
Hyper-heuristics generate
heuristics for problem classes

Edmund Burke, Jerry Swan, John Woodward
http://www.cs.stir.ac.uk/~jrw/

jrw@cs.stir.ac.uk
University of Stirling.

http://www.cs.stir.ac.uk/~jrw/

Short Abstract.

Meta-heuristics sample a search space, with quality dictated by an
objective function. For any pair of metaheuristics, there is a pair of
objective functions with identical performance.

A similar statement can be made about problem classes (probability
distributions over problem instances). The intuition behind this result
is that a meta-heuristic can be viewed as a conditional probability over
the search space and therefore this result can be considered as a
conservation law.

The contribution is an implication that meta-heuristics should be
designed for a problem class. A natural solution to the ``metaheuristic
design problem’’ is to employ generative hyper-heuristics to yield
heuristics tailored to the problem class.

Full Length Abstract.

Meta-heuristics operate by sampling a search space of candidate
solutions, with quality dictated by an objective function. By permuting
a function to create a new function, and using the inverse permutation
to create a new meta-heuristics, we can state that for any pairing of
meta-heuristic and function instance, there exists a distinct pairing
with strictly identical performance. A similar statement can be made
problem classes (probability distributions over problem instances). An
alternative intuition behind this result is that a meta-heuristic can be
viewed as a conditional probability over the search space and
therefore (since the probabilities over the search space sum exactly to
one) can be considered as a conservation law. The contribution of this
paper is an implication of this theoretical result which is that meta-
heuristics should be designed for a problem class (probability
distribution over problem instances). A natural solution to the
``metaheuristic design problem’’ is then to employ generative hyper-
heuristics to yield heuristics tailored to the problem class.

Talk In a Sound bite…

• A problem class is a probability distribution over
problem instances. Your problem instances must
come from some probability distribution (sounds like
machine learning!!!).

• A metaheuristics generate solutions with some
probability distribution over the search space of
solutions. We want this to match the problem class

• Hyper-heuristics are a method to generate
(meta)heuristics for your problem class (i.e. machine
learning with training and test set)

Outline of talk

1. How should we sample a search space?

2. Thought experiment – can we shift bias?

3. Bias of problem class = bias of metaheuristic

4. This is (general) No Free Lunch!!!

5. Simple proof

6. Hyperheuristics can generate

7. Convergence at hyper/meta level.

Which cup is the pea under?

6/20/2014 John Woodward Branch and Bound 6

1. Endlessly fascinating
for a young child.

2. But what about
researchers?

3. (see recommended
paper later –
metaphor exposed)

Question How do we sample a search
space?

• Randomly?

• Enumeration?

• Simulated
Annealing?

• Bio-inspired?

How do we sample a search space?

1. Randomly?

2. Enumeration?

3. Simulated
Annealing?

4. Bio-inspired?

It depends, if the space
has a high probability of

1. Random
(incompressible)?

2. Has a known property?

3. Is unimodal?

4. ???

A Simple Thought Experiment 1

Global optima

Search space

p
ro

b
ab

ili
ty

Two distributions
from two sets of runs

A Simple Thought Experiment 2

Global optima

Search space

p
ro

b
ab

ili
ty

Two distributions
from two sets of runs

Global optima

Search space

p
ro

b
ab

ili
ty

Meta-bias

Bias

1. Bias is just a probability distribution over the
search space. A metaheuristic is just a conditional
probability (different implementations).

2. Bias come from choices e.g. mutation rate,
cooling schedule, any parameters.

3. Tom Mitchell (“The Need for Biases in Learning
Generalizations”) – bias is necessary for learning.

4. By the same argument, meta-bias is necessary if
we are to apply our optimization/machine
learning algorithms to more than a single
problem instance.

From The Original NFL Paper

The Bias does not match the problem
class –> poor performance

Meta-bias shifts search bias to match that
of the problem class –> improving

Meta-bias

Theoretical Motivation 1

1. A search space contains the set of all possible solutions.
2. An objective function determines the quality of solution.
3. A search algorithm determines the sampling order (i.e.

enumerates i.e. without replacement). It is a (approximate)
permutation.

4. Performance measure P (a, f) depend only on y1, y2, y3
5. Aim find a solution with a near-optimal objective value using a

search algorithm. ANY QUESTIONS BEFORE NEXT SLIDE?
John Woodward University of Stirling 15

x1

X1.

X2.

X3.

x1

Y1.

Y2.

Y3.

x1

1.

2.

3.

Search
space

Objective
Function f

Search
Algorithm a

SOLUTION
METHOD PROBLEM

20/06/2014

P (a, f)

Theoretical Motivation 2

x1

1.

2.

3.

x1

1.

2.

3.

x1

1.

2.

3.

Search
space

Objective
Function f

Search
Algorithm a

x1

1.

2.

3.

x1

1.

2.

3.

σ−𝟏 σ

P (a, f) = P (a 𝛔,𝛔−𝟏 f) P (A, F) = P (A𝛔,𝛔−𝟏F)

P is a performance measure, (based only on output values).

A and F are probability distributions over algorithms and
functions). F is a problem class. ASSUMPTIONS IMPLICATIONS

1. Algorithm a applied to function 𝛔𝛔−𝟏𝒇 (that is 𝒇)

2. Algorithm a𝛔 applied to function 𝛔−𝟏𝒇 precisely identical.

John Woodward University of Stirling 16 20/06/2014

Is the No Free Lunch Theorem a Show-
stopper?

• Lemma. Knowing p(f), the probability of
encountering an arbitrary function f, is equivalent
to knowing p(c|e), the probability of class
membership c for an arbitrary example e.

• Do a thought experiment to confirm this for
yourself (or ask me to go through example).

• In other words, the best we can do with meta-
heuristics and black box functions is align the
associated probability vectors,….but how?

Reinterpret “No Free Lunch”

• Often stated as “over all problems no algorithm
does any better than any other”

• Also means, over biased problem class, correctly
biased algorithms will perform better!

• -> We should not design algorithms in isolation
to problem classes.

• -> Hyperheuristics is one way to generate
algorithms tuned to a problem class.

Metaheuristics - the metaphor exposed

1. There are many metaphors for metaheuristics;
insects, the flow of water, musicians playing together.

2. Do they offer insights?
3. Or are they more of a hindrance?
4. Automatic design, to some extent solves this

problem.
Metaheuristics—the metaphor exposed
Kenneth Sörensen
Woodward, J. & Bai, R. (2009) Why Evolution is not a
Good Paradigm for Program Induction; A Critique of
Genetic Programming

Space of {NAND} programs

Space of Programs
{AND, OR, NAND, NOR, XOR}

Space of Programs

{AND, OR, NAND, NOR}

3 vectors of 3 problem classes

Three vectors from three different problem classes (method of generating problems).
What are the consequences of this?
We should qualify what problem classes our algorithms are suited for.

{NAND}

{AND, OR, NAND, NOR, XOR}

{AND, OR, NAND, NOR}

f1

f2

f3

Machine Learning.

6/20/2014

We cannot extrapolate/generalize from the training set to the
test set (???).

p(f)=p(c|e), given example e, we want to predict which

class c it belongs too. This is equivalent to known the
distribution over the set of functions.

John Woodward Branch and Bound 24

Selective Hyper-heuristics
(massaging problem state)

Generative Hyper-heuristics
discovering novel heuristics

Generative Hyper-heuristics

• Instead of manually designing meta-heuristics,
generate them automatically in a generate-
and-test loop.

• This loop allows feedback between the
automatic meta-heuristic designer and the
problem class.

• Manual design is effectively taking place
without any feedback from the environment
in isolation.

Meta and Base Learning
1. At the base level we are

learning about a
specific function.

2. At the meta level we
are learning about the
problem class.

3. We are just doing
“generate and test” on
“generate and test”

4. What is being passed
with each blue arrow?

5. Training/Testing and
Validation

Meta
heuristic

Function to
optimize

Meta
heuristic
designer

Function
class

base level Conventional
Metaheuristic

Meta level

28 John Woodward University of Stirling 20/06/2014

Convergence at base/meta level

• A metaheuristic can converge on a global solution
if there is a non-zero probability of reaching that
point (cf. hill-climbing and simulated annealing).

• Easy to “repair” hill climbing so it converges
• Convergence at the hyper level means we can

tune to any probability distribution(problem
class). p(f)=p(c|e) i.e. histograms match, or
probability vectors point in same direction.

• Numerical parameters maybe limited in this
respect.

• Do Hyperheuristics guarantee convergence?

Conclusions

• Automatic design avoids metaphors (and
awkward terminology – use maths instead).

• Most meta-herusitcs cannot alter their bias over
a run (it is fixed from one run to the next)

• Automatic design allows alignment of bias of
metaheuristic with bias of problem class.

• Convergence at meta-level is concerned with
aligning probability distributions (which may not
be achieved with numerical parameters alone).

References

Toward a Justification of Meta-learning: Is the No
Free Lunch Theorem a Show-stopper?
Christophe Giraud-Carrier.
Metaheuristics—the metaphor exposed
Kenneth Sörensen
Unbiased Black Box Search Algorithms
Jonathan E. Rowe Michael D. Vose
Edgar A. Duéñez-Guzmán, Michael D. Vose: No Free
Lunch and Benchmarks. Evolutionary Computation
21(2): 293-312 (2013)

My papers that explicitly mention
problem classes…and

• Burke E. K., Hyde M., Kendall G., and Woodward J.
Automatic Heuristic Generation with Genetic
Programming: Evolving a Jack-of-all-Trades or a Master of
One Proceedings of Genetic and Evolutionary Computation
Conference 2007 London UK.

• Libin Hong and John Woodward and Jingpeng Li and Ender
Ozcan. Automated Design of Probability Distributions as
Mutation Operators for Evolutionary Programming Using
Genetic Programming.

• John R. Woodward and Jerry Swan. The automatic
generation of mutation operators for genetic algorithms.

• John Robert Woodward and Jerry Swan. Automatically
designing selection heuristics.

The End

• Thank you for you attention.

• Any questions.

• 7 fully funded PhD positions at Stirling !!!

• http://www.cs.stir.ac.uk/~jrw/

• jrw@cs.stir.ac.uk

• Workshop at GECCO on automatic design of
algorithms.

6/20/2014 33 John Woodward Branch and Bound

http://www.cs.stir.ac.uk/~jrw/
mailto:jrw@cs.stir.ac.uk

