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Short Abstract. 

Meta-heuristics sample a search space, with quality dictated by an 
objective function. For any pair of metaheuristics, there is a pair of 
objective functions with identical performance.  
 
A similar statement can be made about problem classes (probability 
distributions over problem instances). The intuition behind this result 
is that a meta-heuristic can be viewed as a conditional probability over 
the search space and therefore this result can be considered as a 
conservation law.  
 
The contribution is an implication that meta-heuristics should be 
designed for a problem class. A natural solution to the ``metaheuristic 
design problem’’ is to employ generative hyper-heuristics to yield 
heuristics tailored to the problem class. 

 



Full Length Abstract. 

Meta-heuristics operate by sampling a search space of candidate 
solutions, with quality dictated by an objective function. By permuting 
a function to create a new function, and using the inverse permutation 
to create a new meta-heuristics, we can state that for any pairing of 
meta-heuristic and function instance, there exists a distinct pairing 
with strictly identical performance. A similar statement can be made 
problem classes (probability distributions over problem instances). An 
alternative intuition behind this result is that a meta-heuristic can be 
viewed as a conditional probability over the search space and 
therefore (since the probabilities over the search space sum exactly to 
one) can be considered as a conservation law. The contribution of this 
paper is an implication of this theoretical result which is that meta-
heuristics should be designed for a problem class (probability 
distribution over problem instances). A natural solution to the 
``metaheuristic design problem’’ is then to employ generative hyper-
heuristics to yield heuristics tailored to the problem class. 

 



Talk In a Sound bite… 

• A problem class is a probability distribution over 
problem instances. Your problem instances must 
come from some probability distribution (sounds like 
machine learning!!!).  

• A metaheuristics generate solutions with some 
probability distribution over the search space of 
solutions. We want this to match the problem class 

• Hyper-heuristics are a method to generate 
(meta)heuristics for your problem class (i.e. machine 
learning with training and test set)   



Outline of talk 

1. How should we sample a search space? 

2. Thought experiment – can we shift bias? 

3. Bias of problem class = bias of metaheuristic 

4. This is (general) No Free Lunch!!!  

5. Simple proof 

6. Hyperheuristics can generate  

7. Convergence at hyper/meta level.  



Which cup is the pea under? 
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1. Endlessly fascinating 
for a young child.  

2. But what about 
researchers? 

3. (see recommended 
paper later – 
metaphor exposed) 



Question How do we sample a search 
space? 

• Randomly? 

• Enumeration? 

• Simulated 
Annealing? 

• Bio-inspired? 



How do we sample a search space? 

1. Randomly? 

2. Enumeration? 

3. Simulated 
Annealing? 

4. Bio-inspired? 

It depends, if the space 
has a high probability of 

1. Random 
(incompressible)? 

2. Has a known property? 

3. Is unimodal? 

4. ??? 



A Simple Thought Experiment 1 
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Two distributions 
from two sets of runs 



A Simple Thought Experiment 2 

Global optima 

Search space 

p
ro

b
ab

ili
ty

 

Two distributions 
from two sets of runs 
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Meta-bias 



Bias 

1. Bias is just a probability distribution over the 
search space. A metaheuristic is just a conditional 
probability (different implementations).  

2. Bias come from choices e.g. mutation rate, 
cooling schedule, any parameters.  

3. Tom Mitchell (“The Need for Biases in Learning 
Generalizations”) – bias is necessary for learning.  

4. By the same argument, meta-bias is necessary if 
we are to apply our optimization/machine 
learning algorithms to more than a single 
problem instance.  



From The Original NFL Paper 



The Bias does not match the problem 
class –> poor performance 



Meta-bias shifts search bias to match that 
of the problem class –> improving  

Meta-bias 



Theoretical Motivation 1 

1. A search space contains the set of all possible solutions.  
2. An objective function determines the quality of solution.  
3. A search algorithm determines the sampling order (i.e. 

enumerates i.e. without replacement). It is a (approximate) 
permutation.   

4. Performance measure P (a, f)  depend only on y1, y2, y3 
5. Aim find a solution with a near-optimal objective value using a 

search algorithm.  ANY QUESTIONS BEFORE NEXT SLIDE? 
John Woodward University of Stirling 15 

x1 

X1. 
 
X2. 
 
X3. 

x1 

Y1. 
 
Y2. 
 
Y3. 

x1 

1. 
 
2. 
 
3. 

Search 
space 

Objective 
Function f 

Search 
Algorithm a 

SOLUTION 
METHOD PROBLEM  

20/06/2014 
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Theoretical Motivation 2 
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σ−𝟏 σ 

P (a, f) = P (a 𝛔,𝛔−𝟏 f)                  P (A, F) = P (A𝛔,𝛔−𝟏F) 

P is a performance measure, (based only on output values).  

A and F are probability distributions over algorithms and 
functions). F is a problem class. ASSUMPTIONS IMPLICATIONS 

1. Algorithm a applied to function 𝛔𝛔−𝟏𝒇 ( that is 𝒇) 

2. Algorithm a𝛔 applied to function 𝛔−𝟏𝒇 precisely  identical.  
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Is the No Free Lunch Theorem a Show-
stopper? 

• Lemma. Knowing p(f), the probability of 
encountering an arbitrary function f, is equivalent 
to knowing p(c|e), the probability of class 
membership c for an arbitrary example e. 

• Do a thought experiment to confirm this for 
yourself (or ask me to go through example).  

• In other words, the best we can do with meta-
heuristics and black box functions is align the 
associated probability vectors,….but how? 



Reinterpret “No Free Lunch” 

• Often stated as “over all problems no algorithm 
does any better than any other” 

• Also means, over biased problem class, correctly 
biased algorithms will perform better! 

• -> We should not design algorithms in isolation 
to problem classes.  

• -> Hyperheuristics is one way to generate 
algorithms tuned to a problem class.  



Metaheuristics - the metaphor exposed 

1. There are many metaphors for metaheuristics; 
insects, the flow of water, musicians playing together.  

2. Do they offer insights? 
3. Or are they more of a hindrance? 
4. Automatic design, to some extent solves this 

problem. 
Metaheuristics—the metaphor exposed 
Kenneth Sörensen  
Woodward, J. & Bai, R. (2009) Why Evolution is not a 
Good Paradigm for Program Induction; A Critique of 
Genetic Programming  



Space of {NAND} programs  



Space of Programs  
{AND, OR, NAND, NOR, XOR} 



Space of Programs 

{AND, OR, NAND, NOR} 



3 vectors of 3 problem classes 

Three vectors from three different problem classes (method of generating problems). 
What are the consequences of this? 
We should qualify what problem classes our algorithms are suited for.   

{NAND}  

{AND, OR, NAND, NOR, XOR} 

{AND, OR, NAND, NOR} 

f1 

f2 

f3 



Machine Learning.  
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We cannot extrapolate/generalize from the training set to the 
test set (???).  

p(f)=p(c|e), given example e, we want to predict which 

class c it belongs too. This is equivalent to known the 
distribution over the set of functions.  
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Selective Hyper-heuristics 
(massaging problem state) 



Generative Hyper-heuristics 
discovering novel heuristics 



Generative Hyper-heuristics 

• Instead of manually designing meta-heuristics, 
generate them automatically in a generate-
and-test loop.  

• This loop allows feedback between the 
automatic meta-heuristic designer and the 
problem class.  

• Manual design is effectively taking place 
without any feedback from the environment 
in isolation.  



Meta and Base Learning 
1. At the base level we are 

learning about a 
specific function.  

2. At the meta level we 
are learning about the 
problem class.  

3. We are just doing 
“generate and test” on 
“generate and test” 

4. What is being passed 
with each blue arrow? 

5. Training/Testing and 
Validation 

 

Meta 
heuristic 

Function to 
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Meta 
heuristic 
designer 

Function 
class 

base level Conventional 
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Meta level 
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Convergence at base/meta level 

• A metaheuristic can converge on a global solution 
if there is a non-zero probability of reaching that 
point (cf. hill-climbing and simulated annealing).  

• Easy to “repair” hill climbing so it converges 
• Convergence at the hyper level means we can 

tune to any probability distribution(problem 
class). p(f)=p(c|e) i.e. histograms match, or 
probability vectors point in same direction.  

• Numerical parameters maybe limited in this 
respect. 

• Do Hyperheuristics guarantee convergence? 



Conclusions 

• Automatic design avoids metaphors (and 
awkward terminology – use maths instead). 

• Most meta-herusitcs cannot alter their bias over 
a run (it is fixed from one run to the next) 

• Automatic design allows alignment of bias of 
metaheuristic with bias of problem class.  

• Convergence at meta-level is concerned with 
aligning probability distributions (which may not 
be achieved with numerical parameters alone).  
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The End 

• Thank you for you attention. 

• Any questions.  

• 7 fully funded PhD positions at Stirling !!! 

• http://www.cs.stir.ac.uk/~jrw/ 

• jrw@cs.stir.ac.uk 

• Workshop at GECCO on automatic design of 
algorithms.  
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