
Template Method Hyper-heuristics

John Woodward
Computing Science and Mathematics

University of Stirling
FK9 4LA Scotland UK

john.woodward@cs.stir.ac.uk

Jerry Swan
Computing Science and Mathematics

University of Stirling
FK9 4LA Scotland UK

jerry.swan@cs.stir.ac.uk

1. PROBLEM STATEMENT
The optimization literature is awash with metaphorically-

inspired metaheuristics and their subsequent variants and
hybridizations. This results in a plethora of methods, with
descriptions that are often polluted with the language of
the metaphor which inspired them [8]. Within such a frag-
mented field, the traditional approach of manual ‘operator
tweaking’ makes it difficult to establish the contribution of
individual metaheuristic components to the overall success
of a methodology.

Irrespective of whether it happens to best the state-of-
the-art, such ‘tweaking’ is so labour-intensive that does rel-
atively little to advance scientific understanding. In order to
introduce further structure and rigour, it is therefore desir-
able to not only to be able to specify entire families of meta-
heuristics (rather than individual metaheuristics), but also
be able to generate and test them. In particular, the adop-
tion of a model agnostic approach towards the generation of
metaheuristics would help to establish which metaheuristic
components are useful contributors to a solution.

2. THE SOLUTION
In [7], Krasnogor shows how families of algorithms can be

specified in terms of the well-known template method pat-
tern [4]. The template-method is a definition of an algo-
rithm ‘skeleton’ within which the interaction of a collection
of abstractly-specified components is orchestrated. Compo-
nents can be thought of as classes/procedures/functions in
object-oriented/procedural functional programming terms.
The hard-coded backbone restricts the set of possible algo-
rithms expressed by the template, while the abstract compo-
nent specification allows for variant implementations within
the specified constraints.

Given the requirement to not only specify the members of
a family of metaheuristics, but also to generate them, the
behavioural constraint imposed on the components by the
template method is of relevance for two main reasons:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12-16, 2014, Vancouver, BC, CANADA.
Copyright 2014 ACM Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-2881-4/14/07
http://dx.doi.org/10.1145/2598394.2609843.

Firstly, automatic algorithm synthesis methods such as
Genetic Programming (GP) are not yet capable of evolv-
ing complete programs from scratch (i.e. those which re-
quire nested loops, indexed memory and other control struc-
tures such as switch statements). In current practice, GP is
best employed to evolve expressions, i.e. small mathematical
functions or logical expressions. To facilitate the creation of
larger programs, the fixed part of a hyper-heuristic template
can be seen as providing the orchestrating control structures.
A simple example would be with the skeleton providing an it-
erative procedure (e.g. a for-loop with appropriate bounds),
and the variant implementation of the iteration body pro-
viding by GP (e.g. the body of the for-loop). This is true of
many of the examples in Section 4.

Secondly, Template-Method Hyper-heuristics allows a meta-
heuristic to be automatically tuned to the set of problems
of specific interest. A consequence of the No Free Lunch
(NFL) theorems [6] is that no ‘universal’ optimizer exists,
and hence metaheuristics must be specialised on a problem-
specific basis. One approach to this to use is meta-learning
[5] to adapt a heuristic to the problem instances to which
it will be exposed. This employs the traditional machine-
learning style of splitting a set of problem instances into
disjoint training and testing sets [1] as practiced in [10, 9].
A consequence of NFL is that metaheuristics should not be
‘designed’ in isolation from a problem domain but designed
(and most importantly their performance cited) in the con-
text of some representative problem instances.

As a concrete example of an algorithm template, consider
a framwork for a simple evolutionary algorithm. In genera-
tive terms, for population P and population history H (the
latter being a list of successive populations), we can consider
the framework to be parameterized by five variant methods:

initialization : V oid→ P

selection : P ×H → P

variation : P ×H → P

succession : P ×H → P

termination : H → Bool

In general, we can either elect to search the entire de-
sign space defined by this framework (e.g. by simultaneously
searching for good versions of all the variant components)
or else fix one or more components and generate the others.
Section 4 gives examples where the selection operator and
mutation operators are evolved.

3. CONSEQUENCES

procedure evo lve
begin

pop = i n i t i a l i z a t i o n ()
h i s t o r y = []
repeat

parents = s e l e c t i o n (pop , h i s t o r y)
o f f s p r i n g = va r i a t i on (parents , h i s t o r y)
pop = suc c e s s i on (o f f s p r i n g , h i s t o r y)
h i s t o r y = h i s t o r y . append (pop)

until te rminat ion (h i s t o r y)
end

• ‘Tuned to the problem’. If the heuristic is designed
in the context of representative problem instances, the
resulting heuristic will be expected to perform well on
problem instances drawn from a similar probabality
distribution as the problem instances in the training
phase. Equally there will be a degradation in perfor-
mance if the training does not reflect the testing [3].

• ‘Algorithm agnostic’. Given a palette of metaheuristic
components, the ones that are best suited to the prob-
lem instances under consideration will have a greater
chance of appearing in the resulting heuristic.

• ‘Human competitive performance’. The heuristics pro-
duced by this method will produce results which are
competitive with already existing human designed heuris-
tics. Indeed, we have the choice of initialzing the
search process with already existing heuristics and there-
fore the design process can be thought of as improving
algorithms, rather than inventing them from scratch.

• ‘Decreased human effort’. There is a financial cost
involved in developing a heuristic. If we continue to
manually design heuristics, this price will increase in-
line with inflation. However, if we harness automatic
design, this price is likely to fall as processor speeds
increase roughly with Moore’s law. Therefore, if this
method of automatic design that we advocate is adopted
[2], this monetray cost is expected to fall in the long
term.

4. EXAMPLES
Evolving Mutation Operators For Genetic Algo-

rithms Two well-known GA mutation operators on bit-
strings are one-point (which alters a single bit in the bit-
string) and uniform mutation (which alters all bits in the
bit-string with a fixed probability). The well-known GA
template can be parameterized by its mutation operator,
which can be considered as a procedure with type signature
mutation : Bn → Bn. In [9] GP is used to automatically
generate a mutation operator that outperforms both one-
point and uniform mutation. Key to the success of this
approach is setting up the orchestrating template so that
operators known to be effective are easily generated by GP
or can be encoded easily by a human programmer (e.g. the
ability to express one-point and uniform mutation as degen-
erate cases).

Evolving Selection Operators Similarly, as with the
case of mutation abovef selection operators are commonly
implemented as either fitness-proportional (which assigns a
selection value in proportion to absolute fitness f) or rank

selection (which assigns a selection value according to its
rank index r in the sorted population of bit-strings). One
generalization of these two selection operators is a selection
function selection : R2 → R which takes as arguments the
absolute fitness f and the rank index r and assigns a selec-
tion value to each bit-string in the population. Clearly, by
returing just the first argument we have fitness-proportional
selection, and by returning just the second argument we have
rank selection. In [10], GP (with f and r in its terminal set)
is used to develop a new selection operator that outperforms
both of these two standard selection operators.

5. REFERENCES
[1] Mauro Birattari, Mark Zlochin, and Marco Dorigo.

Towards a theory of practice in metaheuristics design:
A machine learning perspective. ITA, 40(2):353–369,
2006.

[2] Edmund K. Burke, Mathew R. Hyde, Graham
Kendall, Gabriela Ochoa, Ender Ozcan, and John R.
Woodward. Exploring hyper-heuristic methodologies
with genetic programming. In Christine L. Mumford
and Lakhmi C. Jain, editors, Computational
Intelligence, volume 1 of Intelligent Systems Reference
Library, chapter 6, pages 177–201. Springer, 2009.

[3] Edmund K. Burke, Matthew R. Hyde, Graham
Kendall, and John Woodward. Automatic heuristic
generation with genetic programming: evolving a
jack-of-all-trades or a master of one. In Dirk Thierens
et al., editor, GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, volume 2, pages 1559–1565, London,
7-11 July 2007. ACM Press.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[5] C. Giraud-Carrier and F. Provost. Toward a
Justification of Meta-learning: Is the No Free Lunch
Theorem a Show-stopper? In Proceedings of the
ICML-2005 Workshop on Meta-learning, pages 12–19,
2005.

[6] Christian Igel. No free lunch theorems: Limitations
and perspectives of metaheuristics, 2014.

[7] N. Krasnogor. Memetic algorithms, 2009.

[8] Kenneth Sörensen. Metaheuristics–the metaphor
exposed. 2012.

[9] John R. Woodward and Jerry Swan. The automatic
generation of mutation operators for genetic
algorithms. In Gisele L. Pappa, John Woodward,
Matthew R. Hyde, and Jerry Swan, editors, GECCO
2012 2nd Workshop on Evolutionary Computation for
the Automated Design of Algorithms, pages 67–74,
Philadelphia, Pennsylvania, USA, 7-11 July 2012.
ACM.

[10] John Robert Woodward and Jerry Swan.
Automatically designing selection heuristics. In
Gisele L. Pappa, Alex A. Freitas, Jerry Swan, and
John Woodward, editors, GECCO 2011 1st workshop
on evolutionary computation for designing generic
algorithms, pages 583–590, Dublin, Ireland, 12-16 July
2011. ACM.

