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Genetic Programming (GP) has been criticized for tar-
geting irrelevant problems [12]. This is also true of the
wider machine learning community [11] which has become
detached from the source of the data it is using to drive the
field forward. However, recently Genetic Improvement (GI)
has entered the field, providing a fresh perspective on au-
tomated programming. In contrast to GP, GI begins with
existing software, and therefore immediately has the aim of
tackling real software. As GP is the main approach in GI
to manipulating programs, this connection with real soft-
ware should persuade the GP community to confront some
of the issues it set out to tackle originally i.e. evolving real
software.

There are a number of impressive examples of GI in the
literature [7]. These include papers on GenProg, which fixed
a number of bugs in real software for a reported 8 dollars
each. Work by Langdon has showcased the potential of GI
on different applications including gene sequencing software
and vision software [5].

The GP community has tackled a number of toy problems
including the even parity problem. [1]. For example, we need
all input features (all n bit) to be able to classify an input
at even or not. If a single bit is missing from the input,
then we cannot solve the problem, as each bit is essential
in determining the class. Therefore, we cannot use machine
learning techniques such as feature selection methods. There
is also no correlation between input variables which can be
used to solve the problem. [6]. Surely the GP community
can be a little bit more ambitious than this.

One of the implications of the No Free Lunch theorems is
that, performance on one class of problems is off set against
the performance on the disjoint set of problems. Therefore,
it is difficult to draw conclusions about the performance of
one metaheuristic on a new problem instance. However,
there is one interesting fact about program spaces that is
different to search spaces typically targeted by metaheuris-
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tics. In GP, programs are assigned fitness values: a pro-
gram computes a function, which is then assigned a fitness
value. The mapping between program and function depends
on the programming language being used (i.e. the function
set), and is independent of the function we are trying to
compute. While the mapping between functions and error
scores is problem dependent (and in fact defines the problem
we are tacking).

Real software habitually contains loops, defined functions
(procedures, methods, macros, routines), and so GI has to
deal with the reality of existing software systems. How-
ever, most of the GP literature is not concerned with Tur-
ing Complete instruction sets. GP has also made less use of
Automatically Defined Functions [3] over the past few years
despite the ability to build modules being so central to con-
structing large programs. A review of GP with Turing Com-
plete instruction sets reveals that programs typically consist
of a small number of loops [14]. In contrast, the vast major-
ity of GI papers are applied to programs with loops (for and
while loops), programs that contain defined functions, and
usually side effects (e.g. writing to file) as most programs of
interest will have some sort of side effect.

GP has examined sorting along with other short programs.
It has also been targeted with GI. While short programs
may be classified in some senses as toy problems, they are
of interest when included as part of a larger program which
invokes them many times, and support the core of the overall
functionality.

We can classify programs into 4 types, depending on how
they are executed. 1) 1 where all nodes in the syntax tree
are executed once (e.g. programs constructed with a func-
tion set f1 of arithmetic operators {+, -, *, %}). 2) 0 − 1
where nodes are either executed once or not (e.g. pro-
grams constructed with a function set f2 containing logi-
cal operators {AND, OR, NOT}, where short circuiting is
used.) 3) n − programs containing for loops with a deter-
mined number of iterations (bounded execution time). 4)
infinityprograms with while loops with an unknown ter-
mination condition (unbounded execution time)

Broadly speaking, GP is with the former two types of pro-
gram, while GI is with the latter two types. Adopting a GI
approach, which deals with software, forces us to confront
the fact that different programs can take vastly different
amounts to time to execute. (of course GP work exists us-
ing Turing Complete instruction sets, and there is no reason
why GI could not be applied to programs consisting of in-
struction sets such as f1 or f2). With the first two types,
programs will execute in a comparatively short amount of



time (bound by the size of the program). While with the
last two types, programs make take an awfully long time to
terminate (possibly not halting).

When presented with a problem we wish to tackle with
GP, we have to make the choice of instructions to include
in the instruction set. This is an open question as to how
best do this, and is usually arrived at after a trial and error
process. However, when presented with a GI problem of
how to improve a given piece of software, we are essentially
provided with the instruction set i.e. the instructions in
the existing code. [2] show that source code is not that
unique, and therefore it is a valuable place to look for repairs.
Alternatively, we can use different versions of a program, and
transplant code [9].

When dealing with GI, we are given the representation to
work with i.e. the space of syntactically correct programs.
At this stage of GI research, we do not need to invent new
forms of representation, but should investigate existing ones.
In contrast, the GP community has invented an array of new
program representations [10] though some representations
have potentially useful properties e.g. modularity “come for
free” [10]. As there are already a large number of existing
programming paradigms (imperative, object oriented, func-
tional). It would make sense to investigate how suitable
these are as a representation which is amenable to search
operators. One hypothesis is that functional languages are
more suitable for evolving that imperative languages because
of the side effects [13].

Central to most programming languages, is the type sys-
tem. GP has made use of type in the past [8]. In the GI set-
ting, almost all programs will consist of instructions which
operate on different data types, so once again we are force
to confront what is part of normal software engineering with
our automated methods.

The position of this paper then is that GI will enrich GP
research, as GI forces us to use“the full scale of programming
languages” including loops, reading and writing to memory,
defined functions (macros, procedures, methods). GI is also
concerned with potentially large software systems [4], which
have previously been out of reach of the traditional synthesis
approach taken by GP.

In conclusion, this paper has contrasted GP and GI. Su-
perficially the difference is that GI starts with existing soft-
ware, where GP attempts to evolve from an empty program.
However, the differences are deeper and more interesting
than may first appear. GI may solve the initial problem of
GP being overly concerned with toy problems.
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