
Automated Design of Algorithms and Genetic
Improvement: Contrast and Commonalities

Saemundur O. Haraldsson
University of Stirling

Stirling, Scotland, UK
soh@cs.stir.ac.uk

John R. Woodward
University of Stirling

Stirling, Scotland, UK
jrw@cs.stir.ac.uk

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program modification

ABSTRACT
Automated Design of Algorithms (ADA) and Genetic Im-
provement (GI) are two relatively young fields of research
that have been receiving more attention in recent years.
Both methodologies can improve programs using evolution-
ary search methods and successfully produce human com-
petitive programs. ADA and GI are used for improving
functional properties such as quality of solution and non-
functional properties, e.g. speed, memory and, energy con-
sumption. Only GI of the two has been used to fix bugs,
probably because it is applied globally on the whole source
code while ADA typically replaces a function or a method
locally. While GI is applied directly to the source code ADA
works ex-situ, i.e. as a separate process from the program
it is improving.

Although the methodologies overlap in many ways they
differ on some fundamentals and for further progress to be
made researchers from both disciplines should be aware of
each other’s work.

Keywords
Automated Design of Algorithms (ADA), Genetic Improve-
ment (GI), Genetic Programming (GP), Abstract Syntax
Tree (AST), Genetic Algorithm (GA), Search Based Soft-
ware Engineering (SBSE), Genetic Algorithm (GA)

1. INTRODUCTION
Recent decades has seen surge in the development of Meta-

heuristics [10] and Hyper-heuristics [7] where the latter could
be defined as a special case of Automated Design of Algo-
rithms (ADA). ADA is a general methodology employing
search methods to improve or discover algorithms for com-
putational problems. It generates algorithms by sampling
the large, discontinuous and complex space of programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609874.

GI has seen some progress due to the well-established
Search Based Software Engineering (SBSE) [27, 26] with
initiatives in automating many key aspects of software engi-
neering [22]. SBSE applies computational search to software
engineering problems and GI is the special case of automatic
software adjustment methods working directly on the source
code. The idea is that the source code acts as the genetic
material and can be rearranged to improve the program for
a given objective. The need to decrease the cost of main-
tenance in the development of software is very important
since it is usually the largest part of the software life cy-
cle. Automating the maintenance process would more than
likely reduce the cost considerably and give developers more
time and money to focus on more qualitative features of
programs.

Recent years have seen research that can be defined as
ADA and GI gaining momentum and an increase in num-
ber of publications. The two fields have much in common
but they can be divided by their application and definition.
They apply same and similar methods, typically Genetic
Programming (GP) or other metaheuristics. They are often
used for identical objectives, e.g. speed or accuracy, albeit
those objectives sometimes have different evaluation criteria.
For example to measure speed both CPU time and number
of iterations until a sufficient solution has been reached are
used. The time is ripe to synchronize their terminologies and
thus recognize the opportunities that lie in the inevitable
crossing of the two methodologies.

The reminder of this paper will firstly give an overview
of ADA and GI in sections 2 and 3 respectively. In section
4 the two methodologies will be compared by highlighting
their similarities and differences. In section 5 the paper will
be summarized and it will conclude in section 6.

2. AUTOMATED DESIGN OF ALGORITHMS
In this section we will define ADA and give examples of

its applications and opportunities. Designing algorithms is
a complex and sometimes unintuitive search and the au-
tomation of that process is therefore necessary and often
inevitable. Algorithms are defined as a set of stepwise in-
structions for general problem solving and each algorithm
can be viewed as a recipe for tackling a specific type of
problem. When designing an algorithm one can either do it
bottom-up by defining a general outline and filling in with
appropriate components or start with an already function-
ing algorithm and adjust it for ones needs. Given a certain
abstraction each algorithm can be altered and adjusted in
three ways.

• By replacing components with an alternative [55]. In
its simplest form this is done by selecting from a set
of suitable replacement components which confines the
search for a better algorithm to a discrete and finite
space. An example of this might be to have a evo-
lutionary algorithm and a set of predefined selection
methods to choose from, such as elitist selection and
tournament selection. Another approach is to evolve
or generate replacement components and depending on
multiple aspects such as, component representation,
generation method and the original algorithm this can
easily become very complex and impossible for exhaus-
tive search.

• By reordering the application of the components [12].
Given certain restrictions, where the algorithm needs
to be initiated and what it returns must be of spe-
cific type, this way is a special case of a permutation
problem.

• Parameter tuning, i.e. changing the amount of any or
each component [49]. E.g. altering the likelihood of
mutation in a Genetic Algorithm (GA). Even if this is
not in the strictest sense a design problem, it should
be combined with the other two ways whenever pos-
sible. When comparing the newly designed algorithm
with its predecessor, both subjects should perform at
optimal capacity given the evaluation criteria.

The combined search space for those three ways can be vast,
discontinuous, non-linear and/or multidimensional. Not to
mention the difficulties with selecting and presenting the fit-
ness which guides the search. In machine learning literature
an objective of finding or making new algorithms has typi-
cally been to generalize them as much as possible, given a
certain domain [41, 48]. Recent research and in particular
ADA research has however suggested that automating the
process reveals opportunities to specialise the algorithms to
a certain problem class [8, 55, 56]. A problem class is a prob-
ability distribution over all instances of a given domain, e.g.
Travelling Salesman Problem (TSP), timetabling and bin
packing. The current access to computational resources can
give us millions of variations of each algorithm in seconds
and thus we should not be limiting the search for the one al-
gorithm that solves all or a“Jack-of-all-Trades” [8]. Then we
can create general frameworks that can be adjusted to pro-
duce algorithms for a wide variety of computational prob-
lems. There could be a general framework that generates
algorithms to solve problems where the solution represen-
tation and another for problems where the solution repre-
sentation is bit-strings. When the algorithm being designed
is a search or an optimization algorithm the main objective
of the fitness function is typically to improve a functional
property that is evaluated as the fitness of the best solution
found by the evolved algorithm [4, 13, 18, 19, 29]. Speed has
also been of interest for others [21] as well as combinations
of both where GP was used to evolve search heuristics [21],
and novel matrix multiplication methods where discovered
with GA [31].

2.1 Definition of Automated Design of Algo-
rithms

We define ADA as a general methodology for using search
methods to improve or discover algorithms for any given

computational problem. When generating complete algo-
rithms the amount of information provided can be as little
as only a set of problems, their required output data type
and a selection of primitive instructions or functions to as-
semble the algorithm from. Generating algorithms can also
be done by using an existing algorithm and adjust it to serve
either a different purpose or just to improve it for its current
purpose. The algorithm in question must be suitable for a
partition into blocks or components that can be replaced
by a function with the same type signature, such that the
original algorithm can serve as a template or scaffold.

Given this definition, research from as early as the 1990’s
can be categorized as ADA e.g. where [4] use GP to evolve
annealing schedule for a simulated annealing algorithm. Hyper-
heuristics to generate heuristics is a sub-field of ADA, as
they are defined to be a heuristic search in the space of
heuristics [11]. The definition of ADA is broad and its appli-
cation is included in many well established fields of research,
such as machine learning [30], data mining [45] and opera-
tion research [6]. Many of those fields are overlapping and
sometimes the line between them is not distinct. Therefore
it is necessary to give a more general platform for discussion
and debate so that progress can be made.

The last decade has seen rapid increase in the frequency of
research that falls under the definition of ADA and because
of that, effort has been made to gather relevant publications
in this paper. There is shortage in the literature of solid
categorization of research that is ADA which makes it diffi-
cult to guarantee that a published algorithm or methodology
is indeed novel. Completely different names and terminol-
ogy for similar things are somewhat scattered, so extensive
comparison is difficult. The Workshop on the Automated
Design of Algorithms in the annual Genetic and Evolution-
ary Computation Conference (GECCO) has been held since
2011 and serves as an international platform for exchanging
ideas1.

2.2 Applications of Automated Design of Al-
gorithms

ADA has been used in many different and creative ways.
We now examine component replacement and reordering.
We do not however examine automatic parameter tuning as
there is already a vast literature on that [3, 15].

2.2.1 Component replacement
The most common example of ADA is where an algorithm

is improved by selecting one of its components and replacing
it with an automatically designed alternative. The compo-
nent is usually something that can be easily replaced by a
function due to its place in the program where it has known
input and output data type. Some examples of such com-
ponents are:

• Annealing schedule for the simulated annealing algo-
rithm [4].

• Selection heuristic for bin packing problems [9] and
vehicle routing algorithm [12].

• Scheduling rules for job shop scheduling [43].

• Flowtime estimators for job shop scheduling [42].

1http://www.sigevo.org/gecco-2011/workshops.html#
ecdga

• Variable-selection heuristic for Boolean Satisfiability
(SAT) solvers [19, 20].

For each of these applications note that the components be-
ing designated for replacements can be easily isolated in the
algorithm structure. Then they can be replaced by any ar-
bitrary function so long as that function has the same type
signature as defined by the original component. Note also
that each of these examples are relatively small algorithms
and components that can be expressed in a few lines of code
but still the search space for ADA is huge and complex.
The annealing schedule can for example be replaced with
any function that returns a double precision variable on the
closed interval between zero and one [4]. GP has proved
to be very effective in evolving the replacement [55] and its
ability to generate small but complex programs makes it
the primary method for these types of ADA. Also, the ab-
straction and a careful selection of the GP function set al-
lows an easy way of guaranteeing error free compilation and
termination, e.g. if the function set only contains Turing
complete operators [44]. The evolution of the replacement
always takes place ex situ i.e. it is a search process that runs
separate from the original algorithm. It typically takes place
in parallel and with a representation that does not need to
be identical to the original algorithm’s representation. The
outcome of that process is evaluate by either converting the
component into the original source language before substi-
tuting the evolved code into the original program or building
a wrapper function to interpret.

2.2.2 Component reordering
ADA has not to the authors’ best knowledge been applied

as a permutation problem but only in combination with the
replacement idea and with a given framework for scaffold-
ing [14]. The scaffolding method is another ADA application
that uses an existing algorithm framework as a template and
finds the best combination of a finite number of predefined
alternatives for each place in the scaffold. This method was
used to evolve multiple meta-heuristics for a vehicle routing
problem. A general outline of the simplex variant called a
push/pull algorithm was used as a template and the compo-
nents were extracted from three established and widely used
algorithms to serve as the blocks that could be put into the
scaffold [12].

The search space of ADA has also been widened by ex-
tracting components from many different algorithms to use
them as building blocks [39, 45]. Allowing the structure
to evolve with minimal restrictions as well as the what the
structure contains, i.e. the blocks can be stacked in any or-
der with the only limitation being that the output is mean-
ingful. While one describes a general automation process
for various data mining algorithm [45], the other evolves
a structure of a black-box algorithm that tackles the De-
ceptive Trap problem [39]. Both papers rely on grammati-
cal evolution which describes the restrictive condition each
block has, such as what blocks can precede and follow other
blocks. These conditions are primarily based on the blocks
data signatures.

3. GENETIC IMPROVEMENT
Human programmers working in industry cannot be ex-

pected to optimize their software with respect to non-functional
properties within a given budget or available project time

frame [5]. The software development life cycle is a iter-
ative process where the program is constantly undergoing
improvements. Whether it is bug fixing, speed up, memory
optimization, platform specific adaptation or many more ex-
amples. This process is carried out by human programmers
that are usually only experts on a few platforms, languages
or environments. End users are vaguely aware of this process
when their device prompts them to update but for develop-
ers this is a cycle of often tiny tweaks and minor improve-
ments. Moreover because programmers, without automated
tools, are limited by trial and error methods and they can
only view a small portion of the space of all available ad-
justments those updates could have to be reverted in later
cycles.

Many methods have been proposed to counteract soft-
ware’s inevitable high maintenance cost, substandard re-
leases with annoyingly frequent updates and other mainte-
nance problems. One promising approach developed in the
recent decade suggests automation in one or all aspects, em-
ploying SBSE [28] methods. More specifically evolutionary
search methods such as GP have been used to explore pro-
gram variants. GI is one of these SBSE methods that has in
recent years been surfacing as the conquering automatic im-
provement candidate in the software engineering literature.

Since GI involves adjusting an already functioning soft-
ware it is often highly susceptible to producing compiler
errors non-terminating programs. That is anticipated and
methods to handle it usually involve some kind of penalty
such that it has little to no possibility to survive to the next
iteration [54]. Other methods employ direct elimination, by
discarding them entirely from the population of programs
being evaluated [36, 50]. Although solutions have been sug-
gested to this using reflective properties of certain program-
ming languages and an actor model [50].

In this paper variants of GI will be divided into 4 cate-
gories based on their application domain.

• Bug fixing, probably its most common application.

• Increasing speed, which has always been of much in-
terest maybe because of easy evaluation.

• Migration and transplantation. Migrating software from
one platform to another, transplanting a code segment
or a functionality from on program to another.

• Dynamic adaptive software improvement where the
program is improved while it is being used.

3.1 Definition of Genetic Improvement
GI is the name given to automatic software adjustment

methods that operate directly on the source code, treating
it as the genetic material. These operations may for exam-
ple consist of copying, deleting and swapping lines of code.
An existing software’s source code is used as the building
material for the improvements, meaning that it is assumed
the software already possesses sufficient expressions [24, 33].
The search is therefore limited to all variants of said soft-
ware code, albeit those variants can be of variable length
because expressions can be duplicated or deleted. The pool
of genetic material can however be expanded with trans-
plantation from other programs, either multiple variants of
the same program or other programs that have desirable
features. Code transplantation has been used to expand
the pool of genetic material with already existing variants

of the software that was being improved. Two award win-
ning and manually improved variants of the MiniSAT solver
introduced enough new genetic material to improve the per-
formance of the original beyond the donor programs [46].

The automation involves applying some search method in
the program space driven by the objectives set by the de-
veloper. While these objectives are relatively easy to define,
finding an effective fitness function can pose a real problem
[16] because the software must maintain its correct function-
ality. The correctness of an improvement is found either by
comparing the output with the output of the original soft-
ware as an oracle [34, 2] or by evaluating its performance on
a suite of test cases that has already been run on the origi-
nal code. The fitness is then monitored during compilation
and runtime by instrumentation, simple timing mechanisms
or whatever the objective defines. Given that the search
space is highly noisy [32] evolutionary methods have been
preferable over others. Particularly GP with grammatical
representation, again for its ability to represent and evolve
programs.

As with ADA, some focus of GI has recently been turned
towards specialisation of software rather than generalization
[23, 24, 46]. With increasing computational resources and
constantly better methods for improvement, making mul-
tiple variants of a software and maintaining them is more
viable than before. A program that is fast but energy inef-
ficient might be acceptable for a desktop computer but the
user might be willing to consider slower but energy saving
variant for his laptop in order to extend the usage of the
battery before needing to be recharged.

Earlier in GI the typical approach to evolve improvements
was to maintain multiple copies of the program in a popu-
lation but that was shortly discarded in favour of maintain-
ing a population of edits. Each edit describes changes that
should be made to the original program before evaluation.
This approach is much more memory efficient and makes
explaining the changes to the software developer easier, al-
though the extra effort of applying the changes must be
made before each evaluation.

3.2 Applications of Genetic Improvement
The appeal of GI is that the process of optimization does

not need a model because the software is its own substrate.
Therefore the evaluation process does not give an approxi-
mation of how the software will perform but potentially an
accurate vision. Unlike other engineering practices where
e.g. structural loads are approximated in civil engineering
and productivity is estimated in industrial engineering with
models. GI in software engineering makes it possible to mon-
itor the effects of every small change directly which makes
it well suited for fixing faulty programs.

3.2.1 Bug Fixing
GI has been extensively applied to automatic bug fixing

where test cases were used to identify nodes in the AST
that might be faulty and successfully focus an evolution of
patches [17, 52]. They were able to repair multiple different
bugs in 20 legacy C programs. Further progress was then
made where test suite optimization was used to improve the
fitness evaluation of the fixes [16, 51]. Their success has
spurred further research into other domains and program-
ming languages such as Python [1] where a novel patch rep-
resentation was introduced. The work of Weimer et al. has

since then culminated in a framework called GenProg [38].
It also built on the Python novel patch representation [1] by
changing the representation to edits from ASTs to be able
to scale properly to larger programs. GenProg was reported
to fix 55 of 105 known bugs for about US $8 each in 8 open-
source programs [37]. Therefore giving plenty of evidence
for the merit of GI as an automatic software repair method.

3.2.2 Increasing Speed
GI is appropriate for improving non-functional properties

of an existing software when there is sufficiently good test
suit available. The original version of the software can act as
an oracle to maintain proper functionality [34, 2] alongside
evaluation. The non-functional property that is probably
most popular to improve has to be speed since its evaluation
is quite uncomplicated and comparison is easy.

Strongly typed GP was successfully applied on small pro-
grams with seeding [2, 54]. That work also introduced multi-
objective approach to the improvement process by allowing
some error while searching for faster alternatives to the orig-
inal seed. Later the speed improvements were generalised to
other non-functional properties specifically for low-resource
systems [53].

Larger systems have been optimized for speed in [36] where
Bowtie2, a DNA sequencing system that is made up of ap-
proximately 50k lines of C++ code. A 70 fold speed up on
specialized DNA sequences was reported without decreasing
functionality by evolving edits with grammatical evolution.
The same framework and methodology was used to improve
the computational time of the boolean satisfiability (SAT)
solver, MiniSAT, with moderate success [47]. Later a sig-
nificant speed gain was observed when the genetic pool was
widened with multiple versions of the solver software [46].

3.2.3 Migration and transplantation
Code transplantation has been suggested in [25] for re-

verse engineering purposes such as inserting a feature from
one system into another. It seems that GI has the tools
and right approach to accomplish this task automatically
by using GP and appropriate representation. Transplanta-
tion has been reported with success, although it was not
between systems or software but between different versions
of the same software [46]. Proper automatic code transplan-
tation between systems written in the same language or even
systems written in different languages has yet to be made
but migrating software from one environment to another has
seen success.

The migration and complete a repurposing was accom-
plished in [34] where CUDA C++ code was adapted for the
gzip functionality to run on parallel processes, accelerating
the function considerably in the process. The CUDA C++

code, StereoCamera system, was also migrated to parallel
graphics hardware and gained from 5% to a factor of 6.8
speed up [35].

3.2.4 Dynamic adaptive approach
Attaining dynamic adaptivity means to be able to improve

the software while it is in use and therefore potentially being
able to reduce maintenance costs to absolute minimum. If
the software can improve itself that also means that down-
loading updates could be eliminated thus using bandwidth
and data charges for other more productive or entertaining
means. Some methods have been suggested such as the semi

online approach in [23] where it is proposed that optimiza-
tion of non-functional properties could happen on mobile
devices while charging. A more dynamically online stance is
suggested and implemented in [50] with a web service run-
ning on the Java Virtual Machine (JVM) and utilizing the
reflection abilities of the Scala programming language.

4. DISCUSSION AND CONTRAST
Although the broadest definition of an algorithm includes

the simplest instructions that can be executed with a pen
and paper, the automation is only possible for when those
instructions have been implemented into a software. As
such we can view ADA as a specific software improvement
methodology and compare it with the field of GI. This sec-
tion will first compare similarities and then compare differ-
ences. So that one might be better equipped to make the
decision which one to use for a given problem. This is not a
trivial decision.

4.1 Similarities
The apparent similarities are firstly that both method-

ologies are driven by the need to automatically improve or
adapt software and therefore they partly share a domain.
ADA and GI both work on either existing software or a
software framework where the functionality is known and at
least the minimal number of components that are needed
for that functionality are known and available. ADA has
mainly been used to evolve small functions from scratch as a
replacement component for a bigger algorithm and although
GI sometimes operates on large scale systems, its output is
usually small set of edits to that system. So typically the
output from both methodologies are relatively small such as
a few edits or a function that can be expressed in a few lines
of code.

GI has been successfully applied to accelerate the Min-
iSAT solver and so has ADA, although the ADA only re-
quired access to the heuristic selection operator.

Last but not least the part of the shared domain of com-
puter programs is highly complex and large and the task
of searching it is consequently complex. GI and ADA both
employ evolution for that search which make them compar-
atively resource consuming both in terms of CPU time and
memory.

4.2 Difference
The most notable difference is that GI is applied in-situ

or directly to the source code while ADA works ex-situ, i.e.
evolves a function that is injected into the original code. GI
makes small changes, sometimes many small changes that do
not have to be constrained to a small region of the source
code. ADA’s improvement of an existing program on the
other hand is a replacement of a certain call or statement in
the source and is thus limited to the places where that call
is made.

As observed GI and ADA evolve small edits and functions
respectively but the main difference is that the GI’s edits are
human readable while ADA’s functions are often quite un-
intuitive and cannot be explained simply. This can possibly
be the cause for their difference in sub-domain application,
where ADA is commonly used to improve heuristics [4, 9, 12,
19, 20, 43], data mining, and machine learning algorithms
[30, 45]. GI is applied to software in general, although it
improves MiniSAT [46] and a classification algorithm [2] it

is not limited to algorithms and has fixed bugs in legacy
programs [17, 52] and 20 other open-source programs [37].

ADA has typically been used to evolve small functions but
those can be relatively large compared to the whole soft-
ware when the program is a heuristic. GI’s successes are
typically reported on a larger systems and therefore sug-
gesting that it fairs better when it has access to a larger
gene pool of potential changes. The difference here lies in
how the methodologies use the ASTs, GI alters the whole
AST while ADA takes one node or a cluster of nodes and
replaces them. For that reason GI has been used more of-
ten for automatically repairing software since it can make
small changes in the software that are separated by many
lines or even files in the code. Changes that potentially fix
a fault that a human could not find because the bug’s lo-
cation might not be co-located with the fault it causes or
the fault is caused by a series of bugs that are dispersed in
different sections of the code. ADA would probably not be
able to fix the latter kind of fault with its limited scope into
the original software. Similarly for non-functional proper-
ties such as speed or memory usage, GI might find solutions
that are not confined to a single node or a cluster of nodes in
the AST. Sometimes those improvements are just to turn off
non-vital functionalities of the original software [36]. Also,
although the two methodologies have the objective to speed
up a software in common, they usually approach the task
from different angles. While GI tries to speed up programs
by finding variants of the original software, ADA’s approach
is often to make the algorithm find a better solution sooner.

A side effect of the GI process is that it produces lots of
faulty individuals out of scope, semantically incorrect or non
terminating, while ADA can more easily be applied so that
all individuals compile and terminate. For some, a few faulty
program variants while iterating over many is considered to
be an annoyance but nothing to be concerned about and it
has been argued that it does not affect the evolution to much
[36]. Others suggest using better approaches with reflection
and agent based coding to prevent these side effects [50].

5. SUMMARY
This paper has given a brief overview of the fields of ADA

and GI. Where some examples of usage and application were
talked about as well as their merits and shortcomings, lim-
itations and some opportunities. At last their similarities
and differences were highlighted while trying to give some
idea of when one should be chosen over the other.

The following bullet points highlight the main findings of
this paper and overall what is observed is that the two fields
are very similar and share many characteristics but they still
differ in a fundamental way.

• ADA and GI both produce human compatible outputs,
i.e. they improve upon existing software and even suc-
cessfully improve a program 2 that has been manually
improved multiple times.

• ADA and GI both typically apply GP or other evolu-
tionary methods to generate changes. Although ADA
has been using it in the more traditional sense [32]
while GI converted to evolving edit lists as they are
less memory consuming and more easily explainable
to humans.

2For example MiniSAT [46, 19, 20]

• Current application of GI can produce faulty and non-
terminating programs in the process of finding im-
proved variants while ADA generates syntactically cor-
rect terminating code.

• ADA is used to improve functional and non-functional
properties while GI’s focus has typically been non-
functional properties although with different approach
than ADA. ADA’s approach to speed up has been to
improve the convergence of an algorithm to a good
solution and GI has been used to optimize the code
structure, i.e. in what sequence the statements are
executed. Also, only GI has been used to fix bugs.

• ADA and GI share a general domain where they are
both used to improve software but ADA has only been
used on heuristics and machine learning and data min-
ing algorithms.

6. CONCLUSIONS
ADA and GI are two related fields which are similar and

are both at an early stage of their development but an in-
crease in use by researchers and industry alike is to be ex-
pected. It would probably be beneficial for further progress
for researchers in either discipline to be aware of each other’s
work. The former is mainly manned by computer scientists
while the latter consists of mainly software engineers. They
share a domain but the approach and applicability are quite
different.

The search method of choice for both fields is GP and
recently it has been accused of tackling toy problems [40]
so ADA and GI offer a rich domain of real world problems
which will necessitate improvements in GP, the search tech-
nology. The usage of GP is also different between the fields
where representation of improvements and objectives are of-
ten not the same.

When fixing bugs, GI is preferable for its ability to make
small but significant changes to a software and ADA when
the task at hand is to find novel components for a com-
putational method. For accelerating software the choice of
method depends on the software, if the software is an easily
compartmentalized algorithm it seems that ADA could be
better but for a general software GI might be more suitable.
Because GI can work on a more fine grained level of the
software and does not have to be focused on one particular
AST node or a cluster of nodes.

7. REFERENCES
[1] T. Ackling, B. Alexander, and I. Grunert. Evolving

Patches for Software Repair. In GECCO’11, 13th
annual conference on Genetic and evolutionary
computation, pages 1427–1434, Dublin, Ireland, July
2011. ACM.

[2] A. Arcuri, D. R. White, J. Clark, and X. Yao.
Multi-objective improvement of software using
co-evolution and smart seeding. In X. Li, M. Kirley,
M. Zhang, D. Green, V. Ciesielski, H. Abbass,
Z. Michalewicz, T. Hendtlass, K. Deb, K. Tan,
J. Branke, and Y. Shi, editors, 7th International
Conference, SEAL 2008, Lecture Notes in Computer
Science, pages 61–70, Melbourne, Australia, Dec.
2008. Springer Berlin Heidelberg.

[3] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.
F-Race and iterated F-Race: An overview. In
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Experimental Methods for the
Analysis of Optimization Algorithms, chapter 13,
pages 311–336. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[4] A. Bölte and U. W. Thonemann. Optimizing
simulated annealing schedules with genetic
programming. European Journal of Operational
Research, 92(2):402–416, July 1996.

[5] F. P. Brooks. The Mythical Man-Month, Essays on
Software Engineering, Anniversary Edition. Addison
Wesley, 1995.

[6] E. Burke, M. Hyde, G. Kendall, and J. Woodward.
Genetic Programming Hyper-Heuristic Approach for
Evolving Two Dimensional Strip Packing Heuristics.
IEEE Transactions on Evolutionary Computation,
14(6):942–958, 2010.

[7] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. R. Woodward. A classification of
hyper-heuristic approaches. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume
146 of International Series in Operations Research &
Management Science, pages 449–468. Springer US,
2010.

[8] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward.
Automatic Heuristic Generation with Genetic
Programming : Evolving a Jack-of-all-Trades or a
Master of One. In GECCO’07, 9th annual conference
on Genetic and evolutionary computation, pages
1559–1565, New York, New York, USA, 2007. ACM.

[9] E. K. Burke, M. R. Hyde, and G. Kendall.
Grammatical Evolution of Local Search Heuristics.
IEEE Transactions on Evolutionary Computation,
16(3):406–417, June 2012.

[10] E. K. Burke and G. Kendall. Search Methodologies.
Springer US, Boston, MA, 2005.

[11] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross,
and S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In Handbook of
Metaheuristics, International Series in Operations
Research & Management Science, pages 457–474.
Springer US, 2003.

[12] Y. Caseau, F. Laburthe, and G. Silverstein. A
meta-heuristic factory for vehicle routing problems. In
5th International Conference, Principles and Practice
of Constraint Programming, CP’99, Lecture Notes in
Computer Science, pages 144–159, Alexandria, VA,
USA, 1999. Springer Berlin Heidelberg.

[13] L. Diosan, M. Oltean, and L. Dio. Evolving crossover
operators for function optimization. In 9th European
Conference on Genetic Programming, EuroGP 2006,
Lecture Notes in Computer Science, pages 97–108,
Budapest, Hungary, 2006. Springer Berlin Heidelberg.

[14] J. Drake, N. Kililis, and E. Özcan. Generation of VNS
components with grammatical evolution for vehicle
routing. In K. Krawiec, A. Moraglio, T. Hu, A. ÃĚ.
Etaner-Uyar, and B. Hu, editors, 16th European
Conference, EuroGP 2013, April 3-5, Lecture Notes in
Computer Science, pages 25–36, Vienna, Austria,
2013. Springer Berlin Heidelberg.

[15] A. E. Eiben and S. K. Smit. Evolutionary Algorithm
Parameters and Methods to Tune Them. In
Y. Hamadi, E. Monfroy, and F. Saubion, editors,
Autonomous Search, chapter 2, pages 15–36. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[16] E. Fast, C. L. Goues, S. Forrest, and W. Weimer.
Designing better fitness functions for automated
program repair. In GECCO ’10 Proceedings of the
12th annual conference on Genetic and evolutionary
computation, pages 965–972, Portland, Oregon, USA,
2010. ACM.

[17] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues.
A genetic programming approach to automated
software repair. In 11th Annual conference on Genetic
and evolutionary computation, GECCO’09, pages
947–954, New York, New York, USA, 2009. ACM.

[18] W. Fu, M. Johnston, and M. Zhang. Automatic
construction of invariant features using genetic
programming for edge detection. In 25th Australasian
Joint Conference, AI 2012: Advances in Artificial
Intelligence, number 2 in Lecture Notes in Computer
Science, pages 144–155, Sydney, Australia, 2012.
Springer Berlin Heidelberg.

[19] A. Fukunaga. Automated Discovery of Composite
SAT Variable-Selection Heuristics. In The 18th
National Conference on Artificial Intelligence, pages
641–648, Edmonton, Canada, 2002. The AAAI Press.

[20] A. S. Fukunaga. Evolving local search heuristics for
SAT using genetic programming. In K. Deb, editor,
Genetic and Evolutionary Computation - GECCO
2004, volume 3103 of Lecture Notes in Computer
Science, pages 483–494, Seattle, WA, USA, June 2004.
Springer Berlin Heidelberg.

[21] A. S. Fukunaga. Automated discovery of local search
heuristics for satisfiability testing. Evolutionary
Computation, 16(1):31–61, Jan. 2008.

[22] M. Harman, E. Burke, J. Clark, and X. Yao. Dynamic
adaptive search based software engineering. In
International Symposium on Empirical Software
Engineering and Measurement, 2012.

[23] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H.
Moghadam, S. Yoo, and F. Wu. Genetic Improvement
for Adaptive Software Engineering (keynote paper). In
G. Engels, editor, SEAMS ’14, Hyderabad, India,
2014. ACM.

[24] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the pareto program surface using genetic
programming to find better programs (keynote paper).
In 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–14, Essen,
Germany, Sept. 2012. ACM.

[25] M. Harman, W. B. Langdon, and W. Weimer. Genetic
programming for Reverse Engineering. In WCRE’13
20th Working Conference on Reverse Engineering,
pages 1–10, Koblenz, Germany, Oct. 2013. IEEE.

[26] M. Harman, S. Mansouri, and Y. Zhang. Search based
software engineering: A comprehensive analysis and
review of trends techniques and applications.
University College London, Tech. Rep. TR-09-03,
pages 1–78, 2009.

[27] M. Harman, S. A. Mansouri, and Y. Zhang.

Search-based Software Engineering: Trends,
Techniques and Applications. ACM Computing
Surveys, 45(1):1–61, Nov. 2012.

[28] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo.
Search based software engineering: Techniques,
taxonomy, tutorial. Empirical Software Engineering
and Verification, 7007:1–59, 2012.

[29] L. Hong, J. Woodward, J. Li, and E. Özcan.
Automated design of probability distributions as
mutation operators for evolutionary programming
using genetic programming. In 16th European
Conference, EuroGP 2013, Lecture Notes in Computer
Science, pages 85–96, Vienna, Austria, 2013. Springer
Berlin Heidelberg.

[30] U. Johansson, R. König, and L. Niklasson. Genetically
evolved kNN ensembles. Data mining, 8:299–313, 2010.

[31] A. Joó, A. Ekart, and J. Neirotti. Genetic algorithms
for discovery of matrix multiplication methods. IEEE
transactions on evolutionary computation,
16(5):749–751, 2012.

[32] J. R. Koza. Genetic Programming, on the
programming of computers by means of natural
selection. The MIT Press, 1992.

[33] W. B. Langdon. Genetic improvement of programs
(Keynote). In 18th International Conference on Soft
Computing, MENDEL’12, pages 7–12, 2012.

[34] W. B. Langdon and M. Harman. Evolving a CUDA
kernel from an nVidia template. In P. Sobrevilla,
editor, IEEE Congress on Evolutionary Computation,
pages 1–8, Barcelona, Spain, July 2010. IEEE.

[35] W. B. Langdon and M. Harman. Genetically improved
CUDA C++ software. In M. Nicolau, K. Krawiec, and
M. Heywood, editors, 17th European Conference on
Genetic Programming, EuroGP 2014, Lecture Notes in
Computer Science, pages 1–12, Granada, Spain, 2014.
Springer Berlin Heidelberg.

[36] W. B. Langdon and M. Harman. Optimising Existing
Software with Genetic Programming. IEEE
Transactions on Evolutionary Computation,
PP(99):1–18, 2014.

[37] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In 2012 34th International Conference on Software
Engineering (ICSE), pages 3–13, Zurich, Swiss, June
2012. IEEE.

[38] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A Generic Method for Automatic Software
Repair. IEEE Transactions on Software Engineering,
38(1):54–72, 2012.

[39] M. A. Martin and D. R. Tauritz. Evolving black-box
search algorithms employing genetic programming. In
GECCO’13, 15th annual conference on Genetic and
evolutionary computation, pages 1497–1504,
Amsterdam, The Netherlands, July 2013. ACM Press.

[40] J. Mcdermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaśkowski, K. Krawiec,
R. Harper, K. D. Jong, and U.-M. O’Reilly. Genetic
Programming Needs Better Benchmarks. In
GECCO’12, 14th annual conference on Genetic and
evolutionary computation, pages 791–798,
Philadelphia, Pennsylvania, USA, July 2012. ACM.

[41] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[42] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan.
Evolving reusable operation-based due-date
assignment models for job shop scheduling with
genetic programming. In 15th European Conference,
EuroGP 2012, Lecture Notes in Computer Science,
pages 121–133, Málaga, Spain, 2012. Springer Berlin
Heidelberg.

[43] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan.
Learning iterative dispatching rules for job shop
scheduling with genetic programming. The
International Journal of Advanced Manufacturing
Technology, 67(1-4):85–100, Feb. 2013.

[44] P. Nordin and W. Banzhaf. Evolving Turing-Complete
Programs for a Register Machine with Self-modifying
Code. In Genetic algorithms: proceedings of the sixth
international conference (ICGA95), pages 318–325.
Morgan Kaufmann, 1995.

[45] G. L. Pappa and A. A. Freitas. Automating the Design
of Data Mining Algorithms. Natural Computing
Series. Springer Publishing Company, Heidelberg, 1st
edition, 2009.

[46] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using Genetic Improvement & Code
Transplants to Specialise a C++ Program to a
Problem Class. In M. Nicolau, K. Krawiec, and
M. Heywood, editors, 17th European Conference on
Genetic Programming, EuroGP 2014, Lecture Notes in
Computer Science, Granada, Spain, 2014. Springer
Berlin Heidelberg.

[47] J. Petke, W. B. Langdon, and M. Harman. Applying
Genetic Improvement to MiniSAT. In G. Ruhe and
Y. Zhang, editors, 5th International Symposium,
SSBSE 2013, Lecture Notes in Computer Science,
pages 257–262, St. Petersburg, Russia, Aug. 2013.
Springer Berlin Heidelberg.

[48] R. Sedgewick and K. Wayne. Algorithms. Addison
Wesley, Westford, Massachusetts, USA, 4th edition,
2011.

[49] S. Smit and A. Eiben. Comparing parameter tuning
methods for evolutionary algorithms. In 2009 IEEE
Congress on Evolutionary Computation, pages
399–406, Trondheim, May 2009. IEEE.

[50] J. Swan, M. G. Epitropakis, and J. R. Woodward.
Gen-O-Fix: An embeddable framework for Dynamic
Adaptive Genetic Improvement Programming.
Technical Report January, Department of Computing
Science and Mathematics, University of Stirling,
Stirling, UK, 2014.

[51] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.
Automatic Program Repair with Evolutionary
Computation. Communications of the ACM,
53(5):109–116, 2009.

[52] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In 2009 IEEE 31st International
Conference on Software Engineering, pages 364–374,
Vancouver, Canada, 2009. IEEE.

[53] D. R. White. Genetic Programming for Low-Resource
Systems. Phd, University of York, 2009.

[54] D. R. White, A. Arcuri, and J. a. Clark. Evolutionary
Improvement of Programs. IEEE Transactions on
Evolutionary Computation, 15(4):515–538, Aug. 2011.

[55] J. Woodward and J. Swan. The automatic generation
of mutation operators for genetic algorithms. In G. L.
Pappa, J. Woodward, M. R. Hyde, and J. Swan,
editors, GECCO’12, 14th annual conference on
Genetic and evolutionary computation, pages 67–74,
Philadelphia, Pennsylvania, USA, 2012.

[56] J. R. Woodward and J. Swan. Automatically
designing selection heuristics. In GECCO’11, 13th
annual conference on Genetic and evolutionary
computation, page 583, New York, New York, USA,
2011. ACM Press.

