

mance guided by some learning mechanisms. As discussed in [52] hyper-heuristics can

be further classified with respect to the learning mechanism employed, and a distinction

is made between approaches which use a genetic algorithm during the learning pro-

cess, from those which use other mechanisms. This is because many hyper-heuristics

so far have been based on genetic algorithms. In these genetic-algorithm based hyper-

heuristics the idea is to evolve the solution methods, not the solutions themselves.

In [4] hyper-heuristics are classified into those which are constructive and those

which represent local search methods. This distinction is also mentioned by Ross [48].

Constructive hyper-heuristics build a solution incrementally by adaptively selecting

heuristics, from a pool of constructive heuristics, at different stages of the construction

process. Local search hyper-heuristics, on the other hand, start from a complete ini-

tial solution and iteratively select, from a set of neighborhood structures, appropriate

heuristics to lead the search in a promising direction.

With the incorporation of genetic programming into hyper-heuristics research in the

mid and late 2000’s (see [7] for an overview), a new class of hyper-heuristics emerged.

This new class of approaches was explicitly and independently mentioned in [1] and

[10]. In the first class of heuristics, or ‘heuristics to choose heuristics’, the framework

is provided with a set of pre-existing, generally widely known heuristics for solving the

target problem. In contrast, in the second class or ‘heuristics to generate heuristics’

the aim is to generate new heuristics from a set of building-blocks or components of

known heuristics, which are given to the framework. Therefore, the process requires, as

in the first class of hyper-heuristics, the selection of a suitable set of heuristics known

to be useful in solving the target problem. But, instead of supplying these directly to

the framework, the heuristics are first decomposed into their basic components. Ge-

netic programming hyper-heuristic researchers [1,7,10] have also made the distinction

between ‘disposable’ and ‘reusable’ heuristics. A disposable heuristic is created just

for one problem, and is not intended for use on unseen problems. Alternatively the



Fig. 1 A classification of hyper-heuristic approaches, according to two dimensions (i) the
nature of the heuristic search space, and (ii) the source of feedback during learning.

We consider that the most fundamental hyper-heuristic categories from previous

classifications, are those captured by the phrases: (i) ‘heuristics to choose heuris-

tics’ and (ii) ‘heuristics to generate heuristics’. Therefore, they form the first

branch in our first dimension (the nature of the search space). The second ramification

level in this dimension corresponds to the distinction between constructive and local

search hyper-heuristics, also discussed in section 2. Notice that this categorisation is

concerned with the nature of the low-level heuristics used in the hyper-heuristic frame-

work. Our classification uses the terms constructive and perturbative to refer to these

classes of low-level heuristics. Sections 4 and 5 describe in more detail these categories,

listing some concrete examples of recent approaches in the literature.

We consider a hyper-heuristic a learning algorithm when it uses some feedback

from the search process. Therefore, non-learning hyper-heuristics are those that do not



use any feedback. According to the source of feedback during learning, we propose a

distinction between online and offline learning. Notice that in the context of heuristics

to generate heuristics, or genetic programming hyper-heuristics (as discussed in section

2), the notions of disposable and reusable have been used to refer to analogous ideas to

those of online and offline learning, as described below:

Online learning hyper-heuristics: The learning takes place while the algorithm is

solving an instance of a problem. Therefore, task-dependent local properties can be

used by the high-level strategy to determine the appropriate low-level heuristic to

apply. Examples of on-line learning approaches within hyper-heuristics are: the use

of reinforcement for heuristic selection, and generally the use of meta-heuristics as

high-level search strategies in a search space of heuristics.

Offline learning hyper-heuristics: The idea is to gather knowledge in the form of

rules or programs, from a set of training instances, that would hopefully generalise

to the process of solving unseen instances. Examples of offline learning approaches

within hyper-heuristics are: learning classifier systems, case-base reasoning and

genetic programming.

The proposed classification of hyper-heuristic approaches can be summarised as

follows (see also figure 1):

– With respect to the nature of the heuristic search space

– Heuristic to choose heuristics: produce combinations of pre-existing:

• Constructive heuristics

• Perturbative heuristics

– Heuristics to generate heuristics: Generate new heuristic methods using

basic components (building-blocks) of:

• Constructive heuristics

• Perturbative heuristics

– With respect to source of feedback during learning

– Online learning hyper-heuristics: learn while solving a given instance of a

problem.

– Offline learning hyper-heuristics: learn from a set of training instances a

heuristic method that would generalise to unseen instances.

– Hyper-heuristics without learning: do not use feedback from the search

process.

4 Heuristics to Choose Heuristics

4.1 Approaches based on constructive low-level heuristics

These approaches build a solution incrementally. Starting with an empty solution, they

intelligently select and use constructive heuristics to gradually build a complete solu-

tion. The hyper-heuristic framework is provided with a set of pre-existing (generally

problem specific) constructive heuristics, and the challenge is to select the heuristic

that is somehow the most suitable for the current problem state. This process con-

tinues until the final state (a complete solution) has been reached. Notice that there

is a natural ending to the construction process when a complete solution is reached.

Therefore the sequence of heuristic choices is finite and determined by the size of the



underlying combinatorial problem. Furthermore, there is, in this scenario, the inter-

esting possibility of learning associations between partial solution stages and adequate

heuristics for those stages.

Several approaches have been recently proposed to generate efficient hybridisations

of existing constructive heuristics in domains such as bin-packing [41,51], timetabling

[14,15,49,50], production scheduling [58], and cutting stock [55,56]. Both online and

offline machine learning approaches have been investigated. Examples of online ap-

proaches are the use meta-heuristics in a search space of constructive heuristics, specif-

ically, genetic algorithms [26,34,57,58] and tabu search [15]. Examples of offline tech-

niques are the use of learning classifier systems [40,41,51], messy genetic algorithms

[49,50,56] and case based reasoning [14].

4.2 Approaches based on perturbative low-level heuristics

These approaches start with a complete solution, generated either randomly or using

simple constructive heuristics, and thereafter try to iteratively improve on the cur-

rent solution. The hyper-heuristic framework is provided with a set of neighborhood

structures and/or simple local searchers, and the goal is to iteratively select and ap-

ply them to the current complete solution. This process will continue until a stopping

condition has been met. Notice that these approaches differ from those based on con-

structive heuristics, in that they do not have a natural termination condition. The

sequence of heuristic choices can, in principle, be arbitrarily extended. This class of

hyper-heuristics has the potential to be applied successfully to different combinatorial

optimisation problems, since general neighbourhood structures or simple local searchers

can be made available. Perturbative or improvement hyper-heuristics have been applied

to personnel scheduling [12,18], timetabling [5,12], shelf space allocation [2,3], packing

[23] and vehicle routing problems [47].

So far, the approaches that combine perturbative low-level heuristics in a hyper-

heuristic framework are online, in that they attempt to adaptively solve a single in-

stance of the problem under consideration. Furthermore, the majority of the proposed

approaches are single-point algorithms in that they keep a single incumbent solution

in the solution space.1 As suggested in [5,46] their working can be separated into

two processes: (i) (low-level) heuristic selection, and (ii) move acceptance strategy. In

[46], hyper-heuristics are classified with respect to the nature of the heuristic selec-

tion and move acceptance components. We will adapt a similar classification for the

hyper-heuristics choosing from a set of perturbative low level heuristics and extend

the classification in Figure 1. The heuristic selection can be done in a non-adaptive

(simple) way: either randomly or cyclically following a prefixed heuristic ordering [18,

19]. In these approaches no learning is involved. Alternatively, the heuristic selection

may incorporate an adaptive (or on-line learning) mechanism based on probabilistic

weighting of the low-level heuristics [13,44], or some type of performance statistics

[18,19]. Both non-adaptive and adaptive heuristic selection schemes, are generally em-

bedded within a single-point local search high-level heuristic. The acceptance strategy

is an important component of any local search heuristic, therefore, many acceptance

strategies have been explored within hyper-heuristics. Move acceptance strategies can

1 Some approaches have been attempted that maintain a population of points in the heuristic
space [17].



be divided into two categories: deterministic and non-deterministic. In general, a move

is accepted or rejected considering the quality of the move and the current solution

during a single point search. At any point of the search, deterministic move acceptance

methods generate the same result for the same candidate solutions(s) used for accep-

tance test, where as, a different outcome is possible if a non-deterministic approach is

used. If the move acceptance test involves other parameters, such as the current time

then these strategies are referred to as non-deterministic strategies. Well known meta-

heuristic components are commonly used as non-determistic acceptance methods, such

as great deluge [37] and simulated annealing [3,24].

5 Heuristics to Generate Heuristics

This section describes approaches that have the potential to automatically generate

heuristics for the problem at hand. As we discussed earlier (sections 2 and 3), they

are heuristics to generate heuristics, as opposed to heuristics to choose heuristics. Ap-

proaches to generate heuristics use genetic programming, a branch of evolutionary

computation concerned with the automatic generation of computer programs [39]. Be-

sides the particular representation (using trees as chromosomes 2), it differs from other

evolutionary approaches in its application area. While most applications of evolution-

ary algorithms deal with optimisation problems, genetic programming could instead

be positioned in machine learning. Genetic programming has been successfully applied

to the automated generation of heuristics that solve hard combinatorial optimisation

problems, such as boolean satisfiability, [1,29–31,38], bin packing [8,9,11], the traveling

salesman problem [35,36] and production scheduling [21,22,32,54].

One approach to use genetic programming as a hyper-heuristic has been to evolve

local search [1,30,31,36,35] heuristics or even evolutionary algorithms [45]. An alter-

native idea has been to use genetic programming to evolve a a program representing

a function, which is part of the processing of a given problem specific constructive

heuristic [8,9,11,21,22,32,54]. Most applications of genetic programming as a hyper-

heuristic are offline in that a training set is used for generating a program that acts as

a heuristic, that would thereafter be tested for solving unseen instances of the underly-

ing problem. That is, the idea is to generate reusable heuristics. However, research on

disposable heuristics has also been conducted [1,35,36]. In other words, heuristics are

evolved for solving a single instance of a problem. This approach is analogous to the

‘heuristic to choose heuristics’ online approaches discussed in section 4, except that a

new heuristic is generated for each instance, instead of choosing a sequence of heuristics

from a predefined set.

6 Summary and Discussion

The term hyper-heuristics was introduced in the early 2000s to describe the idea of

‘heuristics to choose heuristics’ in the context of combinatorial optimisation. The origin

of the idea can, however, be traced back to the early 1960s and was independently

explored several times during the 1990s. The defining feature of hyper-heuristics is

2 According to the genetic programming literature, programs can be represented in ways
other than trees. Research has already established the efficacy of both linear and graph based
genetic programming systems.



that they operate on a search space of heuristics rather than directly on the search

space of solutions to the problem at hand. This feature provides the potential for

increasing the generality of search methodologies. Several hyper-heuristic approaches

have been proposed that incorporate different search and machine learning paradigms.

With the incorporation of genetic programming into hyper-heuristic research, a

new class of approaches can be identified that we have termed ‘heuristics to generate

heuristics’. These approaches provide richer heuristic search spaces, and thus the free-

dom to create new methodologies for solving the underlying combinatorial problems.

However, they are more difficult to implement, as compared to the more classic “heuris-

tic to choose heuristics”, since they require the decomposition of the available existing

heuristics, and the design of an appropriate framework. We have further categorised the

two main classes of hyper-heuristics, according to whether they are based on construc-

tive or perturbative low-level heuristics. We also considered an additional orthogonal

criterium for classifying hyper-heuristics with respect to the source providing feedback

during the learning process, which can be either one instance (online approaches) or

many instances of the underlying problem studied (offline approaches). Both online and

offline approaches are potentially useful and therefore worth investigating. Although

having a reusable method will increase the speed of solving new instances of prob-

lems, using online (or disposable) methods can have other advantages. In particular,

searching on a space of heuristics may be more effective than searching directly on

the underlying problem space, as heuristics my provide an advantageous structure to

the search space. Moreover, in newly encountered problems there may not be a set of

related instances in which to train off-line hyper-heuristic methods.

Hyper-heuristic research lies in the the interplay between search methodologies

and machine learning methods. Machine learning is a well established artificial intel-

ligence sub-field with a wealth of proved tools. The exploration of these techniques

for automating the design of heuristics is only in its infancy. We foresee an increasing

interest in these methodologies in the comming years.
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