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1. THE ‘COMPOSITE’ DESIGN PATTERN
Introduced in [13], the ‘Composite’ Design Pattern can

be observed whenever some ‘aggregator’ object can be con-
sidered to share behavioural commonalities with the enti-
ties from which it is composed. It therefore offers a concise
means of describing functional [9] or structural recursion [5],
which are of course ubiquitous in computer science and soft-
ware engineering. In computer science, the prototypical ex-
ample is a recursive data structure such as a tree, defined
inductively either as an empty node or else as a node having
a list of nodes as its children. In software engineering, an
example is a concept such as Displayable, instances of which
might include OKButton, (which can directly display itself),
or Window which might display itself by asking all the Dis-
playables it contains to display themselves in turn. Figure
1 shows the class diagram for a prototypical example of the
composite pattern [13].

It is useful to be able to identify Composite relationships
within metaheuristics for several reasons:

• Ease of communicating entity relationships — the same
motivation for factoring patterns from software archi-
tectures.

• Facilitating automation — a composite implicitly de-
fines a ‘grammar template’ for the generation of new
metaheuristic components.

In general, the pattern is applicable whenever either or
both of the following apply:
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Figure 1: UML class diagram of composite pattern

• Decisions can incorporate information obtained by a
diverse range of techniques (e.g. ensemble methods,
selective hyper-heuristics).

• The granularity at which decisions are made imposes
a notion of hierarchy that can be expressed by aggre-
gation (e.g. multi-level search).

In their most general form, the behaviour of instances of
the Composite pattern might be expressed by a collection
of functions (e.g. isLeaf () , numChildren(),display() etc). In the
case where the behaviour to be aggregated consists of a sin-
gle function f (as is often the case in metaheuristics, as
demonstrated by the above example), with signature

f(t1 : T1, t2 : T2, . . . , tn : Tn)

where T1 . . . Tn are the types of the formal arguments, then
the value of composite function fc (with k children with
functions f1 . . . fk respectively, each with the same signature
as fc) can be expressed in general as:

fc(t1 : T1, t2 : T2, . . . , tn : Tn) ,def g(t1, t2, . . . , tn, f1, . . . , fk)

where the implementation of g may elect to invoke any or all
of f1, . . . , fk as some arbitrary function of actual parameter
values t1, . . . , tn. Such a formulation clearly lends itself to
automation, e.g. via genetic programming [20] or decision
tree induction [26].

Below, we give two detailed examples of the ‘Composite’
pattern in metaheuristics (viz. ‘Hyper-heuristic as composite
metaheuristic’ and ‘Composition of Classifiers’). These (and
the ‘composite function’ scheme just described) are merely
exemplars: if the above criteria apply, then the pattern is of
potential value across the entire spectrum of metaheuristic
concerns (e.g. clustering, dimensionality reduction etc).



2. HYPER-HEURISTICS AS COMPOSITE
METAHEURISTICS

2.1 Problem statement
The uniform treatment of a collection of operators is likely

to be useful when:

• It is necessary to escape the combined basins of at-
traction of a cluster of local minima. The required
perturbation strength should therefore ideally be dy-
namically determined (e.g. as in the ‘breakout local
search’ metaheuristic [?]).

• It is desirable (as is the case with multi-level search)
to treat perturbation as a heirarchical aggregation of
lower-level perturbations (grounding of course in prim-
itive operators that directly affect solution state).

• We wish to clarify the relationship between hyper-
heuristics and the operators they invoke or generate.
Hyper-heuristics can be described as “heuristics for
searching the space of heuristics”, and (in the form
of selective hyperheuristics) can be seen as imposing a
homogeneous perspective on the heterogeneous selec-
tion of operators.

• A more expansive (yet concrete) definition of hyper-
heuristic is required in order to facilitate the creation of
solvers that can act with greater autonomy. Although
hyper-heuristics have been categorized as selective or
generative [4], there is no necessity for solvers to be
restricted a priori to only one of these categories.

The ‘Composite’ pattern is applicable precisely when we
wish to treat entities and collections of entities in such a
uniform manner. Explicit acknowledgement of the presence
of the composite pattern allows the relationship between be-
tween the levels of operator application to be formally clar-
ified.

2.2 The solution
Let S denote solution-state and let [S] be a list of same.

We start by formally defining an operator. For generality,
it is convenient to operate on traces (i.e. a time-series of
solution states) rather than single states — this allows the
operator to act as a function of solution history (e.g. in the
manner of tabu search). Define an operator to be a function
with signature

OS : [S]→ [S]

where the argument represents the trace of solution-states
and the result represents the extension of the trace obtained
by applying the operator. Following [29], we can then de-
fine a hyper-heuristic to be a function with the following
signature:

HS : [S]× [OS ]→ [S]× [OS ]

i.e. HS takes a list of solutions and a list of operators as in-
put, and produces as output a (potentially updated) list of
solutions and operators. It is clear that this suffices to rep-
resent both selective and generative hyper-heuristics: the
former may update only the solution list, the latter the op-
erator list.

We consider HS to be parameterized by S, i.e. it is asso-
ciated with a specific type of solution-state (e.g. bit-strings,

Figure 2: UML class diagram of composite hyper-
heuristic

permutations etc). There is of course no necessity for S to
be a data-type: it may itself be a function. In particular, S
may itself be a meta- or hyper-heuristic: if we take S to be
HT for some solution-type T , then HHT expresses a multi-
level search over T . This recursive structure is well-known to
be characteristic of the composite pattern. Figure 2 gives an
instantiation of the Composite pattern for hyper-heuristics.
From this diagram, we can see that a hyper-heuristic IS-A
Operator and USES-A sequence of operators. Since we can
consider metaheuristics (e.g. tabu search, simulated anneal-
ing etc) to be synonymous in both behavioural and signa-
ture terms with the definition of operator, we can consider
hyper-heuristic to be a composite metaheuristic.

2.3 Examples

• In their description of local search frameworks, Lourenço
et al. [22] note the potential for nesting of operators,
thereby implicitly alluding to this pattern.

• The Hyperion framework [28] uses the class decompo-
sition above to allow the same source code to express
both metaheuristic and hyper-heuristic, depending on
the choice of the type S.

• In multi-level search, the appropriate level of nesting
cannot usually be determined a priori, but the poly-
morphic relationship between Operator and Hyper-
Heuristic means that the nesting of levels can be dy-
namic, i.e. determined as a function of search progress
at any given level.

3. COMPOSITION OF CLASSIFIERS

3.1 Problem Statement
Supervised machine learning seeks methods to find clas-

sifiers which map features to class labels. Since many ma-
chine learning algorithms are stochastic [23, 6], they produce
different models (classification, prediction, function approx-
imation, etc. herein referred to as classifier) each time they
are used. One option is to execute the learning algorithm
multiple times and take the single ‘best’ classifier. How-
ever, we might be able to benefit from the composition of
multiple classifiers (commonly referred to elsewhere in the
literature as an ensemble) to produce a better-performing
overall classifier. There is also the possibility of selecting a
poor classifier. These points raise the following four ques-
tions:

• How to combine the classifier outputs to compute an
overall classification?



• How to generate multiple diverse classifiers to produce
a well-performing ensemble?

• How to set the parameters of machine learning algo-
rithms?

• How can we build high quality classifiers more effi-
ciently in the new era of big data and parallel process-
ing?

While many algorithms used to train classifiers are stochas-
tic, there are a number of exceptions including C4.5 for de-
cision trees, Naive Bayes, and Support Vector Machines [6].

3.2 The Solution
One solution to the problem of randomness in classifier

training is to adopt well-founded statistical techniques to
perform any or all of: combine classifiers; sample the data
set; sample the features and generate diverse classifiers. There
are a number of methods available which allow us to com-
bine separate classifiers into a single classifier and as ma-
chine learning is largely statistical (in respect of both the
algorithms to train classifiers and the actual data [16]) it
makes sense to turn to a statistical technique to alleviate
this issue.

One of the basic tasks of statisticians is to sample a tiny
subset of a population in order to estimate the true statistics
of the entire population. Likewise, since machine learning
algorithms automatically sample a space of classifiers, en-
semble techniques allow us to combine them to provide a
better reflection of the entire population of classifiers. The
law of large numbers dictates that as the sample size in-
creases, the ensemble will converge to better estimates of
the true underlying statistics.

Classifiers are functions mapping features to class labels.
We can employ one of the following methods to map the
outputs of single classifiers to an output for the entire en-
semble:

• Majority vote: The entire set of classifiers vote on a
class, and the class which receives the most votes is
taken.

• Averaging: If the outputs of each classifier are a real
number then the outputs can be averaged.

• Weighted average: Each classifier is assigned a weight
according to its ‘expertise’. When the averaging is
done more emphasis is placed on the classifiers with a
higher weight.

• Algebraic combiners: real-valued outputs of classifiers
are combined through statistical expressions such as
sum, mean, product, median, minimum, maximum.

Classifiers in an ensemble should be diverse, i.e. they should
make different errors and be independent or negatively corre-
lated. There are a number of ways a diverse set of classifiers
can be generated from the given dataset. The most obvious
is to re-run the machine learning algorithm: however there
are more effective methods available, including:

• Bagging (bootstrap aggregation) creates a diverse set
of classifiers based on different random samples (usu-
ally with replacement) taken from the original dataset

[11, 10]. Each classifier is trained on a different sub-
set of the data. As an example, random forests [2] are
a combination of classifiers. Each classifier is a tree-
model, hence the name random forests. The general-
ization error of the whole forest tends towards a limit
as the number of trees increases, by the law of large
numbers. The Kinect motion sensing alogorithm for
the Xbox gaming console uses decision tree classifiers
[10].

• Boosting adjusts the probability of sampling misclas-
sified data. Thus, misclassified data is more likely to
be considered in the training of subsequent classifiers.
However, boosting only applies to binary classification
but this issue can be addressed by the AdaBoost algo-
rithm [12].

• Stacked Generalization trains multiple levels of clas-
sifiers [30]. An ensemble is trained creating level-1
classifiers. The outputs from level-1 are then used to
train an ensemble of level-2 classifiers. The outputs
from level-1 classifiers can be thought of as features on
which level 2 classifiers can make decisions.

• Mixture of Experts generates several classifiers whose
outputs are combined through a rule which typically
trained using the expectation maximization (EM) al-
gorithm [18]. A hierarchical mixture of experts can
be obtained by combining several mixture-of-experts
models [19].

Just as bagging and boosting sample subsets of instances,
we can also select subsets of features to build diverse set
classifiers. Generating different classifiers from randomly-
selected subsets of feature is known as the random subspace
method [17]. This is particularly useful when unstable ma-
chine learning representations are used. Unstable learners
are those sensitive to differences in the training data set and
include decision trees while stable learners are those less
sensitive to differences in the training data set and include
nearest neighbour [8].

3.3 Consequences

3.3.1 Generation of Diverse Classifiers
As remarked above, classifiers in an ensemble must be di-

verse. This can be achieved either by altering parameters
that determine the architecture of a classifier, or how the
space of classifiers is sampled. With an artificial neural net-
work (ANN) [1], this can be achieved by choosing different
initial weights, different numbers of hidden nodes or differ-
ent learning rules. With Evolutionary Computation meth-
ods such as genetic programming [20], we choose different
numerical parameters such as population size and number
of generations, but also different crossover and mutation op-
erators [7]. In fact, when training a diverse set of classifiers
intended for an ensemble, our ignorance about appropriate
values for parameter settings is turned into an advantage as
we are forced to explore different parameter settings, each
combination of parameter settings potentially creating a dif-
ferent classifier.

3.3.2 Statistically better behaviour
One major benefit of an ensemble approach is that the

combined classifier is the result of all the existing classifiers.



Rather than discarding any suboptimal classifiers generated
during preliminary parameter setting experiments, they can
all contribute to the ensemble. Since the final ensemble re-
sults from a larger sample of classifiers, it is more robust:
a single execution of a machine learning algorithm may or
may not produce an acceptable classifier. However, combin-
ing multiple classifiers, each of which came from an indepen-
dent execution of a machine learning algorithm, is less likely
to succumb to statistical fluctuation [8].

An ensemble also exhibits the desirable property of grace-
ful degradation. ssuming a large number of classifiers, should
a small number of them fail, the whole ensemble will not fail
catastrophically. ANNs also share this property, which was
originally modelled on the gradual reduction of brain func-
tion (and the lack of a ‘grandmother’ neuron) [27].

3.3.3 Integration of different types of classifier
Part of the broad appeal of ensembles is the integration

of different types of classifier. For example a decision tree
might be trained by C4.5, and an ANN might be trained
by back-propagation [24]. Combining these different types
of classifier into an ensemble may have more benefit than
combining classifiers of the same type, as each approach will
have a different bias. Separate researchers with expertise in
different sub-fields of machine learning can collaborate by
contributing classifiers to an ensemble. Different machine
learning researchers do not need to understand the training
method of each other’s technique as the classifiers can be
inserted directly into the ensemble.

3.3.4 Learning Classifier Systems
Learning Classifier Systems offer an interesting solution

to the question of how to build a system of classifiers. A set
of classifiers is evolved, but each one is ‘guarded’ by a rule
stating which part of the input space it applies to. These
condition-action pairs, as they are called in the Learning
Classifier Systems literature, can be guarded by relatively
simple conditions such as ternary-schema matching or by
more complex S-expressions. Thus a single classifier can be
considered to be an expert in classifying parts of the feature
space. The relationship between Learning Classifier Systems
and ensembles has already been investigated [3].

3.3.5 Confidence
With a single classifier it is difficult to say what confidence

we have in the classification. The outcome of a single classi-
fication task is Boolean and we have no further information
to make any judgement about the confidence of the classifi-
cation. However if we have a set of classifiers, we can also
give some indication of our certainty in our prediction. For
example, imagine we have one hundred binary classifiers. In
one case, if we have 99 votes for true and 1 vote for false we
can be more confident than if we only received 51 votes for
true and 49 votes for false. An ensemble is a probabilistic
model which allows us to perform classification and report
our confidence in this classification. Thus, we can estimate
the posterior probabilities of the classification decisions [25].
It should also be emphasized that combining classifiers does
not guarantee an improvement in performance when com-
pared to the best classifier in the ensemble and of course
high confidence does not imply that the classification is cor-
rect.

3.3.6 Levels of Measurement

Using statistics as a fundamental foundation, an ensemble
should be able to deal with different levels of measurement
(Discrete, Categorical, Nominal, and Ordinal data). [31]
defines three types of classifier outputs.

• Abstract-level output: output is a unique class label
for each input.

• Rank-level output: output is a list of ranked class la-
bels for each input.

• Measurement-level output: output is a vector of real-
valued measures representing estimates of class poste-
rior probabilities.

3.3.7 Statistics and Machine Learning
There is a tension between statistics and machine learning.

Statisticians follow at least a two-stage process when fitting
a model to the data (i.e. constructing a classifier):

• Examine data manually and choose a model (e.g. a
polynomial of a given degree).

• Choose the best parameters for the model (e.g. by least
squares).

Some machine learning techniques attempt to automate
the model selection process itself, selecting the most appro-
priate parameters. For example ANN can represent any
continuous, differentiable function, and is not constrained
to a highly restricted model [1]. Similarly Genetic Program-
ming can construct any computable function if the function
set is expressive enough, while simultaneously choosing any
numerical parameters the model requires [24]. In machine
learning a model (i.e. a classifier mapping features to class
labels) is ratified by A/B testing where the dataset is parti-
tioned into two disjoint sets:

• The training set is used to train the classifier.

• The testing set confirms the validity of the classifier.

Classifiers chosen manually by statisticians are clearly human-
understandable. Machine learning techniques may generate
more accurate classifiers but be more difficult to interpret.
For example, a linear model is easy to understand while
ANNs have no such simple interpretation [27]. An ensemble
approach offers a seamless marriage between traditional sta-
tistical approaches and contemporary machine learning tech-
niques, potentially reconciling some of these tensions. For
example, an ensemble could consist of a number of human-
selected classifiers and a number of classifiers trained with
machine learning techniques. Depending on our perspec-
tive, we could increase the weight of the human selected
classifiers if we demand explanations of the data. If we al-
ternatively demand accuracy, we could increase the weight
of the machine learning trained classifiers. In other words,
the weights of the different kinds of classifiers provide a slid-
ing scale between the manual and automatic approaches to
classification.

3.4 Classifier Outputs as Features
In machine learning, features are aggregate information

extracted from the raw data of the application domain, the
motive being that features are easier for machine learning



algorithms to handle than raw data. For example: eye
colour of a person could consist of the set {blue, brown,
hazel, green} could be extracted from the RGB colour pix-
els in a photograph which is subject to noise; or a person’s
height could be discretized into the set {short, medium,
tall}. These features are units of information that the ma-
chine learning algorithms and the classifiers they produce
receive as input. Features form the basis space, from which
subsets of features can be selected to reduce the dimension-
ality of the problem [15] or more aggregate features can be
constructed [21].

Classifiers can be considered as a feature-space mapping
from the original features to the space of class labels. Simi-
larly, data points in the input space can be used to classify
unseen data based on its distance to existing data points,
e.g. by using the kth nearest neighbour classifier. However
instead of using the entire dataset, a subset of the initial
set of data points can be used, and therefore mapping the
original data to a subset can be considered as reducing the
number of features [14].

3.5 Ensembles of Linear Classifiers
Ensembles of linear classifiers can learn non-linear decision

boundaries. Linear classifiers place a linear decision bound-
ary across the feature space. For example, perceptrons can
only express linearly separable decision boundaries and are
the ‘computational unit’ in ANNs. An ANN is similar to an
ensemble of perceptrons, with a layer of classifiers feeding
into a threshold function (typically a sigmoid function). As-
suming three-layer feed-forward architecture, we can think
of the first layer as an ensemble. Similarly, the outputs from
the second layer can be considered to be a set of classifi-
cations which are combined in the third layer. However,
it must be remembered that in the case of ensembles each
classifier is produced independently, whereas in the case of
ANN, perceptrons may not be learned independently.

There is thus a parallel between ANNs and ensembles. A
linear classifier places a linear decision boundary across the
feature space, and cannot express non-linear decision bound-
aries. However, and ensemble of linear classifiers can express
a convex decision boundary. A single perceptron can only
learn and express a linear decision boundary and can never
learn to express the logical function XOR (or the general
parity problem). It was later discovered that a second layer
of perceptrons could express convex decision boundaries,
and a third layer could express concave decision boundaries
[1]. Perhaps if ensemble approaches had been more preva-
lent in the 1960s, it would not have taken 20 years between
the development of perceptrons and multilayer ANN [27]

3.6 Big Data and Parallelism
Ensemble techniques are increasingly important for big

data analysis and parallel processing. Techniques for deal-
ing with classification should scale with data volume. Large
amounts of data can be sampled and classifier training algo-
rithms can be run on physically separate processors, before
being combined into an ensemble. Bagging is particularly
disposed to dealing with large amounts of data as it is a
divide-and-conquer approach to training a classifier that can
be parallelized.

Once a set of classifiers is learned, if more data instances
arrive, we do not need to train an entirely new ensemble
from scratch. Classifiers which are typically learned off-line
on a batch of data, can thus be learned on new sets of data
instances upon arrival, and be integrated into the ensemble.
We can simply add new classifiers trained on the new data,
and include them in the ensemble without altering the ex-
isting classifiers. This is of increased importance with larger
and incrementally-growing datasets. In summary, both the
training of classifiers and the classification of data can be
parallelized.
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